Data Acquisition and Analysis Systems for Nuclear Research and Applications Current Status and Trends

Total Page:16

File Type:pdf, Size:1020Kb

Data Acquisition and Analysis Systems for Nuclear Research and Applications Current Status and Trends IAEA-TECDOC- 280 DATA ACQUISITION AND ANALYSIS SYSTEMS FOR NUCLEAR RESEARCH AND APPLICATIONS CURRENT STATUS AND TRENDS PROCEEDINGS OF AN ADVISORY GROUP MEETING ORGANIZED BY THE INTERNATIONAL ATOMIC ENERGY AGENCY AND HELD IN VIENNA, AUSTRIA 13-17 SEPTEMBER 1982 | o'0^ AA TECHNICAL DOCUMENT ISSUED BY THE (X) INTERNATIONAL ATOMIC ENERGY AGENCY, VIENNA, 1983 Printed by the IAEA in Austria January 1983 PLEASE BE AWARE THAT ALL OF THE MISSING PAGES IN THIS DOCUMENT WERE ORIGINALLY BLANK The IAEA does not maintain stocks of reports in this series However, microfiche copies of these reports can be obtained from INIS Microfiche Clearinghouse International Atomic Energy Agency Wagramerstrasse 5 PO Box 100 A-1400 Vienna, Austria on prepayment of Austrian Schillings 40 00 or against one IAEA microfiche service coupon Foreword For a user of data acquisition and analysis systems for whom such devices are a tool rather than an object of intense and continuing study, it is very difficult to follow the rapid progress of techniques and methods applied in the field. With the fast break-through of micro- processors and computers, the complexity of the instrumentation has reached a level where a scientist must spend much time in mastering the intricacies of his equipment, the programming of his experiments and operating of his computer. In return, he gets better and rapidly evaluated results, more precise control of his experiments and savings in time. For the staff of those laboratories who are at the point of introducing some more advanced, possibly computer-based instrumentation, the problems are more severe. Frequently, such institutions do not have trained staff members who could study the market and select the most suitable equipment. The literature on data acquisition and analysis systems used in nuclear research and technology might be abundant, but is scattered in many different professional journals which are, as a rule, not available in physics, chemistry or biology laboratories in developing countries. The catalogues of commercial manufacturers of nuclear equipment are an excellent source of information; however, they do not present the basis for understanding the present status and trends in the field, and are obviously biased in favour of their own products. The Advisory Group on Data Acquisition Systems in Nuclear Science and Technology was concerned with the objective of reviewing the situation, and assessing possible near-future developments. The papers prepared by the participants, are kept at such a technical level that they can also be studied and appreciated by the reader who is not a specialist in nuclear data handling, and yet provides the necessary inside view of the field. The contributions in the last part of the document are by some commercial manufacturers of nuclear equipment. They are intended as an illustration of the present state-of-the-art. The choice of the represented companies does not reflect any preference on the part of the IAEA in selecting the equipment of a specific manufacturer, and is certainly not intended as an advertisement for their products. It was felt, however, that the document would be more valuable if it would describe some real instruments. With the very fast development of nuclear instrumentation, and particularly the intense application of microprocessors, the commercial products described in this section will soon be replaced by new, more advanced and probably more sophisticated devices. 3 CONTENTS IN TR O D U CTIO N .............................................................................................................................. 7 USERS' EXAMPLES Instrumental aspects of tube-excited energy-dispersive X-ray fluoresence analysis ............................. 13 F. Adams, H. Nullens, P. Van Espen The design of automated nuclear data systems for industnal application ........................................... 45 R.L. Heath BUY OR BUILD Commercially available instrumentation versus custom-made equipment: A Guide........................... 57 D.R. Machen MICROPROCESSOR APPLICATIONS Role of microprocessors in nuclear instrumentation .......................................................................... 63 P. Gallice COMPUTERS Techmques for data acquisition and data analysis ............................................................................. 73 E.C.G. Owen Distributed intelligence versus central laboratory .............................................................................. 93 H. Halling Local area networks for distributed intelligent systems .................................................................... 109 H. Klessmann Interfaces and buses ........................................................................................................................... 133 W. Attwenger Software for nuclear data acquisition systems ................................................................................... 173 P. Christensen MAINTENANCE Preventive maintenance, service and repair of data acquisition and analysis systems .......................... 183 D. V. Camin PRODUCTS Laben's view of the design of data acquisition and processing systems to be used m developing countries ..................................................................................................................... 197 P Casoli, M. Hamel Data acquisition and reduction systems for nuclear data experiments ............................................... 