Bacterial Adaptation Strategies and Interactions in Different Soil Habitats

Total Page:16

File Type:pdf, Size:1020Kb

Bacterial Adaptation Strategies and Interactions in Different Soil Habitats Bacterial adaptation strategies and interactions in different soil habitats Von der Fakultät für Lebenswissenschaften der Technischen Universität Carolo-Wilhelmina zu Braunschweig zur Erlangung des Grades einer Doktorin der Naturwissenschaften (Dr. rer. nat.) genehmigte D i s s e r t a t i o n von Selma Gomes Vieira aus Leiria / Portugal 1. Referent: Professor Dr. Jörg Overmann 2. Referent: Professor Dr. Dieter Jahn eingereicht am: 25.06.2018 mündliche Prüfung (Disputation) am: 22.10.2018 Druckjahr 2019 Vorveröffentlichungen der Dissertation Teilergebnisse aus dieser Arbeit wurden mit Genehmigung der Fakultät für Lebenswissenschaften, vertreten durch den Mentor der Arbeit, in folgenden Beiträgen vorab veröffentlicht: Publikationen Vieira, S., Luckner, M., Wanner, G., & Overmann, J. Luteitalea pratensis gen. nov., sp. nov. a new member of subdivision 6 Acidobacteria isolated from temperate grassland soil. Int J Syst Evol Microbiol 67: 1408-1414 (2017). Huang, S., Vieira, S., Bunk, B., Riedel, T., Spröer, C. & Overmann, J. First Complete Genome Sequence of a Subdivision 6 Acidobacterium Strain. Genome Announc. 4: e00469-16 (2016). Posterbeiträge Vieira, S., Sikorski, J. & Overmann, J., Cultivation of environmental and taxonomically important soil bacteria from the Biodiversity Exploratories (Poster) 12th Biodiversity Exploratories Assembly, Wernigerode (2015). Vieira, S., Sikorski, J. & Overmann, J., Drivers of bacterial communities in grassland plant rhizospheres (Poster) 13th Biodiversity Exploratories Assembly, Wernigerode (2016). Vieira, S., Sikorski, J. & Overmann, J., Drivers of bacterial communities in grassland plant rhizospheres (Poster) 14th Biodiversity Exploratories Assembly, Wernigerode (2017). Vieira, S., Sikorski, J. & Overmann, J., Dynamics of bacterial colonisation of novel mineral surfaces in soils (Poster) 15th Biodiversity Exploratories Assembly, Wernigerode (2018). Vieira, S., Sikorski, J., Dietz, S., Herz, K., Bruelheide, H., Scheel, D., & Overmann, J., Governing factors of bacterial communities in temperate grassland plant rhizospheres (Poster) Vereinigung für Allgemeine und Angewandte Mikrobiologie Jahrestagung 2018, Wolfsburg (2018). Dedicated to my late brother, Duarte Gomes Vieira Table of Contents Chapter 1 – Summary ............................................................................................................................. 1 Chapter 2 – Introduction ......................................................................................................................... 3 2.1 – Bacteria in the soil environment ................................................................................................ 3 2.1.1 – Roles and significance of bacteria in soils ........................................................................... 3 2.1.2 – Soil heterogeneity and bacterial hotspots .......................................................................... 5 2.1.3 – Determinants of bacterial community structure in soil ...................................................... 6 2.2 – Bacterial association with plant roots ........................................................................................ 8 2.2.1 – Rhizosphere effect .............................................................................................................. 9 2.2.2 – Root exudation .................................................................................................................. 11 2.2.3 – Bacteria – exudate interactions in the rhizosphere .......................................................... 12 2.2.4 – Implications of rhizosphere engineering for agriculture .................................................. 15 2.3 – Microbial community assembly ............................................................................................... 16 2.3.1 – Ecological processes .......................................................................................................... 17 2.3.1.1 – Selection ..................................................................................................................... 17 2.3.1.2 – Dispersal ..................................................................................................................... 18 2.3.1.3 – Diversification ............................................................................................................ 19 2.3.1.4 – Drift ............................................................................................................................ 19 2.3.2 – Ecological succession ........................................................................................................ 19 2.3.2.1 – Bacterial primary succession in soil ........................................................................... 20 2.3.2.2 – Artificial soils .............................................................................................................. 21 2.4 – Culture-independent approaches to study soil bacterial communities .................................. 21 2.4.1 – Assessing biomass ............................................................................................................. 22 2.4.2 – Assessing diversity............................................................................................................. 23 2.4.3 – Assessing activity ............................................................................................................... 24 2.5 – Culture-dependent approaches to study soil bacterial communities ..................................... 