Guided Instruction with Logo Programming and the Development of Cognitive Monitoring Strategies Among College Students Mi Ok Cho Lee Iowa State University

Total Page:16

File Type:pdf, Size:1020Kb

Guided Instruction with Logo Programming and the Development of Cognitive Monitoring Strategies Among College Students Mi Ok Cho Lee Iowa State University Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1991 Guided instruction with Logo programming and the development of cognitive monitoring strategies among college students Mi Ok Cho Lee Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Curriculum and Instruction Commons, and the Educational Psychology Commons Recommended Citation Lee, Mi Ok Cho, "Guided instruction with Logo programming and the development of cognitive monitoring strategies among college students " (1991). Retrospective Theses and Dissertations. 9545. https://lib.dr.iastate.edu/rtd/9545 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from aity type of computer printer. Hie quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality iUustratioDs and photogn^ibs, print bleed through, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book. Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6" x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. Universily Microfilms international A Bell & Howell Information Company 300 North Zeeb Road. Ann Arbor, Ml 48106-1346 USA 313/761-4700 800 521-0600 Order Number 9126213 Guided instruction with Logo programming and the development of cognitive monitoring strategies among college students Lee, Mi Ok Cho, Ph.D. Iowa State University, 1991 UMI 3(X)N.ZccbRd. Ann Aibor, MI 48106 Guided instruction with Logo programming and the development of cognitive monitoring strategies among college students Mi Ok Cho Lee A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY Department: Curriculum and Instruction Major: Education (Curriculum and Instructional Technology) Approved: Signature was redacted for privacy. Signature was redacted for privacy. ijor Departm( Signature was redacted for privacy. For the Graduate College Iowa State University Ames, Iowa 1991 ii TABLE OF CONTENTS PAGE INTRODUCTION 1 Theoretical Background 5 Statement of Problem 12 Purpose of the Study 14 Research Questions 14 Hypotheses 15 Significance of the Study 17 Limitations 18 Definition of Terms 18 LITERATURE REVIEW 22 Introduction 22 Background of Logo Programming 22 Research on Logo Programming 28 Reasons for Conflicting Research Results on Logo Programming . 34 Metacognition and the Computer 40 Metacognition 40 Metacognitive Knowledge 43 Cognitive Monitoring 48 Logo-Based Instruction and Development of Cognitive Monitoring . 56 Model of Logo-Based Cognitive Monitoring Instruction 61 Summary 69 iii METHODOLOGY 72 Introduction 72 Sample 73 Research Design 77 Instructional Materials 85 Experimental Treatment 88 Test Instruments 95 Analysis of Data 109 RESULTS Ill Introduction Ill Analysis of Pre-Experimental Measures 112 Hypothesis One 114 Hypothesis Two 115 Hypothesis Three 117 Hypothesis Four 119 Hypothesis Five 121 Hypothesis Six 123 Hypothesis Seven 125 Results for the Basic Logo Comprehension Test 127 Auxiliary Findings 129 Summary 134 iv SUMMARY, DISCUSSION, IMPUCATIONS, AND RECOMMENDATIONS 139 Summary of Research Study 139 Discussion of the Study Results 148 Implications for Guided Instruction with Logo Programming .... 162 Recommendations for Further Research 166 Concluding Remarks 167 BIBUOGRAPHY 169 ACKNOWLEDGMENTS 188 APPENDIX A: SAMPLE BACKGROUND QUESTIONNAIRE 190 APPENDIX B: HOMOGENEITY OF SAMPLE BACKGROUNDS .... 194 APPENDIX C: A MODEL OF LOGO-BASED COGNITIVE MONITORING ACI'IVITIES 198 APPENDIX D: INSTRUCTION OUTLINE FOR LECTURE : EXPERIMENTAL GROUP 200 APPENDIX E INSTRUCTION OUTLINE FOR LECTURE : CONTROL GROUP 216 APPENDIX F: TRANSPARENCIES FOR INTRODUCTION TO COGNITIVE MONITORING 231 APPENDIX G: EXAMPLES OF GENERAL COGNITIVE MONITORING ACnVITY SHEETS : EXPERIMENTAL GROUP 239 APPENDIX H: INSTRUCTION OUTLINE FOR LABORATORY : EXPERIMENTAL GROUP 250 V APPENDIX I: INSTRUCTION OUTLINE FOR LABORATORY : CONTROL GROUP 262 APPENDIX J: STUDENT ACTIVITY SHEETS FOR LECTURE : EXPERIMENTAL GROUP 274 APPENDIX K: STUDENT ACTIVITY SHEETS FOR LECTURE : CONTROL GROUP 286 APPENDIX L- STUDENT ACTIVITY SHEETS FOR LABORATORY : EXPERIMENTAL GROUP 298 APPENDIX M: STUDENT ACTIVITY SHEETS FOR LABORATORY ; CONTROL GROUP 309 APPENDIX N: TRANSPARENCIES FOR EXAMPLES OF HOMEWORK ASSIGNMENT : EXPERIMENTAL GROUP 320 APPENDIX a TRANSPARENCIES FOR EXAMPLES OF HOMEWORK ASSIGNMENT: CONTROL GROUP 327 APPENDIX P: HOMEWORK ASSIGNMENT CRITERIA SHEETS : EXPERIMENTAL GROUP 333 APPENDIX Q: HOMEWORK ASSIGNMENT CRITERIA SHEETS : CONTROL GROUP 338 APPENDIX R; LOGO DECOMPOSING AND PLANNING TEST .... 