225 KR. Thompson, W. Maier Data acquisition and analysis systems - "Tools of the Trade" ........................................................ 243 KL. Wilson Renner Recent developments in microprocessor-based data systems ............................................................. 69 A.C. Burley The Canberra view of nuclear data acquisition and analysis ............................................................... 285 W. Bernhardt Nuclear instrumentation in a Hungarian research institute for physics ............................................... 301 A. Csdkdny INTRODUCTION The set of papers prepared for the meeting of the Advisory Group, and the discussions can be classified by three categories: (i) Two contributions discuss the application of data acquisition and analysis, as seen by users of such a system in a research and in an industrial development laboratory, respectively. (ii) The present status and envisaged trends of the computer-based or computer-connected systems is reviewed in several papers, from different viewpoints. (iii) The review of some manufacturers are presented in six papers, also giving information on the production lines. A short review is presented below, in the light of the discussions emphasized at the meeting. a. Data acquisition and analysis systems in applied nuclear research The range of equipment used in such experiments is very broad, from the simple counting of radioactive material to activation analysis and Mossbauer spectroscopy. Traditionally, the central unit of equipment is a multichannel analyzer. The recent trend, based on general availability of cheap microcomputers, promotes a more complicated multichannel analyzer, and sophisticated designs which are in fact not necessary for most of the applications. Not all of the advanced features incorporated in such instruments, fulfil the real needs (for example, the video display in colour). In commercial analytical instrumentation, there is a general trend towards the introduction of microprocessors, and provisions for auto- mation, both in control of the instrumentation, and in data reduction. These conveniences involve, however, a risk that the quality of the results, i.e. precision and accuracy pass beyond the control of the experimenter. The experience of well established research laboratories demonstrates that, with time, the commercially available software for data handling is as a rule replaced by home-made programmes which respond better to specific needs. The development of software, obviously, assumes well trained staff. 2. Industrial uses of nuclear data handling systems The instrumentation intended for industrial application must fulfil several conditions: it must permit simplicity and efficiency in hardware and software design, its modules must be expandable, it should possess distributed architecture. 7 Dynamic firmware techniques applied in automated systems for validation of system performance and data presents an important advance to improve reliability and confidence of users of sophisticated equipment. Properly applied in the design of all levels of nuclear data systems, and combined with other hardware diagnostic techniques, this should improve the use of such systems in developing environment. There is much room for improvement in the analog part of electronics: the increase in count rate is an important requirement for many industrial systems, and will be applicable also to data acquisition concepts in different spectroscopy systmes, for example, in chemical analysis. The trend in industrial applictions seems to be the use of commercially available nuclear electronic modules and units; the necessary adaptation to the specific requirements must be made individually for each project, and this part can be very expensive. 3. Commercially available instrumentation versus custom-made equipment The decision on "buy or make" depends on many factors. The definition by three users' groups (see paper of Dr. D.R. Machen) is an effort to classify the requirements in advanced countries, as seen today. The conclusions are valid
Recommended publications
  • Experimental Γ Ray Spectroscopy and Investigations of Environmental Radioactivity
    Experimental γ Ray Spectroscopy and Investigations of Environmental Radioactivity BY RANDOLPH S. PETERSON 216 α Po 84 10.64h. 212 Pb 1- 415 82 0- 239 β- 01- 0 60.6m 212 1+ 1630 Bi 2+ 1513 83 α β- 2+ 787 304ns 0+ 0 212 α Po 84 Experimental γ Ray Spectroscopy and Investigations of Environmental Radioactivity Randolph S. Peterson Physics Department The University of the South Sewanee, Tennessee Published by Spectrum Techniques All Rights Reserved Copyright 1996 TABLE OF CONTENTS Page Introduction ....................................................................................................................4 Basic Gamma Spectroscopy 1. Energy Calibration ................................................................................................... 7 2. Gamma Spectra from Common Commercial Sources ........................................ 10 3. Detector Energy Resolution .................................................................................. 12 Interaction of Radiation with Matter 4. Compton Scattering............................................................................................... 14 5. Pair Production and Annihilation ........................................................................ 17 6. Absorption of Gammas by Materials ..................................................................... 19 7. X Rays ..................................................................................................................... 21 Radioactive Decay 8. Multichannel Scaling and Half-life .....................................................................
