Compiler Error Messages Considered Unhelpful: the Landscape of Text-Based Programming Error Message Research
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Thinkjs 2.0 Documentation
ThinkJS 2.0 Documentation ᳪفள᭛ Օᕨ ጱ Node.js MVC ຝֵ҅አ ES7 Ӿ async/await ҅ᘏ ES6ݎෛقThinkJS ฎӞֵྃአ ES6/7 ᇙ තԧࢵٖक़ռग़ຝጱᦡᦇቘஷޕӾጱ */yield ᇙବᥴ٬ԧ Node.js Ӿྍ્ॺጱᳯ̶᷌ݶ ṛප̶̵ܔᓌےNode.js ᶱፓๅ ݎమ҅ᦏ පሲ҅ฎ۠ಅࣁ̶ଚӬෛᇇጱ Node.js ES6 ᇙԞํԧݎᶱፓݢզय़य़ṛݎአ ES6/7 ᇙֵ Զᇙᬮဌํඪ೮҅Ԟݢզۗ Babel ᖫᦲඪ೮̶ํֵܨঅጱඪ೮҅ ᇙ ᶱፓݎአ ES6/7 ᇙֵ ᇇӧඪ೮̶੦ٌฎֵڹۗ Babel ᖫᦲ҅ݢզࣁᶱፓӾय़ᙦֵአ ES6/7 ಅํጱᇙ҅෫ᵱஞߺԶᇙ୮ አ async/await ᘏ */yield ᥴ٬ྍࢧ᧣ጱᳯ̶᷌ JavaScript //user controller, home/controller/user.js export default class extends think.controller.base { //login action async loginAction(self){ //ইຎฎget᧗҅ፗളดᐏጭ୯ᶭᶎ if(this.isGet()){ return this.display(); } ᬯ᯾ݢզ᭗ᬦpostොဩ឴ݐಅํጱහഝ҅හഝ૪ᕪࣁlogic᯾؉ԧ໊ḵ// let data = this.post(); let md5 = think.md5('think_' + data.pwd); ᯈහഝପӾԭጱፓ܃ݸጱੂᎱ݄ੂےአಁݷ// let result = await this.model('user').where({name: data.name, pwd: md5}).find(); ձ֜හഝ҅ᤒᐏአಁݷᘏੂᎱᲙکᯈ܃ইຎ๚// if(think.isEmpty(result)){ return this.fail('login fail'); } sessionفٟ௳מݸ҅ਖ਼አಁ௳מአಁک឴ݐ// await this.session('userInfo', result); return this.success(); } } ӤᶎጱդᎱ౯ժֵአԧ ES6 ᯾ጱ class , export , let զ݊ ES7 ᯾ጱ async await ᒵᇙ҅ Session ᮷ฎྍ֢҅֕ۗ async/await ҅դᎱ᮷ฎݶྍԡٟጱ̶๋ݸֵ فᡱᆐັᧃහഝପٟ አ Babel ᬰᤈᖫᦲ҅੪ݢզᑞਧᬩᤈࣁ Node.js ጱሾहӾԧ̶ ඪ೮ग़ᐿᶱፓᕮग़ᐿᶱፓሾह ̶ݎཛྷࣘཛྷୗᒵग़ᐿᶱፓᕮ҅ݢզჿ᪃ݱᐿᶱፓ॔ଶጱړཛྷࣘཛྷୗ̵ฦ᭗ཛྷୗ̵ܔᶱፓඪ೮ ἕᦊඪ೮ development ҅ testing prodution 3 ᐿᶱፓሾह҅ݢզࣁӧݶጱᶱፓሾहӥᬰᤈӧݶ ጱᯈᗝ҅ჿ᪃ࣁӧݶሾहӥጱᯈᗝᵱ҅ݶᬮݢզचԭᶱፓᵱᥝᬰᤈಘ̶ ඪ೮ӿጱහഝପ ThinkJS ඪ೮ mysql ҅ mongodb ҅ sqlite ᒵଉᥠጱහഝପ҅ଚӬᤰԧஉग़֢හഝପጱളݗ҅෫ᵱ ᚆ̶ۑᘶཛྷࣳᒵṛᕆى̵ۓᄋ၏̶ݶඪ೮Ԫقᒵਞفಋۖ೪ള SQL ݙ҅ᬮݢզᛔۖᴠྊ SQL ဳ դᎱᛔۖๅෛ Ԟӧአۗᒫӣ҅ۓNode.js ๐ ސኞප҅ӧአ᯿ܨදݸᒈץկ҅ګThinkJS ٖᗝԧӞॺդᎱᛔۖๅෛጱ ොཛྷ̶ࣘ ୌ REST ളݗڠᛔۖ ইຎమࣁ̶ݎݢਠ౮ REST API ጱܨୌ REST -
About ILE C/C++ Compiler Reference
IBM i 7.3 Programming IBM Rational Development Studio for i ILE C/C++ Compiler Reference IBM SC09-4816-07 Note Before using this information and the product it supports, read the information in “Notices” on page 121. This edition applies to IBM® Rational® Development Studio for i (product number 5770-WDS) and to all subsequent releases and modifications until otherwise indicated in new editions. This version does not run on all reduced instruction set computer (RISC) models nor does it run on CISC models. This document may contain references to Licensed Internal Code. Licensed Internal Code is Machine Code and is licensed to you under the terms of the IBM License Agreement for Machine Code. © Copyright International Business Machines Corporation 1993, 2015. US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp. Contents ILE C/C++ Compiler Reference............................................................................... 1 What is new for IBM i 7.3.............................................................................................................................3 PDF file for ILE C/C++ Compiler Reference.................................................................................................5 About ILE C/C++ Compiler Reference......................................................................................................... 7 Prerequisite and Related Information.................................................................................................. -
Mapping Topic Maps to Common Logic
MAPPING TOPIC MAPS TO COMMON LOGIC Tamas´ DEMIAN´ Advisor: Andras´ PATARICZA I. Introduction This work is a case study for the mapping of a particular formal language (Topic Map[1] (TM)) to Common Logic[2] (CL). CL was intended to be a uniform platform ensuring a seamless syntactic and semantic integration of knowledge represented in different formal languages. CL is based on first-order logic (FOL) with a precise model-theoretic semantic. The exact target language is Common Logic Interchange Format (CLIF), the most common dialect of CL. Both CL and TM are ISO standards and their metamodels are included in the Object Definition Metamodel[3] (ODM). ODM was intended to serve as foundation of Model Driven Architecture (MDA) offering formal basis for representation, management, interoperability, and semantics. The paper aims at the evaluation of the use of CL as a fusion platform on the example of TM. II. The Topic Maps TM is a technology for modelling knowledge and connecting this structured knowledge to relevant information sources. A central operation in TMs is merging, aiming at the elimination of redundant TM constructs. TopicMapConstruct is the top-level abstract class in the TM metamodel (Fig. 1). The later detailed ReifiableConstruct, TypeAble and ScopeAble classes are also abstract. The remaining classes are pairwise disjoint. Figure 1: The class hierarchy and the relation and attribute names of the TM metamodel. TopicMap is a set of topics and associations. Topic is a symbol used within a TM to represent exactly one subject, in order to allow statements to be made about that subject. -