343 APPENDIX S: LOGO ERROR IDENTIHCATION TEST 350 APPENDIX T: GENERAL DECOMPOSING TEST 358 APPENDIX U: GENERAL PLANNING TEST 363 APPENDIX V: GENERAL ERROR IDENTIHCATION TEST 368 APPENDIX W: BASIC LOGO COMPREHENSION TEST 373 vi LIST OF TABLES PAGE TABLE 1. Reliability coefficient of the Logo decomposing and planning test 101 TABLE 2. Reliability coefficient of the Logo error identification test . 102 TABLE 3. Reliability coefficient of the general decomposing test. .105 TABLE 4. Reliability coefficient of the general planning test 106 TABLE 5. Reliability coefficient of the general error identification test 108 TABLE 6. Comparisons of covariate variable means for treatment groups 113 TABLE 7. Comparisons of categorized variable fiequendes for treatment groups 113 TABLE 8. Wilks multivariate test of significance 114 TABLE 9. Means and standard deviations for the Logo decomposing test 115 TABLE 10. Analysis of covariance for the Logo decomposing test. .116 TABLE 11. Means and standard deviations for the Logo planning test. 117 TABLE 12 Analysis of covariance for the Logo planning test 118 TABLE 13. Means and standard deviations for the Logo error identification test 119 TABLE 14. Analysis of covariance for the Logo error identification test . 120 TABLE 15. Means and standard deviations for the general decomposing test 121 TABLE 16. Analysis of covariance for the general decomposing test. 122 vii TABLE 17. Means and standard deviations for the general planning test 123 TABLE 18. Analysis of covariance for the general planning test .... 124 TABLE 19. Means and standard deviations for the general error identification test 125 TABLE 20. Analysis of covariance for the general error iden^cation test 126 TABLE 21. Means and standard deviations for the multiple choice of basic Logo comprehension test 128 TABLE 22. Analysis of covariance for the multiple choice basic Logo comprehension test 128 TABLE 23. Stepwise multiple regression effect on the treatments of Logo instructional methodology 130 TABLE 24. Correlation matrix among covariates and dependent variables 136 TABLE 25. Correlation matrix for the seven covariates 137 TABLE 26. Correlation matrix for the six dependent variables 138 TABLE 27. Distribution of students by college major 195 TABLE 28. Distribution of students by gender 195 TABLE 29. Distribution of students by year in college 195 TABLE 30. Distribution of students by number of mathematics courses taken in high school 196 TABLE 31. Distribution of students by number of computer courses taken in either hi^ school or college 196 TABLE 32 Distribution of students by computer ownership 196 viii TABLE 33. Distribution of students by computer confidence scores . 197 TABLE 34. Means and standard deviations for the ACT scores 197 ix LIST OF HGURES PAGE FIGURE 1. Recursive cycle of cognitive monitoring 6 FIGURE 2. Two primary brandies of metacognition 42 FIGURE 3. Sequence of experimental study events 78 FIGURE 4. Instructor rotation and Logo units for lecture sections ... 80 FIGURE 5. Test administration period 84 FIGURE 6. Example of Socratic dialogues to elicit cognitive monitoring. 91 FIGURE 7. An example of Logo decomposing and planning problem . 99 FIGURE 8. An example of general decomposing problem 103 1 INTRODUCTION Current society is changing rapidly with an expansion of knowledge, information, and technology. People are increasingly required to become independent thinkers and creative problem solvers capable of using knowledge, information, and technology. These demands are increasing the need for teaching transferable higher-order thinking skills in schools.