    [Show full text]
  • From the Very Beginning...From My Vantage Point
    From the Very Beginning … from My Vantage Point By Dick Orenstein Written: January 14, 2005; updated April 14, 2016 CHM Reference number: R0362.2016 From the Very Beginning … from My Vantage Point By Dick Orenstein I was, and perhaps still am a computer programmer. My first job out of college (1962) was on the research staff at MIT’s Computation Center working on the Compatible Time Sharing System under Fernando Corbató. We were developing a time-sharing system on IBM 7000 series computers. It was here that I had my first exposure to email (“You’ve got mail” was a phase used then, albeit our user community was about 20 users), typewriter terminals, communications over telephone lines, storage backup (my project) and myriad other computer operating system technical issues. By 1966 I was working at Adams Associates (a precursor of Keydata Corp.) as a programmer assigned to a graphics project at Lincoln Laboratories. Later, my assignment was to develop and write a “line-by-line Fortran interpreter.” This must have been something that Keydata would have liked, as that company was commencing an on-line service whose specificity escapes me now. Along the way, my management called in Digitek Corporation, known for writing FORTRAN compilers or interpreters. The idea was to see what they had to offer versus our writing it from scratch. Bob Bernard, from Digitek, came and made a presentation. For whatever reasons, we “connected.” A short time thereafter Bob called me and asked if I was interested in coming to work with him at Digitek. I believe I came to Connecticut for an interview, however, I told Bob that I would not accept any offer since I was just 25 years old, had a 2A draft exemption from working at Adams Associates, and would consider something after I turned 26, the age at which I would be much less likely to be drafted.
    [Show full text]
  • Nuclear Engineering and Technology 49 (2017) 1489E1494
    Nuclear Engineering and Technology 49 (2017) 1489e1494 Contents lists available at ScienceDirect Nuclear Engineering and Technology journal homepage: www.elsevier.com/locate/net Original Article Large-volume and room-temperature gamma spectrometer for environmental radiation monitoring * Romain Coulon , Jonathan Dumazert, Tola Tith, Emmanuel Rohee, Karim Boudergui CEA, LIST, F-91191 Gif-sur-Yvette Cedex, France article info abstract Article history: The use of a room-temperature gamma spectrometer is an issue in environmental radiation monitoring. Received 29 April 2016 To monitor radionuclides released around a nuclear power plant, suitable instruments giving fast and Received in revised form reliable information are required. High-pressure xenon (HPXe) chambers have range of resolution and 15 May 2017 efficiency equivalent to those of other medium resolution detectors such as those using NaI(Tl), CdZnTe, Accepted 4 June 2017 and LaBr :Ce. An HPXe chamber could be a cost-effective alternative, assuming temperature stability and Available online 3 July 2017 3 reliability. The CEA LIST actively studied and developed HPXe-based technology applied for environ- mental monitoring. Xenon purification and conditioning was performed. The design of a 4-L HPXe de- Keywords: Xenon tector was performed to minimize the detector capacitance and the required power supply. Simulations fi Spectrometry were done with the MCNPX2.7 particle transport code to estimate the intrinsic ef ciency of the HPXe Environmental detector. A behavioral study dealing with ballistic deficits and electronic noise will be utilized to provide Detector perspective for further analysis. Radiation © 2017 Korean Nuclear Society, Published by Elsevier Korea LLC. This is an open access article under the Ionization chamber CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
    [Show full text]
  • This Report. the Primary Use of Data Processing in These Districts Is Payroll
    DI:) CUNCNT RCSUNE ED 031 087 24 EM 007 234 Crest Cities Research Councd Educational Communications Proiect. Final Report. Appendices; Exhibit A, Data Processing in the Creat Cities, March 1967; Exhibit C, Creativity in Urban Education; Exhibit 0, the Central Cities Conference. Crest Cities Program for School Improvement, Chicago, Ilk Spons Agency-Office of Education (DHEW), Washington, D.C. Bureau of Research. Bureau No-BR -7 -0715 Pub Date Feb 69 Contrac t - OEC -3-7-070715 - 3048(010) Note - 410p. Available from- The Research Council of the Great Cities Program for School Improvement, 4433 West Touhy Ave., Chicago, III. 60646 EDRS Price MF -S1.75 HC-S20.60 Descriptors-Adult Education, Adult Education Programs, Art Education, Audiovisual Instruction, Community Planivng, Compensatory Education, *Data Processing, Health Education, Humanities Instruction, *Instructional Materials, Instructional Media, *Instructional 'Television, Intercultural Programs, Multisensory Learning, Music EducatioN Parent EducatmiN Public School Adult Education, Reading Instruction, *School Community Programs, Teclvvcal Educatice Urban Education Surveys of the data processing systems and the innovations in instruction and resource materials in 16 school districts in the cities of Baltimore,Boston, Buffalo, Chicago, Cleveland, Detroit, L.os Angeles, Memphis, Milwaukee, New York, Philadelphia, Pittsburgh, San Diego, San Francisco, St. Louis, and Washington. D.C., are deta!led in thisreport. The primary use of data processing inthese districtsispayroll processing. The study lists and evaluates the cost and present applicationsof data processing. It recommends a pilot program to promote personnel data systems, pupil data systems, program budgeting with textbook control as a motor sub-system, and kindergarten to twelfth grade curriculum development for computer assisted learning.