ROSE Tutorial: a Tool for Building Source-To-Source Translators Draft Tutorial (Version 0.9.11.115)
ROSE Tutorial: A Tool for Building Source-to-Source Translators Draft Tutorial (version 0.9.11.115) Daniel Quinlan, Markus Schordan, Richard Vuduc, Qing Yi Thomas Panas, Chunhua Liao, and Jeremiah J. Willcock Lawrence Livermore National Laboratory Livermore, CA 94550 925-423-2668 (office) 925-422-6278 (fax) fdquinlan,panas2,[email protected] [email protected] [email protected] [email protected] [email protected] Project Web Page: www.rosecompiler.org UCRL Number for ROSE User Manual: UCRL-SM-210137-DRAFT UCRL Number for ROSE Tutorial: UCRL-SM-210032-DRAFT UCRL Number for ROSE Source Code: UCRL-CODE-155962 ROSE User Manual (pdf) ROSE Tutorial (pdf) ROSE HTML Reference (html only) September 12, 2019 ii September 12, 2019 Contents 1 Introduction 1 1.1 What is ROSE.....................................1 1.2 Why you should be interested in ROSE.......................2 1.3 Problems that ROSE can address...........................2 1.4 Examples in this ROSE Tutorial...........................3 1.5 ROSE Documentation and Where To Find It.................... 10 1.6 Using the Tutorial................................... 11 1.7 Required Makefile for Tutorial Examples....................... 11 I Working with the ROSE AST 13 2 Identity Translator 15 3 Simple AST Graph Generator 19 4 AST Whole Graph Generator 23 5 Advanced AST Graph Generation 29 6 AST PDF Generator 31 7 Introduction to AST Traversals 35 7.1 Input For Example Traversals............................. 35 7.2 Traversals of the AST Structure............................ 36 7.2.1 Classic Object-Oriented Visitor Pattern for the AST............ 37 7.2.2 Simple Traversal (no attributes)....................... 37 7.2.3 Simple Pre- and Postorder Traversal.................... -
Panel: NSF-Sponsored Innovative Approaches to Undergraduate Computer Science
Panel: NSF-Sponsored Innovative Approaches to Undergraduate Computer Science Stephen Bloch (Adelphi University) Amruth Kumar (Ramapo College) Stanislav Kurkovsky (Central CT State University) Clif Kussmaul (Muhlenberg College) Matt Dickerson (Middlebury College), moderator Project Web site(s) Intervention Delivery Supervision Program http://programbydesign.org curriculum with supporting in class; software normally active, but can be by Design http://picturingprograms.org IDE, libraries, & texts and textbook are done other ways Stephen Bloch http://www.ccs.neu.edu/home/ free downloads matthias/HtDP2e/ or web-based NSF awards 0010064 http://racket-lang.org & 0618543 http://wescheme.org Problets http://www.problets.org in- or after-class problem- applet in none - teacher not needed, Amruth Kumar solving exercises on a browser although some adopters use programming concepts it in active mode too NSF award 0817187 Mobile Game http://www.mgdcs.com/ in-class or take-home PC passive - teacher as Development programming projects facilitator to answer Qs Stan Kurkovsky NSF award DUE-0941348 POGIL http://pogil.org in-class activity paper or web passive - teacher as Clif Kussmaul http://cspogil.org facilitator to answer Qs NSF award TUES 1044679 Project Course(s) Language(s) Focus Program Middle school, Usually Scheme-like teaching problem-solving process, by pre-AP CS in HS, languages leading into Java; particularly test-driven DesignStephen CS0, CS1, CS2 has also been done in Python, development and use of data Bloch in college ML, Java, Scala, ... types to guide coding & testing Problets AP-CS, CS I, CS 2. C, C++, Java, C# code tracing, debugging, Amruth Kumar also as refresher or expression evaluation, to switch languages predicting program state in other courses Mobile Game AP-CS, CS1, CS2 Java core OO programming; DevelopmentSt intro to advanced subjects an Kurkovsky such as AI, networks, security POGILClif CS1, CS2, SE, etc. -