Recommended publications
  • Compiler Error Messages Considered Unhelpful: the Landscape of Text-Based Programming Error Message Research
    Working Group Report ITiCSE-WGR ’19, July 15–17, 2019, Aberdeen, Scotland Uk Compiler Error Messages Considered Unhelpful: The Landscape of Text-Based Programming Error Message Research Brett A. Becker∗ Paul Denny∗ Raymond Pettit∗ University College Dublin University of Auckland University of Virginia Dublin, Ireland Auckland, New Zealand Charlottesville, Virginia, USA [email protected] [email protected] [email protected] Durell Bouchard Dennis J. Bouvier Brian Harrington Roanoke College Southern Illinois University Edwardsville University of Toronto Scarborough Roanoke, Virgina, USA Edwardsville, Illinois, USA Scarborough, Ontario, Canada [email protected] [email protected] [email protected] Amir Kamil Amey Karkare Chris McDonald University of Michigan Indian Institute of Technology Kanpur University of Western Australia Ann Arbor, Michigan, USA Kanpur, India Perth, Australia [email protected] [email protected] [email protected] Peter-Michael Osera Janice L. Pearce James Prather Grinnell College Berea College Abilene Christian University Grinnell, Iowa, USA Berea, Kentucky, USA Abilene, Texas, USA [email protected] [email protected] [email protected] ABSTRACT of evidence supporting each one (historical, anecdotal, and empiri- Diagnostic messages generated by compilers and interpreters such cal). This work can serve as a starting point for those who wish to as syntax error messages have been researched for over half of a conduct research on compiler error messages, runtime errors, and century. Unfortunately, these messages which include error, warn- warnings. We also make the bibtex file of our 300+ reference corpus ing, and run-time messages, present substantial difficulty and could publicly available.
    [Show full text]
  • Agent-Based Modeling with Netlogo
    Agent-Based Modeling with NetLogo Uri Wilensky Center for Connected Learning and Computer-Based Modeling Northwestern Institute on Complex Systems Departments of Computer Science & Learning Sciences Northwestern University Agent-Based Modeling in NetLogo SFI MOOC, Summer 2016 1 History: Roman to Hindu-Arabic Europe – at the turn of the first millenium • Before widespread adoption of Hindu-Arabic, very few could do multiplication/division • Scientists recognized superiority immediately • But widespread adoption took a very long time • Was in surreptitious use, but not official 2 Restructurations Structurations -- the encoding of the knowledge in a domain as a function of the representational infrastructure used to express the knowledge Restructurations -- A change from one structuration of a domain to another resulting from a change in representational infrastructure --- Wilensky & Papert 2006;2010 What is important and hard for people today? Similar to numeracy importance for science but difficulties in understanding, today we need to make sense of complex systems yet we find it difficult. What are Complex Systems? • Systems with a large number of interacting parts, evolving over time • Decentralized decisions vs. centralized control • Emergent global patterns from local interactions and decisions • Examples: ecosystems, economies, immune systems, molecular systems, minds, stock market, democratic government... Emergent Phenomena • Structure (Rules) at Micro- level leads to pattern at Macro- level • Order without Design • No leader or orchestrator
    [Show full text]
  • The Comparability Between Modular and Non-Modular
    THE COMPARABILITY BETWEEN MODULAR AND NON-MODULAR EXAMINATIONS AT GCE ADVANCED LEVEL Elizabeth A Gray PhD INSTITUTE OF EDUCATION UNIVERSITY OF LONDON 1 ABSTRACT The prime concern of this thesis is the comparability of two types of assessment now prevalent in Advanced level GeE examinations. The more conventional linear scheme assesses all candidates terminally, and the only way to improve the grade awarded is to re-take the whole examination. In contrast, the relatively new modular schemes of assessment include testing opportunities throughout the course of study. This not only has formative effects but allows quantifiable improvements in syllabus results through the medium of the resit option. There are obvious differences between the two schemes, but this does not necessarily imply that they are not comparable in their grading standards. It is this standard which the thesis attempts to address by considering the different variabilities of each of the schemes, and how these might impinge upon the outcomes of the grading process as evidenced in the final grade distributions. A key issue is that of legitimate and illegitimate variabilities - the former perhaps allowing an improvement in performance while maintaining grading standards; the latter possibly affecting the grading standard because its effect was not fully taken into account in the awarding process. By looking at a linear and modular syllabus in mathematics, the differences between the two are investigated, and although not fully generalisable, it is clear that many of the worries which were advanced when modular schemes were first introduced are groundless. Most candidates are seen to use the testing flexibility to their advantage, but there is little evidence of over-testing.