    [Show full text]
  • 19 International Workshop on Low Temperature Detectors
    19th International Workshop on Low Temperature Detectors Program version 1.24 - Moscow Standard Time 1 Date Time Session Monday 19 July 16:00 - 16:15 Introduction and Welcome 16:15 - 17:15 Oral O1: Devices 1 17:15 - 17:25 Break 17:25 - 18:55 Oral O1: Devices 1 (continued) 18:55 - 19:05 Break 19:05 - 20:00 Poster P1: MKIDs and TESs 1 Tuesday 20 July 16:00 - 17:15 Oral O2: Cold Readout 17:15 - 17:25 Break 17:25 - 18:55 Oral O2: Cold Readout (continued) 18:55 - 19:05 Break 19:05 - 20:30 Poster P2: Readout, Other Devices, Supporting Science 1 22:00 - 23:00 Virtual Tour of NIST Quantum Sensor Group Labs Wednesday 21 July 16:00 - 17:15 Oral O3: Instruments 17:15 - 17:25 Break 17:25 - 18:55 Oral O3: Instruments (continued) 18:55 - 19:05 Break 19:05 - 20:30 Poster P3: Instruments, Astrophysics and Cosmology 1 20:00 - 21:00 Vendor Exhibitor Hour Thursday 22 July 16:00 - 17:15 Oral O4A: Rare Events 1 Oral O4B: Material Analysis, Metrology, Other 17:15 - 17:25 Break 17:25 - 18:55 Oral O4A: Rare Events 1 (continued) Oral O4B: Material Analysis, Metrology, Other (continued) 18:55 - 19:05 Break 19:05 - 20:30 Poster P4: Rare Events, Materials Analysis, Metrology, Other Applications 22:00 - 23:00 Virtual Tour of NIST Cleanoom Tuesday 27 July 01:00 - 02:15 Oral O5: Devices 2 02:15 - 02:25 Break 02:25 - 03:55 Oral O5: Devices 2 (continued) 03:55 - 04:05 Break 04:05 - 05:30 Poster P5: MMCs, SNSPDs, more TESs Wednesday 28 July 01:00 - 02:15 Oral O6: Warm Readout and Supporting Science 02:15 - 02:25 Break 02:25 - 03:55 Oral O6: Warm Readout and Supporting
    [Show full text]
  • Supplement to The
    Hahn-Meitner-Institut Berlin Supplement to the Annual Report 2001 Berlin 2002 Supplement Index Publications 3 Structural Research 4 Solar Energy Research 21 Information Technology 30 Conference Contributions / Invited Lectures 31 Structural Research 32 Solar Energy Research 62 Information Technology 77 Technology Transfer / Patents 79 Academic Education 83 Courses 84 Exams 87 Co-operation Partners and Guests 89 Structural Research 90 Solar Energy Research 99 Information Technology 103 External Funding 105 Structural Research 106 Solar Energy Research 108 Participation in External Scientific Bodies and Committees 111 Miscellaneous 115 Awards / Exhibitions / Fairs / Organization of Conferences and Meetings / Events 1. Edition June 2002 Supplement of the Annual Report 2001 HMI-B 585 Hahn-Meitner-Institut Berlin GmbH Glienicker Str. 100 D-14109 Berlin (Wannsee) Coordination: Maren Achilles Phone: +49 – (0)30 – 8062 2668 Fax: +49 – (0)30 – 8062 2047 E-mail: [email protected] A 2 HMI Annual