25 2.5.1 – Reasons for low cultivation success .................................................................................. 26 2.5.1.1 – Physiological state and adaptation of bacteria to the heterogeneous environment 27 2.5.1.2 – Adaptation to oligotrophy.......................................................................................... 28 2.5.1.3 – Bacterial interactions ................................................................................................. 28 2.6 – Aims of the study ..................................................................................................................... 30 2.7 – References ................................................................................................................................ 32 Chapter 3 – Experimental procedures .................................................................................................. 46 3.1 – Rhizosphere .............................................................................................................................. 46 3.1.1 – Sampling ............................................................................................................................ 46 3.1.2 – Plant root exudates ........................................................................................................... 47 3.1.2.1 – Collection ................................................................................................................... 47 3.1.2.2 – Gas Chromatography / Mass Spectrometry (GC/MS) ................................................ 47 3.1.3 – Plant traits and soil parameters ........................................................................................ 48 3.1.4 – RNA extraction .................................................................................................................. 48 3.1.4.1 – RNA / DNA co-extraction from rhizosphere samples ................................................ 48 3.1.4.2 – DNA digestion ............................................................................................................ 49 3.1.4.3 – Reverse transcription ................................................................................................. 49 3.1.5 – Preparation of 16S rRNA V3 amplicon libraries and sequencing ...................................... 49 3.1.5.1 – Indexing PCR (Bartram method) ................................................................................ 49 3.1.5.2 – Metaphor agarose purification of amplicons............................................................. 50 3.1.5.3 – Illumina HiSeq sequencing ......................................................................................... 50 3.1.6 – Downstream processing of amplicons sequencing data ................................................... 50 3.1.6.1 – Pre-processing of sequencing reads .......................................................................... 50 3.1.6.2 – OTU clustering and taxonomy assignment ................................................................ 50 3.1.7 – Statistical analysis ............................................................................................................. 50 3.2 – Mineral containers ................................................................................................................... 52 3.2.1 – Experimental set up .......................................................................................................... 52 3.2.2 – Sampling of mineral containers ........................................................................................ 53 3.2.3 – DNA extraction .................................................................................................................. 53 3.2.4 – qPCR .................................................................................................................................. 53 3.2.5 – Preparation of 16S rRNA V3 amplicon libraries
Recommended publications
  • Actinobacterial Diversity of the Ethiopian Rift Valley Lakes
    ACTINOBACTERIAL DIVERSITY OF THE ETHIOPIAN RIFT VALLEY LAKES By Gerda Du Plessis Submitted in partial fulfillment of the requirements for the degree of Magister Scientiae (M.Sc.) in the Department of Biotechnology, University of the Western Cape Supervisor: Prof. D.A. Cowan Co-Supervisor: Dr. I.M. Tuffin November 2011 DECLARATION I declare that „The Actinobacterial diversity of the Ethiopian Rift Valley Lakes is my own work, that it has not been submitted for any degree or examination in any other university, and that all the sources I have used or quoted have been indicated and acknowledged by complete references. ------------------------------------------------- Gerda Du Plessis ii ABSTRACT The class Actinobacteria consists of a heterogeneous group of filamentous, Gram-positive bacteria that colonise most terrestrial and aquatic environments. The industrial and biotechnological importance of the secondary metabolites produced by members of this class has propelled it into the forefront of metagenomic studies. The Ethiopian Rift Valley lakes are characterized by several physical extremes, making it a polyextremophilic environment and a possible untapped source of novel actinobacterial species. The aims of the current study were to identify and compare the eubacterial diversity between three geographically divided soda lakes within the ERV focusing on the actinobacterial subpopulation. This was done by means of a culture-dependent (classical culturing) and culture-independent (DGGE and ARDRA) approach. The results indicate that the eubacterial 16S rRNA gene libraries were similar in composition with a predominance of α-Proteobacteria and Firmicutes in all three lakes. Conversely, the actinobacterial 16S rRNA gene libraries were significantly different and could be used to distinguish between sites.