    [Show full text]
  • Microworlds: Building Powerful Ideas in the Secondary School
    US-China Education Review A 9 (2012) 796-803 Earlier title: US-China Education Review, ISSN 1548-6613 D DAVID PUBLISHING Microworlds: Building Powerful Ideas in the Secondary School Craig William Jenkins University of Wales, Wales, UK In the 1960s, the MIT (Massachusetts Institute of Technology) developed a programming language called LOGO. Underpinning this invention was a profound new philosophy of how learners learn. This paper reviews research in the area and asks how one notion in particular, that of a microworld, may be used by secondary school educators to build powerful ideas in STEM (science, technology, engineering, and mathematics) subjects. Keywords: microworlds, programming, STEM (science, technology, engineering, and mathematics), constructionism, education Theories of Knowing This paper examines the microworld as a tool for acquiring powerful ideas in secondary education and explores their potential role in making relevant conceptual learning accessible through practical, constructionist approaches. In line with this aim, the paper is split into three main sections: The first section looks at the underlying educational theory behind microworlds in order to set up the rest of the paper; The second section critically examines the notion of a microworld in order to draw out the characteristics of a microworlds approach to learning; Finally, the paper ends with a real-world example of a microworld that is designed to build key, powerful ideas within a STEM (science, technology, engineering, and mathematics) domain of knowledge. To begin to understand the educational theory behind microworlds, a good starting point is to consider the ways in which learners interact with educational technology. In 1980, Robert Taylor (1980) provided a useful framework for understanding such interactions.
    [Show full text]
  • A Simplified Introduction to Virus Propagation Using Maple's Turtle Graphics Package
    E. Roanes-Lozano, C. Solano-Macías & E. Roanes-Macías.: A simplified introduction to virus propagation using Maple's Turtle Graphics package A simplified introduction to virus propagation using Maple's Turtle Graphics package Eugenio Roanes-Lozano Instituto de Matemática Interdisciplinar & Departamento de Didáctica de las Ciencias Experimentales, Sociales y Matemáticas Facultad de Educación, Universidad Complutense de Madrid, Spain Carmen Solano-Macías Departamento de Información y Comunicación Facultad de CC. de la Documentación y Comunicación, Universidad de Extremadura, Spain Eugenio Roanes-Macías Departamento de Álgebra, Universidad Complutense de Madrid, Spain [email protected] ; [email protected] ; [email protected] Partially funded by the research project PGC2018-096509-B-100 (Government of Spain) 1 E. Roanes-Lozano, C. Solano-Macías & E. Roanes-Macías.: A simplified introduction to virus propagation using Maple's Turtle Graphics package 1. INTRODUCTION: TURTLE GEOMETRY AND LOGO • Logo language: developed at the end of the ‘60s • Characterized by the use of Turtle Geometry (a.k.a. as Turtle Graphics). • Oriented to introduce kids to programming (Papert, 1980). • Basic movements of the turtle (graphic cursor): FD, BK RT, LT. • It is not based on a Cartesian Coordinate system. 2 E. Roanes-Lozano, C. Solano-Macías & E. Roanes-Macías.: A simplified introduction to virus propagation using Maple's Turtle Graphics package • Initially robots were used to plot the trail of the turtle. http://cyberneticzoo.com/cyberneticanimals/1969-the-logo-turtle-seymour-papert-marvin-minsky-et-al-american/ 3 E. Roanes-Lozano, C. Solano-Macías & E. Roanes-Macías.: A simplified introduction to virus propagation using Maple's Turtle Graphics package • IBM Logo / LCSI Logo (’80) 4 E.