Report 2001 Publications 2001 Publications HMI Annual Report 2001 A 3 Publications 2001 Structural Research Department SF1 Pappas, C.; Kischnik, R.; Mezei, F. Wide angle NSE : the spectrometer SPAN at Instruments and Methods BENSC Physica B 297 (2001) 14-17 Pappas, C.; Mezei, F. Reviewed Publications How to achieve high intensity in NSE spectros- copy? BENSC-Activities Proceedings of the ILL Millenium Workshop, 2001, p.318 Ehlers, G.; Farago, B;. Pappas, C; Mezei, F. A new IN11 with an almost 35 times higher Peters, J.; Treimer, W. counting rate than that of IN11C Bloch walls in a nickel single crystal Proceedings of the ILL Millenium Workshop, 2001 p. Phys. Rev. B 64 (2001) 214415 – 214422 316 Scheffer, M.; Rouijaa, M.; Suck, J.-B.; Sterzel, R.; Fitzsimmons, M.
    [Show full text]
  • Gamma Ray Spectroscopy
    Gamma Ray Spectroscopy Ian Rittersdorf Nuclear Engineering & Radiological Sciences [email protected] March 20, 2007 Rittersdorf Gamma Ray Spectroscopy Contents 1 Abstract 3 2 Introduction & Objectives 3 3 Theory 4 3.1 Gamma-Ray Interactions . 5 3.1.1 Photoelectric Absorption . 5 3.1.2 Compton Scattering . 6 3.1.3 Pair Production . 8 3.2 Detector Response Function . 9 3.3 Complications in the Response Function . 11 3.3.1 Secondary Electron Escape . 11 3.3.2 Bremsstrahlung Escape . 12 3.3.3 Characteristic X-Ray Escape . 12 3.3.4 Secondary Radiations Created Near the Source . 13 3.3.5 Effects of Surrounding Materials . 13 3.3.6 Summation Peaks . 14 3.4 Semiconductor Diode Detectors . 15 3.5 High Purity Germanium Semiconductor Detectors . 17 3.5.1 HPGe Geometry . 18 3.6 Germanium Detector Setup . 18 3.7 Energy Resolution . 19 3.8 Background Radiation . 20 4 Equipment List 21 5 Setup & Settings 21 6 Analysis 23 6.1 Prominent Peak Information . 24 6.2 Calibration Curve . 24 6.3 Experiment Part 6 – 57Co ............................ 26 6.4 Experiment Part 6 – 60Co ............................ 28 6.5 Experiment Part 6 – 137Cs............................ 29 6.6 Experiment Part 6 – 22Na ............................ 31 6.7 Experiment Part 6 – 133Ba............................ 32 6.8 Experiment Part 6 – 109Cd............................ 34 6.9 Experiment Part 6 – 54Mn............................ 35 6.10 Energy Resolution . 37 6.11 Background Analysis . 39 1 Rittersdorf Gamma Ray Spectroscopy 7 Conclusions 43 Appendices i A 57Co Decay Scheme i B 60Co Decay Scheme ii C 137Cs Decay Scheme iii D 22Na Decay Scheme iv E 133Ba Decay Scheme v F 109Cd Decay Scheme vi G 54Mn Decay Scheme vii H HPGe Detector Apparatus viii I Raw Gamma-Ray Spectra ix References ix 2 Rittersdorf Gamma Ray Spectroscopy 1 Abstract In lab, a total of eight spectra were measured.