    [Show full text]
  • Arthrobacter Paludis Sp. Nov., Isolated from a Marsh
    TAXONOMIC DESCRIPTION Zhang et al., Int J Syst Evol Microbiol 2018;68:47–51 DOI 10.1099/ijsem.0.002426 Arthrobacter paludis sp. nov., isolated from a marsh Qi Zhang,1 Mihee Oh,1 Jong-Hwa Kim,1 Rungravee Kanjanasuntree,1 Maytiya Konkit,1 Ampaitip Sukhoom,2 Duangporn Kantachote2 and Wonyong Kim1,* Abstract A novel Gram-stain-positive, strictly aerobic, non-endospore-forming bacterium, designated CAU 9143T, was isolated from a hydric soil sample collected from Seogmo Island in the Republic of Korea. Strain CAU 9143T grew optimally at 30 C, at pH 7.0 and in the presence of 1 % (w/v) NaCl. The phylogenetic trees based on 16S rRNA gene sequences revealed that strain CAU 9143T belonged to the genus Arthrobacter and was closely related to Arthrobacter ginkgonis SYP-A7299T (97.1 % T similarity). Strain CAU 9143 contained menaquinone MK-9 (H2) as the major respiratory quinone and diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol, two glycolipids and two unidentified phospholipids as the major polar lipids. The whole-cell sugars were glucose and galactose. The peptidoglycan type was A4a (L-Lys–D-Glu2) and the major cellular fatty T acid was anteiso-C15 : 0. The DNA G+C content was 64.4 mol% and the level of DNA–DNA relatedness between CAU 9143 and the most closely related strain, A. ginkgonis SYP-A7299T, was 22.3 %. Based on phenotypic, chemotaxonomic and genetic data, strain CAU 9143T represents a novel species of the genus Arthrobacter, for which the name Arthrobacter paludis sp. nov. is proposed. The type strain is CAU 9143T (=KCTC 13958T,=CECT 8917T).
    [Show full text]
  • CUED Phd and Mphil Thesis Classes
    High-throughput Experimental and Computational Studies of Bacterial Evolution Lars Barquist Queens' College University of Cambridge A thesis submitted for the degree of Doctor of Philosophy 23 August 2013 Arrakis teaches the attitude of the knife { chopping off what's incomplete and saying: \Now it's complete because it's ended here." Collected Sayings of Muad'dib Declaration High-throughput Experimental and Computational Studies of Bacterial Evolution The work presented in this dissertation was carried out at the Wellcome Trust Sanger Institute between October 2009 and August 2013. This dissertation is the result of my own work and includes nothing which is the outcome of work done in collaboration except where specifically indicated in the text. This dissertation does not exceed the limit of 60,000 words as specified by the Faculty of Biology Degree Committee. This dissertation has been typeset in 12pt Computer Modern font using LATEX according to the specifications set by the Board of Graduate Studies and the Faculty of Biology Degree Committee. No part of this dissertation or anything substantially similar has been or is being submitted for any other qualification at any other university. Acknowledgements I have been tremendously fortunate to spend the past four years on the Wellcome Trust Genome Campus at the Sanger Institute and the European Bioinformatics Institute. I would like to thank foremost my main collaborators on the studies described in this thesis: Paul Gardner and Gemma Langridge. Their contributions and support have been invaluable. I would also like to thank my supervisor, Alex Bateman, for giving me the freedom to pursue a wide range of projects during my time in his group and for advice.