    [Show full text]
  • Down with School! up with Logoland!
    NEW SCIENTIST REVIEW Down with School! Up with Logoland! The Children's Machine: Rethinking in the classroom, with mixed results. large and small, designed to implement his School in the Age of the Computer I was one of them. About ten years ago, ideas, and has received a wealth of feed­ by Seymour Papert, Basic Books, New York, I was part of a team that developed and back, much of it deeply discouraging. But HarperCollins in Britain, pp 241, £22·50 taught an introductory course in computer one can learn even more from "mistakes" science aimed at universirv students who than from a string of successes-that is a Daniel Dennett hated and feared computers but whose central tenet of Papert's vision of learning, parents, in many cases, had said "You must and he practices what he preaches. So this IN 1956, the mathematician John McCarthy learn about computers before you gradu­ sequel engagingly recounts what he has coined the term "artificial intelligence" ate." These students were seasoned veter­ learned, and especially the mistakes he for a new discipline that was emerging ans of what Paperr calls School-experts at made along the way. His own thinking from some of the more has undergone a transforma­ imaginative and playful tion; he is still an infectiously explorations of that new optimistic visionary, but a mind-tool, the computer. A wiser one. few years later he devel­ Logo has nowjoined forces oped a radically new sort of with Lego, the plastic build­ programming language, ing blocks, and a new wave Lisp, which became the of delectable settings for lingua franca of AI.
    [Show full text]
  • Papert's Microworld and Geogebra: a Proposal to Improve Teaching Of
    Creative Education, 2019, 10, 1525-1538 http://www.scirp.org/journal/ce ISSN Online: 2151-4771 ISSN Print: 2151-4755 Papert’s Microworld and Geogebra: A Proposal to Improve Teaching of Functions Carlos Vitor De Alencar Carvalho1,4, Lícia Giesta Ferreira De Medeiros2, Antonio Paulo Muccillo De Medeiros3, Ricardo Marinho Santos4 1State University Center of Western, Rio de Janeiro, RJ, Brazil 2CEFET/RJ, Valença, RJ, Brazil 3Rio de Janeiro Federal Institute (IFRJ), Pinheiral, RJ, Brazil 4Vassouras University, Vassouras, RJ, Brazil How to cite this paper: De Alencar Car- Abstract valho, C. V., De Medeiros, L. G. F., De Me- deiros, A. P. M., & Santos, R. M. (2019). This paper discusses how to improve teaching of Mathematics in Brazilian Papert’s Microworld and Geogebra: A Pro- schools, based on Seymour Papert’s Constructionism associated with Infor- posal to Improve Teaching of Functions. mation Technology tools. Specifically, this work introduces the construction- Creative Education, 10, 1525-1538. https://doi.org/10.4236/ce.2019.107111 ist microworld, a digital environment where students are able to build their knowledge interactively, in this case, using dynamic mathematics software Received: June 6, 2019 GeoGebra. Accepted: July 14, 2019 Published: July 17, 2019 Keywords Copyright © 2019 by author(s) and Microworld, GeoGebra, Seymour Papert, Information Technologies in Scientific Research Publishing Inc. Education This work is licensed under the Creative Commons Attribution International License (CC BY 4.0). http://creativecommons.org/licenses/by/4.0/ Open Access 1. Introduction This research’s main goal is to present a proposal to help Brazilian teachers im- prove their educational practices.