Towards the Second Edition of ISO 24707 Common Logic
Towards the Second Edition of ISO 24707 Common Logic Michael Gr¨uninger(with Tara Athan and Fabian Neuhaus) Miniseries on Ontologies, Rules, and Logic Programming for Reasoning and Applications January 9, 2014 Gr¨uninger ( Ontolog Forum) Common Logic (ISO 24707) January 9, 2014 1 / 20 What Is Common Logic? Common Logic (published as \ISO/IEC 24707:2007 | Information technology Common Logic : a framework for a family of logic-based languages") is a language based on first-order logic, but extending it in several ways that ease the formulation of complex ontologies that are definable in first-order logic. Gr¨uninger ( Ontolog Forum) Common Logic (ISO 24707) January 9, 2014 2 / 20 Semantics An interpretation I consists of a set URI , the universe of reference a set UDI , the universe of discourse, such that I UDI 6= ;; I UDI ⊆ URI ; a mapping intI : V ! URI ; ∗ a mapping relI from URI to subsets of UDI . Gr¨uninger ( Ontolog Forum) Common Logic (ISO 24707) January 9, 2014 3 / 20 How Is Common Logic Being Used? Open Ontology Repositories COLORE (Common Logic Ontology Repository) colore.oor.net stl.mie.utoronto.ca/colore/ontologies.html OntoHub www.ontohub.org https://github.com/ontohub/ontohub Gr¨uninger ( Ontolog Forum) Common Logic (ISO 24707) January 9, 2014 4 / 20 How Is Common Logic Being Used? Ontology-based Standards Process Specification Language (ISO 18629) Date-Time Vocabulary (OMG) Foundational UML (OMG) Semantic Web Services Framework (W3C) OntoIOp (ISO WD 17347) Gr¨uninger ( Ontolog Forum) Common Logic (ISO 24707) January 9, 2014 -
The Comparability Between Modular and Non-Modular
THE COMPARABILITY BETWEEN MODULAR AND NON-MODULAR EXAMINATIONS AT GCE ADVANCED LEVEL Elizabeth A Gray PhD INSTITUTE OF EDUCATION UNIVERSITY OF LONDON 1 ABSTRACT The prime concern of this thesis is the comparability of two types of assessment now prevalent in Advanced level GeE examinations. The more conventional linear scheme assesses all candidates terminally, and the only way to improve the grade awarded is to re-take the whole examination. In contrast, the relatively new modular schemes of assessment include testing opportunities throughout the course of study. This not only has formative effects but allows quantifiable improvements in syllabus results through the medium of the resit option. There are obvious differences between the two schemes, but this does not necessarily imply that they are not comparable in their grading standards. It is this standard which the thesis attempts to address by considering the different variabilities of each of the schemes, and how these might impinge upon the outcomes of the grading process as evidenced in the final grade distributions. A key issue is that of legitimate and illegitimate variabilities - the former perhaps allowing an improvement in performance while maintaining grading standards; the latter possibly affecting the grading standard because its effect was not fully taken into account in the awarding process. By looking at a linear and modular syllabus in mathematics, the differences between the two are investigated, and although not fully generalisable, it is clear that many of the worries which were advanced when modular schemes were first introduced are groundless. Most candidates are seen to use the testing flexibility to their advantage, but there is little evidence of over-testing. -
Fundamentals of C Programming
Index Fundamentals of C Programming .............................................................................................. 3 Discrete Mathematics ............................................................................................................... 3 Fundamentals of Data Structures .............................................................................................. 5 Fundamentals of Logic and Computer Design ........................................................................... 7 Laboratory for Fundamentals of Logic and Computer Design ................................................ 