    [Show full text]
  • Developing a Genetic Manipulation System for the Antarctic Archaeon, Halorubrum Lacusprofundi: Investigating Acetamidase Gene Function
    www.nature.com/scientificreports OPEN Developing a genetic manipulation system for the Antarctic archaeon, Halorubrum lacusprofundi: Received: 27 May 2016 Accepted: 16 September 2016 investigating acetamidase gene Published: 06 October 2016 function Y. Liao1, T. J. Williams1, J. C. Walsh2,3, M. Ji1, A. Poljak4, P. M. G. Curmi2, I. G. Duggin3 & R. Cavicchioli1 No systems have been reported for genetic manipulation of cold-adapted Archaea. Halorubrum lacusprofundi is an important member of Deep Lake, Antarctica (~10% of the population), and is amendable to laboratory cultivation. Here we report the development of a shuttle-vector and targeted gene-knockout system for this species. To investigate the function of acetamidase/formamidase genes, a class of genes not experimentally studied in Archaea, the acetamidase gene, amd3, was disrupted. The wild-type grew on acetamide as a sole source of carbon and nitrogen, but the mutant did not. Acetamidase/formamidase genes were found to form three distinct clades within a broad distribution of Archaea and Bacteria. Genes were present within lineages characterized by aerobic growth in low nutrient environments (e.g. haloarchaea, Starkeya) but absent from lineages containing anaerobes or facultative anaerobes (e.g. methanogens, Epsilonproteobacteria) or parasites of animals and plants (e.g. Chlamydiae). While acetamide is not a well characterized natural substrate, the build-up of plastic pollutants in the environment provides a potential source of introduced acetamide. In view of the extent and pattern of distribution of acetamidase/formamidase sequences within Archaea and Bacteria, we speculate that acetamide from plastics may promote the selection of amd/fmd genes in an increasing number of environmental microorganisms.
    [Show full text]
  • Table S1. Bacterial Otus from 16S Rrna
    Table S1. Bacterial OTUs from 16S rRNA sequencing analysis including only taxa which were identified to genus level (those OTUs identified as Ambiguous taxa, uncultured bacteria or without genus-level identifications were omitted). OTUs with only a single representative across all samples were also omitted. Taxa are listed from most to least abundant. Pitcher Plant Sample Class Order Family Genus CB1p1 CB1p2 CB1p3 CB1p4 CB5p234 Sp3p2 Sp3p4 Sp3p5 Sp5p23 Sp9p234 sum Gammaproteobacteria Legionellales Coxiellaceae Rickettsiella 1 2 0 1 2 3 60194 497 1038 2 61740 Alphaproteobacteria Rhodospirillales Rhodospirillaceae Azospirillum 686 527 10513 485 11 3 2 7 16494 8201 36929 Sphingobacteriia Sphingobacteriales Sphingobacteriaceae Pedobacter 455 302 873 103 16 19242 279 55 760 1077 23162 Betaproteobacteria Burkholderiales Oxalobacteraceae Duganella 9060 5734 2660 40 1357 280 117 29 129 35 19441 Gammaproteobacteria Pseudomonadales Pseudomonadaceae Pseudomonas 3336 1991 3475 1309 2819 233 1335 1666 3046 218 19428 Betaproteobacteria Burkholderiales Burkholderiaceae Paraburkholderia 0 1 0 1 16051 98 41 140 23 17 16372 Sphingobacteriia Sphingobacteriales Sphingobacteriaceae Mucilaginibacter 77 39 3123 20 2006 324 982 5764 408 21 12764 Gammaproteobacteria Pseudomonadales Moraxellaceae Alkanindiges 9 10 14 7 9632 6 79 518 1183 65 11523 Betaproteobacteria Neisseriales Neisseriaceae Aquitalea 0 0 0 0 1 1577 5715 1471 2141 177 11082 Flavobacteriia Flavobacteriales Flavobacteriaceae Flavobacterium 324 219 8432 533 24 123 7 15 111 324 10112 Alphaproteobacteria
    [Show full text]
  • Supplementary Information for Microbial Electrochemical Systems Outperform Fixed-Bed Biofilters for Cleaning-Up Urban Wastewater