    [Show full text]
  • 4 MICRO WORLDS: TRANSFORMING EDUCA TION 1 Seymour Papert
    MICRO WORLDS: 4 TRANSFORMING EDUCA TION 1 Seymour Papert Arts and Media Technology Center Massachusetts Institute of Technology Cambridge. MA Looking at how computers are used in education, one is tempted to start classifying. It's a little dangerous to do this, but I would like to start off with a very crude classification of three ways of using computers, just to place a certain set of problems into perspective. First, as tutorials in one sense or another - which is by far the most widespread, best known, and earliest use - where the computer serves as a sort of mechanized instructor. Secondly, as tools for doing something else: as calculators, word processors, simulators, or whatever. And thirdly, a different concept altogether: as microworlds. Here I shall concentrate on the notion of microworld and talk about its relations both to computers and to theories of learning. The other uses of computers surely have a role - but they are not what will revolutionize education. One microworld which is already widely known is the Logo turtle mi­ croworld. Briefly, this world is inhabited by a small object on the screen. In some versions, it is shaped like a triangle, in others, like an actual turtle. To make it move and draw lines, you talk to it by typing commands on the keyboard. For example, if you say FORWARD 50, the turtle will move in the direction it's facing and draw a line 50 units long, 50 "turtle steps" children might say. Then if you say RIGHT 90, it will turn 90 degrees. And then you can tell it to go forward again, or back, turn through any angle, or lift its pen up so it moves without leaving a trace.
    [Show full text]
  • Changing Logo from a Single Student System to a 3D On-Line Student Collaboratory/Participatory Shared Learning Experience
    Changing Logo from a Single Student System to a 3D On-line Student Collaboratory/Participatory Shared Learning Experience Dr. James G Jones University of North Texas [email protected] Theresa Overall University of North Texas [email protected] The concept of Logo to support constructive learning has been in existence since the 1960’s. Logo as implemented in computer software in the 1970’s has focused on either single student to single computer or a group of students sharing a single computer. Later versions of Logo have supported multi-user networking, but have not truly provided a shared learning environment where students using single systems at distant locations can work together and view each other’s work. This paper will discuss the potential of combining Logo concepts with on-line 3D environments to create engaged participatory learning environments/experiences for students. This approach could expand Logo so that it can allow classrooms connected by the Internet to simultaneously engage in K-12 projects about mathematics, language, music, robotics, telecommunications, and/or science. This paper and the presentation at the TCEA conference will demonstrate what an on-line 3D participatory system looks like and show the initial software modules developed for classroom use. Logo One of the primary purposes of the Logo programming environment is to support constructivist learning, such that students create knowledge through interaction with other people and the world around them. The Logo Programming Language, a dialect of Lisp, was created in the 1970’s to promote the concept of Logo as a learning tool (What is Logo, 2003).
    [Show full text]
  • Logo Philosophy and Implementation TABLE of CONTENTS
    Logo Philosophy and Implementation TABLE OF CONTENTS INTRODUCTION What is Logo? Who Needs It? by Seymour Papert ................................................... IV THE COMPUTER IN COSTA RICA: A New Door to Educational and Social Opportunities Photographs accompanying each chapter are used by Clotilde Fonseca ........................................................... 2 with permission of the authors. THE SAINT PAUL LOGO PROJECT: The samba school photograph in the Brazil chapter is used with permission An American Experience of the photographer John Maier Jr. by Geraldine Kozberg and Michael Tempel ............................ 22 THE RUSSIAN SCHOOL SYSTEM AND THE LOGO APPROACH: Two Methods Worlds Apart Graphic design by Le groupe Flexidée by Sergei Soprunov and Elena Yakovleva ............................... 48 © Logo Computer Systems Inc. 1999 A LOGO POSTCARD FROM ARGENTINA All rights reserved. by Horacio C. Reggini .................................................................... 78 No part of the document contained herein may be reproduced, stored LOGO IN AUSTRALIA: in retrieval systems or transmitted, in any form or by any means, A Vision of Their Own photocopying, electronic, mechanical, recording or otherwise, without by Jeff Richardson ............................................................ 96 the prior approval from Logo Computer Systems Inc. THE CONSTRUCTIONIST APPROACH: Legal deposit, 1st semester 1999 The Integration of Computers ISBN 2-89371-494-3 in Brazilian Public Schools Printed 2-99 by Maria Elizabeth B. Almeida