    [Show full text]
  • Detecting, Monitoring, and Sampling Hazardous Materials
    Analyzing the Incident: Detecting, Monitoring, and Sampling Hazardous Materials Chapter Contents Exposure .......................................161 Thermal Imagers .......................................................188 Routes of Entry ..........................................................161 Infrared Thermometers .............................................188 Contamination versus Exposure ...............................162 Other Detection Devices .....................189 Acute versus Chronic Exposure ................................163 Halogenated Hydrocarbon Meters ............................189 Radiological and Biological Exposures ...164 Flame Ionization Detectors ........................................190 Exposure Limits .........................................................164 Gas Chromatography .................................................190 Radiological Exposures .............................................168 Mass Spectroscopy ...................................................191 Biological Exposures .................................................169 Ion Mobility Spectrometry ........................................192 Sensor-Based Instruments and Surface Acoustic Wave ..............................................192 Other Devices ...............................170 Gamma-Ray Spectrometer ........................................193 Oxygen Indicators .....................................................170 Fourier Transform IR .................................................194 Combustible Gas Indicators
    [Show full text]
  • Testing FLUKA on Neutron Activation of Si and Ge at Nuclear Research Reactor Using Gamma Spectroscopy
    Testing FLUKA on neutron activation of Si and Ge at nuclear research reactor using gamma spectroscopy J. Bazoa, J.M. Rojasa, S. Besta, R. Brunab, E. Endressa, P. Mendozac, V. Pomac, A.M. Gagoa aSecci´onF´ısica, Departamento de Ciencias, Pontificia Universidad Cat´olica del Per´u,Av. Universitaria 1801, Lima 32, Per´u bC´alculoAn´alisisy Seguridad (CASE), Instituto Peruano de Energ´ıaNuclear (IPEN), Av. Canad´a1470, Lima 41, Per´u cDivisi´onde T´ecnicas Anal´ıticas Nucleares, Instituto Peruano de Energ´ıaNuclear (IPEN), Av. Canad´a1470, Lima 41, Per´u Abstract Samples of two characteristic semiconductor sensor materials, silicon and ger- manium, have been irradiated with neutrons produced at the RP-10 Nuclear Research Reactor at 4.5 MW. Their radionuclides photon spectra have been measured with high resolution gamma spectroscopy, quantifying four radioiso- topes (28Al, 29Al for Si and 75Ge and 77Ge for Ge). We have compared the radionuclides production and their emission spectrum data with Monte Carlo simulation results from FLUKA. Thus we have tested FLUKA's low energy neutron library (ENDF/B-VIIR) and decay photon scoring with respect to the activation of these semiconductors. We conclude that FLUKA is capable of pre- dicting relative photon peak amplitudes, with gamma intensities greater than 1%, of produced radionuclides with an average uncertainty of 13%. This work allows us to estimate the corresponding systematic error on neutron activation simulation studies of these sensor materials. Keywords: FLUKA, neutron irradiation, nuclear reactor, silicon, germanium arXiv:1709.02026v2 [physics.ins-det] 21 Dec 2017 ∗Corresponding author Email address: [email protected] (J.
    [Show full text]
  • Progress in Investigation of Wwer-440 Reactor Pressure Vessel Steel by Gamma and Mossbauer Spectroscopy
    HR9800123 PROGRESS IN INVESTIGATION OF WWER-440 REACTOR PRESSURE VESSEL STEEL BY GAMMA AND MOSSBAUER SPECTROSCOPY J. Hascik1. V. Slugen', J. Lipka1, RKupca2, R Hinca', I. Toth', R Grone', P. Uvacik1 'Department of Nuclear Physics and Technology, Slovak University of Technology, Ilkovicova3, 81219 Bratislava, Slovakia 2NPP Research Institute, Trnava, Okruznd 5, Slovakia Abstract Gramma spectroscopic analyse and first experimental results of original irradiated reactor pressure vessel surveillance specimens are discussed in . In 1994, the new "Extended Surveillance Specimen Program for Nuclear Reactor Material Study" was started in collaboration with the nuclear power plants (NPP) V-2 Bohunice (Slovakia). The first batch of MS samples (after 1 year, which is equivalent to 5 years of loading RPV-steel) was measured and interpreted using the new four components approach with the aim to observe microstructural changes due to thermal and neutron treatment resulting from operating conditions in NPP. The systematic changes in the relative areas of Mossbauer spectra components were observed. 1 INTRODUCTION The reactor pressure vessel (RPV) is probably the most important component of a nuclear power plant (NPP) and its condition significantly affects the NPP's lifetime and operational characteristics. One of the basic requirements in nuclear reactor technique is ensuring the sufficient safety margin and reliability of used materials during their operational mechanical, thermal or radiation treatment [1]. In framework of Extended Surveillance Specimen Program 24 specimens, designed especially for MS measurement, were selected and measured in "as received" state, before their placement into the core of the operated nuclear reactor. Mossbauer spectra, which correspond to the basic material samples, show typical behaviour of dilute iron alloys and can be described with three [2,3] or four sextets.