    Electronic Supplementary Material (ESI) for Environmental Science: Water Research & Technology. This journal is © The Royal Society of Chemistry 2016 Supplementary information for Microbial Electrochemical Systems outperform fixed-bed biofilters for cleaning-up urban wastewater AUTHORS: Arantxa Aguirre-Sierraa, Tristano Bacchetti De Gregorisb, Antonio Berná, Juan José Salasc, Carlos Aragónc, Abraham Esteve-Núñezab* Fig.1S Total nitrogen (A), ammonia (B) and nitrate (C) influent and effluent average values of the coke and the gravel biofilters. Error bars represent 95% confidence interval. Fig. 2S Influent and effluent COD (A) and BOD5 (B) average values of the hybrid biofilter and the hybrid polarized biofilter. Error bars represent 95% confidence interval. Fig. 3S Redox potential measured in the coke and the gravel biofilters Fig. 4S Rarefaction curves calculated for each sample based on the OTU computations. Fig. 5S Correspondence analysis biplot of classes’ distribution from pyrosequencing analysis. Fig. 6S. Relative abundance of classes of the category ‘other’ at class level. Table 1S Influent pre-treated wastewater and effluents characteristics. Averages ± SD HRT (d) 4.0 3.4 1.7 0.8 0.5 Influent COD (mg L-1) 246 ± 114 330 ± 107 457 ± 92 318 ± 143 393 ± 101 -1 BOD5 (mg L ) 136 ± 86 235 ± 36 268 ± 81 176 ± 127 213 ± 112 TN (mg L-1) 45.0 ± 17.4 60.6 ± 7.5 57.7 ± 3.9 43.7 ± 16.5 54.8 ± 10.1 -1 NH4-N (mg L ) 32.7 ± 18.7 51.6 ± 6.5 49.0 ± 2.3 36.6 ± 15.9 47.0 ± 8.8 -1 NO3-N (mg L ) 2.3 ± 3.6 1.0 ± 1.6 0.8 ± 0.6 1.5 ± 2.0 0.9 ± 0.6 TP (mg
    [Show full text]
  • Taxonomy and Systematics of Plant Probiotic Bacteria in the Genomic Era
    AIMS Microbiology, 3(3): 383-412. DOI: 10.3934/microbiol.2017.3.383 Received: 03 March 2017 Accepted: 22 May 2017 Published: 31 May 2017 http://www.aimspress.com/journal/microbiology Review Taxonomy and systematics of plant probiotic bacteria in the genomic era Lorena Carro * and Imen Nouioui School of Biology, Newcastle University, Newcastle upon Tyne, UK * Correspondence: Email: [email protected]. Abstract: Recent decades have predicted significant changes within our concept of plant endophytes, from only a small number specific microorganisms being able to colonize plant tissues, to whole communities that live and interact with their hosts and each other. Many of these microorganisms are responsible for health status of the plant, and have become known in recent years as plant probiotics. Contrary to human probiotics, they belong to many different phyla and have usually had each genus analysed independently, which has resulted in lack of a complete taxonomic analysis as a group. This review scrutinizes the plant probiotic concept, and the taxonomic status of plant probiotic bacteria, based on both traditional and more recent approaches. Phylogenomic studies and genes with implications in plant-beneficial effects are discussed. This report covers some representative probiotic bacteria of the phylum Proteobacteria, Actinobacteria, Firmicutes and Bacteroidetes, but also includes minor representatives and less studied groups within these phyla which have been identified as plant probiotics. Keywords: phylogeny; plant; probiotic; PGPR; IAA; ACC; genome; metagenomics Abbreviations: ACC 1-aminocyclopropane-1-carboxylate ANI average nucleotide identity FAO Food and Agriculture Organization DDH DNA-DNA hybridization IAA indol acetic acid JA jasmonic acid OTUs Operational taxonomic units NGS next generation sequencing PGP plant growth promoters WHO World Health Organization PGPR plant growth-promoting rhizobacteria 384 1.