    [Show full text]
  • Logo Tree Project
    LOGO TREE PROJECT Written by P. Boytchev e-mail: pavel2008-AT-elica-DOT-net Rev 1.82 July, 2011 We’d like to thank all the people all over the globe and all over the alphabet who helped us build the Logo Tree: A .........Daniel Ajoy, Eduardo de Antueno, Hal Abelson B .........Andrew Begel, Carl Bogardus, Dominique Bille, George Birbilis, Ian Bicking, Imre Bornemisza, Joshua Bell, Luis Belmonte, Vladimir Batagelj, Wayne Burnett C .........Charlie, David Costanzo, John St. Clair, Loïc Le Coq, Oliver Schmidt-Chevalier, Paul Cockshott D .........Andy Dent, Kent Paul Dolan, Marcelo Duschkin, Mike Doyle E..........G. A. Edgar, Mustafa Elsheikh, Randall Embry F..........Damien Ferey, G .........Bill Glass, Jim Goebel, H .........Brian Harvey, Jamie Hunter, Jim Howe, Markus Hunke, Rachel Hestilow I........... J..........Ken Johnson K .........Eric Klopfer, Leigh Klotz, Susumu Kanemune L..........Janny Looyenga, Jean-François Lucas, Lionel Laské, Timothy Lipetz M.........Andreas Micheler, Bakhtiar Mikhak, George Mills, Greg Michaelson, Lorenzo Masetti, Michael Malien, Sébastien Magdelyns, Silvano Malfatti N .........Chaker Nakhli ,Dani Novak, Takeshi Nishiki O ......... P..........Paliokas Ioannis, U. B. Pavanaja, Wendy Petti Q ......... R .........Clem Rutter, Emmanuel Roche S..........Bojidar Sendov, Brian Silverman, Cynthia Solomon, Daniel Sanderson, Gene Sullivan, T..........Austin Tate, Gary Teachout, Graham Toal, Marcin Truszel, Peter Tomcsanyi, Seth Tisue, Gene Thail U .........Peter Ulrich V .........Carlo Maria Vireca, Álvaro Valdes W.........Arnie Widdowson, Uri Wilensky X ......... Y .........Andy Yeh, Ben Yates Z.......... Introduction The main goal of the Logo Tree project is to build a genealogical tree of new and old Logo implementations. This tree is expected to clearly demonstrate the evolution, the diversity and the vitality of Logo as a programming language.
    [Show full text]
  • Cross-Listed with Computer Science) Spring 2005 Wednesday, 1:30-4:30 PM Annenberg 303, North Learning Studio
    A CONSTRUCTIONIST APPROACH TO THE DESIGN OF LEARNING ENVIRONMENTS Learning Sciences 426 (cross-listed with Computer Science) Spring 2005 Wednesday, 1:30-4:30 PM Annenberg 303, North Learning Studio Professor: Uri Wilensky Address: Annenberg 311 Phone: 847-467-3818 E-mail: [email protected] TAs: Paulo Blikstein (467-3859 [email protected]) & Josh Unterman (467-2816 [email protected]) Course Web Site: http://ccl.northwestern.edu/courses/cd2005/ Course Instructors: [email protected] Course Members (students and faculty): [email protected] Course Description This course is a hands-on practicum in designing and building technology-enabled curricula and/or educational software. We will use many rich software toolkits designed to enable novice programmers to get their “hands dirty” doing iterative software design. In addition to the hands-on component, the course is also designed to introduce you to the Constructionist Learning design perspective. This perspective, first named by Seymour Papert and greatly influenced by the work of Jean Piaget, is very influential in the learning sciences today. The Constructionist approach starts with the assumption that teaching cannot successfully proceed by simply transferring knowledge to students’ heads. Skillful teaching starts with the current state of knowledge of the student. In order for students to learn effectively, they need to construct the knowledge structures for themselves. In this class, we will engage in the construction of artifacts and, through such constructions, explore and evaluate the design of construction kits and tools to enable learners to construct motivating and powerful artifacts. In the spirit of Constructionism, students in this course will self-construct their own understanding of the educational software and of the literature through constructing artifacts (both physical and virtual) and engaging in reflective discussion of both the artifacts and the tools used to construct them.
    [Show full text]