10 Object-Oriented Programming (C++) ...................................................................................... 12 Database Systems .................................................................................................................... 14 Computer Organization ........................................................................................................... 14 Laboratory for Computer Organization ................................................................................... 16 Java Programming ................................................................................................................... 18 Principles of Database System ................................................................................................ 20 Advanced Data Structures and Algorithm Analysis ................................................................. 22 E-commerce Technologies ..................................................................................................... -
Basic Compiler Algorithms for Parallel Programs *
Basic Compiler Algorithms for Parallel Programs * Jaejin Lee and David A. Padua Samuel P. Midkiff Department of Computer Science IBM T. J. Watson Research Center University of Illinois P.O.Box 218 Urbana, IL 61801 Yorktown Heights, NY 10598 {j-lee44,padua}@cs.uiuc.edu [email protected] Abstract 1 Introduction Traditional compiler techniques developed for sequential Under the shared memory parallel programming model, all programs do not guarantee the correctness (sequential con- threads in a job can accessa global address space. Communi- sistency) of compiler transformations when applied to par- cation between threads is via reads and writes of shared vari- allel programs. This is because traditional compilers for ables rather than explicit communication operations. Pro- sequential programs do not account for the updates to a cessors may access a shared variable concurrently without shared variable by different threads. We present a con- any fixed ordering of accesses,which leads to data races [5,9] current static single assignment (CSSA) form for parallel and non-deterministic behavior. programs containing cobegin/coend and parallel do con- Data races and synchronization make it impossible to apply structs and post/wait synchronization primitives. Based classical compiler optimization and analysis techniques di- on the CSSA form, we present copy propagation and dead rectly to parallel programs because the classical methods do code elimination techniques. Also, a global value number- not account.for updates to shared variables in threads other ing technique that detects equivalent variables in parallel than the one being analyzed. Classical optimizations may programs is presented. By using global value numbering change the meaning of programs when they are applied to and the CSSA form, we extend classical common subex- shared memory parallel programs [23]. -
Microworlds: Building Powerful Ideas in the Secondary School
US-China Education Review A 9 (2012) 796-803 Earlier title: US-China Education Review, ISSN 1548-6613 D DAVID PUBLISHING Microworlds: Building Powerful Ideas in the Secondary School Craig William Jenkins University of Wales, Wales, UK In the 1960s, the MIT (Massachusetts Institute of Technology) developed a programming language called LOGO. Underpinning this invention was a profound new philosophy of how learners learn. This paper reviews research in the area and asks how one notion in particular, that of a microworld, may be used by secondary school educators to build powerful ideas in STEM (science, technology, engineering, and mathematics) subjects. Keywords: microworlds, programming, STEM (science, technology, engineering, and mathematics), constructionism, education Theories of Knowing This paper examines the microworld as a tool for acquiring powerful ideas in secondary education and explores their potential role in making relevant conceptual learning accessible through practical, constructionist approaches. In line with this aim, the paper is split into three main sections: The first section looks at the underlying educational theory behind microworlds in order to set up the rest of the paper; The second section critically examines the notion of a microworld in order to draw out the characteristics of a microworlds approach to learning; Finally, the paper ends with a real-world example of a microworld that is designed to build key, powerful ideas within a STEM (science, technology, engineering, and mathematics) domain of knowledge. To begin to understand the educational theory behind microworlds, a good starting point is to consider the ways in which learners interact with educational technology. In 1980, Robert Taylor (1980) provided a useful framework for understanding such interactions. -