    [Show full text]
  • Thèse Morgane Wartel
    Faculté des Sciences - Aix-Marseille Université Laboratoire de Chimie Bactérienne 163 Avenue de Luminy - Case 901 31 Chemin Joseph Aiguier 13288 Marseille 13009 Marseille Thèse En vue d’obtenir le grade de Docteur d’Aix-Marseille Université Biologie, spécialité Microbiologie Présentée et soutenue publiquement par Morgane Wartel Le Mercredi 18 Décembre 2013 A novel class of bacterial motors involved in the directional transport of a sugar at the bacterial surface: The machineries of motility and sporulation in Myxococcus xanthus. Une nouvelle classe de moteurs bactériens impliqués dans le transport de macromolécules à la surface bactérienne: Les machineries de motilité et de sporulation de Myxococcus xanthus. Membres du Jury : Dr. Christophe Grangeasse Rapporteur Dr. Patrick Viollier Rapporteur Pr. Pascale Cossart Examinateur Dr. Francis-André Wollman Examinateur Dr. Tâm Mignot Directeur de Thèse Pr. Frédéric Barras Président du Jury Faculté des Sciences - Aix-Marseille Université Laboratoire de Chimie Bactérienne 163 Avenue de Luminy - Case 901 31 Chemin Joseph Aiguier 13288 Marseille 13009 Marseille Thèse En vue d’obtenir le grade de Docteur d’Aix-Marseille Université Biologie, spécialité Microbiologie Présentée et soutenue publiquement par Morgane Wartel Le Mercredi 18 Décembre 2013 A novel class of bacterial motors involved in the directional transport of a sugar at the bacterial surface: The machineries of motility and sporulation in Myxococcus xanthus. Une nouvelle classe de moteurs bactériens impliqués dans le transport de macromolécules à la surface bactérienne: Les machineries de motilité et de sporulation de Myxococcus xanthus. Membres du Jury : Dr. Christophe Grangeasse Rapporteur Dr. Patrick Viollier Rapporteur Pr. Pascale Cossart Examinateur Dr. Francis-André Wollman Examinateur Dr.
    [Show full text]
  • Table S5. the Information of the Bacteria Annotated in the Soil Community at Species Level
    Table S5. The information of the bacteria annotated in the soil community at species level No. Phylum Class Order Family Genus Species The number of contigs Abundance(%) 1 Firmicutes Bacilli Bacillales Bacillaceae Bacillus Bacillus cereus 1749 5.145782459 2 Bacteroidetes Cytophagia Cytophagales Hymenobacteraceae Hymenobacter Hymenobacter sedentarius 1538 4.52499338 3 Gemmatimonadetes Gemmatimonadetes Gemmatimonadales Gemmatimonadaceae Gemmatirosa Gemmatirosa kalamazoonesis 1020 3.000970902 4 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas indica 797 2.344876284 5 Firmicutes Bacilli Lactobacillales Streptococcaceae Lactococcus Lactococcus piscium 542 1.594633558 6 Actinobacteria Thermoleophilia Solirubrobacterales Conexibacteraceae Conexibacter Conexibacter woesei 471 1.385742446 7 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas taxi 430 1.265115184 8 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas wittichii 388 1.141545794 9 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas sp. FARSPH 298 0.876754244 10 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sorangium cellulosum 260 0.764953367 11 Proteobacteria Deltaproteobacteria Myxococcales Polyangiaceae Sorangium Sphingomonas sp. Cra20 260 0.764953367 12 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas panacis 252 0.741416341
    [Show full text]
  • Dissertation Implementing Organic Amendments To
    DISSERTATION IMPLEMENTING ORGANIC AMENDMENTS TO ENHANCE MAIZE YIELD, SOIL MOISTURE, AND MICROBIAL NUTRIENT CYCLING IN TEMPERATE AGRICULTURE Submitted by Erika J. Foster Graduate Degree Program in Ecology In partial fulfillment of the requirements For the Degree of Doctor of Philosophy Colorado State University Fort Collins, Colorado Summer 2018 Doctoral Committee: Advisor: M. Francesca Cotrufo Louise Comas Charles Rhoades Matthew D. Wallenstein Copyright by Erika J. Foster 2018 All Rights Reserved i ABSTRACT IMPLEMENTING ORGANIC AMENDMENTS TO ENHANCE MAIZE YIELD, SOIL MOISTURE, AND MICROBIAL NUTRIENT CYCLING IN TEMPERATE AGRICULTURE To sustain agricultural production into the future, management should enhance natural biogeochemical cycling within the soil. Strategies to increase yield while reducing chemical fertilizer inputs and irrigation require robust research and development before widespread implementation. Current innovations in crop production use amendments such as manure and biochar charcoal to increase soil organic matter and improve soil structure, water, and nutrient content. Organic amendments also provide substrate and habitat for soil microorganisms that can play a key role cycling nutrients, improving nutrient availability for crops. Additional plant growth promoting bacteria can be incorporated into the soil as inocula to enhance soil nutrient cycling through mechanisms like phosphorus solubilization. Since microbial inoculation is highly effective under drought conditions, this technique pairs well in agricultural systems using limited irrigation to save water, particularly in semi-arid regions where climate change and population growth exacerbate water scarcity. The research in this dissertation examines synergistic techniques to reduce irrigation inputs, while building soil organic matter, and promoting natural microbial function to increase crop available nutrients. The research was conducted on conventional irrigated maize systems at the Agricultural Research Development and Education Center north of Fort Collins, CO.