    [Show full text]
  • Devices of Basic and Applied Scientific Research Center
    أﺟﻬﺰة ﻣﺮﻛﺰ اﻟﺒﺤﻮث اﻟﻌﻠﻤﻴﺔ اﺳﺎﺳﻴﺔ و اﻟﺘﻄﺒﻴﻘﻴﺔ Devices of Basic and Applied Scientic Research Center Done by 2018 Ibtisam H. Al-Qahtani Content Introduction Research units labs information Key Devises at the Research Units Labs Research Units Labs Services Gamma -ray Spectroscopy X-Ray Diffractometer (XRD- 7000) Organic Elemental Analyzer Tot al Organic Carbon Analyzer (TOC) Fourier Transform Infrared Analysis System- (FTIR) Gas Chromatography – Mass spectrometer (GC-MS/MS) Microwave Digestion System Thermo-Gravimetric Analyzer (TGA) UV SolidSpec-3700 Inductively Coupled Plasma (ICP) LCMS - 8040 with APCI High Energy E-max Ball Energy Dispersive -X Ray Fluorescence spectrometers (EDXRF) Automated Surface Area Analyzer DXR Raman Microscope Analytical Scanning Electron Microscopy (VEGA 3) Atomic Absorption Spectrophotometer (AAS) TASLIMAGE Radon Dosimetry System Flash Chromatography Ion Chromatography System S 153- A Dual GasChromatograph (GC-2014 ) VITEK® 2 Compact DAKO ARTIZAN (Multi Strainer) DAKO Hematoxylin 1 - Introductiongreat atte lies in the scientific, intellectual and behavioural capacities of its sons . The need for Thestudies, Kingdom research of Saudi and Arabia learning has recently has become taken serious a cornerstone steps and insteps life toto reach thestrengthen greatest its possible position knowledge in science and of technology,the sciences achieve that ensureeconomic the renaissance well-being and of the humanaddress being, the andmost ensure important the problems superiority it faces of others,at the national as developed level . countries pay great attentionThese to scientific efforts stem research from the for desire its realization of good leadership that the togreatness move from of a nations natural lies in the scientific, intellectual and behavioural capacities of its sons.
    [Show full text]
  • Speeches and Papers
    ROOMS 1-2-3 THE IMPACT OF STANDARDIZATION FOR THE 70's (PANEL) ROBERT W. BEMER General Electric Company Phoenix, Arizona CHAIRMAN AND TECHNICAL PROGRAM CHAIRMAN'S MESSAGE , CONFERENCE AWARDS ' - Harry Goode Memorial Award 3 Best Paper Award 3 Best Presentation Award 3 TECHNICAL PROGRAM 4 CONFERENCE-AT-A-GLANCE (Centerfold) 52,53 CONFERENCE LUNCHEON 75 Luncheon Speaker 75 EDUCATION PROGRAM 76 SPECIAL ACTIVITIES 76 Conference Reception 76 Conference Luncheon 76 Computer Science and Art Theater 76 Computer Art Exhibit 77 Computer Music Exhibit 77 Scope Tour 77 LADIES PROGRAM 78 Hospitality Suite 78 Activities 78 GENERAL INFORMATION 79 Conference Location 79 MASSACHUSETTS INSTITUTE OF TECHNOLOGY PROJECT MAC Reply to: Project MAC 545 Technology Square Cambridge, Mass. 02139 June 5, 1969 Telephone: (617 ) 864-6900 x6201 Mr. Robert W. Bemer General Electric Company (C-85) 13430 North Black Canyon Highway Phoenix, Arizona 85029 Dear Bob: Thank you very much for your participation in my panel session at the Spring Joint Computer Conference. On the basis of a number of comments I received from both strangers and friends and also my own assessment, I think we had a successful session. I particularly appreciate your willingness to contribute your time and efforts to discussion of the problems of managing software projects. As I may have told you previously, I have been teaching a seminar on this same subject at M.I.T. A number of my students who attended the session were particularly interested in the presentations by the panelists. I would appreciate it if you could send me copies of your slide material for use in my class.
    [Show full text]