The Next 700 Semantics: a Research Challenge Shriram Krishnamurthi Brown University [email protected] Benjamin S
The Next 700 Semantics: A Research Challenge Shriram Krishnamurthi Brown University [email protected] Benjamin S. Lerner Northeastern University [email protected] Liam Elberty Unaffiliated Abstract Modern systems consist of large numbers of languages, frameworks, libraries, APIs, and more. Each has characteristic behavior and data. Capturing these in semantics is valuable not only for understanding them but also essential for formal treatment (such as proofs). Unfortunately, most of these systems are defined primarily through implementations, which means the semantics needs to be learned. We describe the problem of learning a semantics, provide a structuring process that is of potential value, and also outline our failed attempts at achieving this so far. 2012 ACM Subject Classification Software and its engineering → General programming languages; Software and its engineering → Language features; Software and its engineering → Semantics; Software and its engineering → Formal language definitions Keywords and phrases Programming languages, desugaring, semantics, testing Digital Object Identifier 10.4230/LIPIcs.SNAPL.2019.9 Funding This work was partially supported by the US National Science Foundation and Brown University while all authors were at Brown University. Acknowledgements The authors thank Eugene Charniak and Kevin Knight for useful conversations. The reviewers provided useful feedback that improved the presentation. © Shriram Krishnamurthi and Benjamin S. Lerner and Liam Elberty; licensed under Creative Commons License CC-BY 3rd Summit on Advances in Programming Languages (SNAPL 2019). Editors: Benjamin S. Lerner, Rastislav Bodík, and Shriram Krishnamurthi; Article No. 9; pp. 9:1–9:14 Leibniz International Proceedings in Informatics Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany 9:2 The Next 700 Semantics: A Research Challenge 1 Motivation Semantics is central to the trade of programming language researchers and practitioners. -
Proceedings of the 8Th European Lisp Symposium Goldsmiths, University of London, April 20-21, 2015 Julian Padget (Ed.) Sponsors
Proceedings of the 8th European Lisp Symposium Goldsmiths, University of London, April 20-21, 2015 Julian Padget (ed.) Sponsors We gratefully acknowledge the support given to the 8th European Lisp Symposium by the following sponsors: WWWLISPWORKSCOM i Organization Programme Committee Julian Padget – University of Bath, UK (chair) Giuseppe Attardi — University of Pisa, Italy Sacha Chua — Toronto, Canada Stephen Eglen — University of Cambridge, UK Marc Feeley — University of Montreal, Canada Matthew Flatt — University of Utah, USA Rainer Joswig — Hamburg, Germany Nick Levine — RavenPack, Spain Henry Lieberman — MIT, USA Christian Queinnec — University Pierre et Marie Curie, Paris 6, France Robert Strandh — University of Bordeaux, France Edmund Weitz — University of Applied Sciences, Hamburg, Germany Local Organization Christophe Rhodes – Goldsmiths, University of London, UK (chair) Richard Lewis – Goldsmiths, University of London, UK Shivi Hotwani – Goldsmiths, University of London, UK Didier Verna – EPITA Research and Development Laboratory, France ii Contents Acknowledgments i Messages from the chairs v Invited contributions Quicklisp: On Beyond Beta 2 Zach Beane µKanren: Running the Little Things Backwards 3 Bodil Stokke Escaping the Heap 4 Ahmon Dancy Unwanted Memory Retention 5 Martin Cracauer Peer-reviewed papers Efficient Applicative Programming Environments for Computer Vision Applications 7 Benjamin Seppke and Leonie Dreschler-Fischer Keyboard? How quaint. Visual Dataflow Implemented in Lisp 15 Donald Fisk P2R: Implementation of