    [Show full text]
  • Studies on Antibacterial Activity and Diversity of Cultivable Actinobacteria Isolated from Mangrove Soil in Futian and Maoweihai of China
    Hindawi Evidence-Based Complementary and Alternative Medicine Volume 2019, Article ID 3476567, 11 pages https://doi.org/10.1155/2019/3476567 Research Article Studies on Antibacterial Activity and Diversity of Cultivable Actinobacteria Isolated from Mangrove Soil in Futian and Maoweihai of China Feina Li,1 Shaowei Liu,1 Qinpei Lu,1 Hongyun Zheng,1,2 Ilya A. Osterman,3,4 Dmitry A. Lukyanov,3 Petr V. Sergiev,3,4 Olga A. Dontsova,3,4,5 Shuangshuang Liu,6 Jingjing Ye,1,2 Dalin Huang ,2 and Chenghang Sun 1 1 Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China 2College of Basic Medical Sciences, Guilin Medical University, Guilin 541004, China 3Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow 143025, Russia 4Department of Chemistry, A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia 5Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Te Russian Academy of Sciences, Moscow 117997, Russia 6China Pharmaceutical University, Nanjing 210009, China Correspondence should be addressed to Dalin Huang; [email protected] and Chenghang Sun; [email protected] Received 29 March 2019; Accepted 21 May 2019; Published 9 June 2019 Guest Editor: Jayanta Kumar Patra Copyright © 2019 Feina Li et al. Tis is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Mangrove is a rich and underexploited ecosystem with great microbial diversity for discovery of novel and chemically diverse antimicrobial compounds. Te goal of the study was to explore the pharmaceutical actinobacterial resources from mangrove soil and gain insight into the diversity and novelty of cultivable actinobacteria.
    [Show full text]
  • Circulation of Pathogenic Spirochetes in the Genus Borrelia
    CIRCULATION OF PATHOGENIC SPIROCHETES IN THE GENUS BORRELIA WITHIN TICKS AND SEABIRDS IN BREEDING COLONIES OF NEWFOUNDLAND AND LABRADOR by © Hannah Jarvis Munro A Thesis submitted to the School of Graduate Studies in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Biology Memorial University of Newfoundland May 2018 St. John’s, Newfoundland and Labrador ABSTRACT Birds are the reservoir hosts of Borrelia garinii, the primary causative agent of neurological Lyme disease. In 1991 it was also discovered in the seabird tick, Ixodes uriae, in a seabird colony in Sweden, and subsequently has been found in seabird ticks globally. In 2005, the bacterium was found in seabird colonies in Newfoundland and Labrador (NL); representing its first documentation in the western Atlantic and North America. In this thesis, aspects of enzootic B. garinii transmission cycles were studied at five seabird colonies in NL. First, seasonality of I. uriae ticks in seabird colonies observed from 2011 to 2015 was elucidated using qualitative model-based statistics. All instars were found throughout the June-August study period, although larvae had one peak in June, and adults had two peaks (in June and August). Tick numbers varied across sites, year, and with climate. Second, Borrelia transmission cycles were explored by polymerase chain reaction (PCR) to assess Borrelia spp. infection prevalence in the ticks and by serological methods to assess evidence of infection in seabirds. Of the ticks, 7.5% were PCR-positive for B. garinii, and 78.8% of seabirds were sero-positive, indicating that B. garinii transmission cycles are occurring in the colonies studied.
    [Show full text]