Development of Quantum Devices and Algorithms for Radiation Detection and Radiation Signal Processing
Total Page:16
File Type:pdf, Size:1020Kb
Al-AZHAR UNIVERSITY FACULTY OF ENGINEERING DEPARTMENT OF ELECTRICAL ENGINEERING Development of Quantum Devices and Algorithms for Radiation Detection and Radiation Signal Processing Thesis Submitted For the Degree of Doctoral of Philosophy in Electrical Engineering (Electronics and Communications) - Faculty of Engineering- Al-Azhar University By Mohamed El Sayed Mohamed El Sayed El Tokhy Lecturer Assistant at Engineering Department-Nuclear Research Center Egyptian Atomic Energy Authority Supervised By Prof. Dr. Hussein Ahmed Konber Prof. Dr. Imbaby Ismail Mahmoud Professor of Electrical Communications Head of Engineering Department Faculty of Engineering Nuclear Research Center Al-Azhar University Atomic Energy Authority 2012 CAIRO-EGYPT ﺟﺎﻣﻌﺔ ١ﻷزض ﻛﻠ ﺒ ا ﺔﻟﻬﻨﺪ ﺳﺔ ﻗ ﺴ ﻢ اﻟﻬﻔﺪﻣﺲ ا—^ ﻟﻜﻬﺮﺑﻴﺔ ﺗﻄﻧﻮ ﺒﻛﻳﺎ ﻤﺮﺋﻴو ﻂﺔﺧﻮارزﻣﻴﺎ تﻟﻜﺸﻒ اﻻﺷﻌﺎع وﻣﻌﺎﻟﺠﺔ اﻻﺷﺎرات اﻻﺷﻌﺎﻋﻴﺔ رﺳﺎﻟﺔ ﻣﻘﺪﻣﺔ ﻣ ﻦاﻟ ﻤﻬﻨﺪس ﻣ ﺤ ﻤﺪا ﻟ ﺴﻴ ﺪﻣﺤﻤﺪاﻟ ﺴﻴ ﺪاﻟ ﻄﻮ ﺧ ﻰ ﻫ اﻣﺎﺟﺴﺘﻴﺮﻨﺪﻻﻟﺳ ﺔﻜﺘﺮ و اوﻧﻴﺎﻻتﺗﺼﺎاﻻ تﻟﻜﻬﺮﺑﻴﺔ ﻣﺪرس ﻣﺴﺎﺑﻋﺪ اﻟﻄﺎﻬﻴﺌﺔﻗاﺔﻟ ﺬرﻳﺔ ﻟﻠﺤﺼﻮل ﻋﻠﻰ دارﺟﺔ ﻟﻌﺎﻟﻤ ( دﻴﺔﻛﺘﻮرا هاﻟﻔﻠﺴﻔﺔ) ﻓﻰ اﻻﻟﻜﺘﺮ و وﻧﻴﺎتاﻻﺗﺼﺎﻻت اﻟﻜﻬﺮﺑﻴﺔ ﺗﺤ ﺖإﺷﺮاف ا.د ﺣﺴﻴ ﻦ أﺣﻗﻤﺪ ﻨﺒﺮ ا٠د إﻣﺒﺎ إ ضﺳﻤﺎﻋﻴ ﻞﻣﺤﻤﻮد أﺳﺘﺎ ذاﻻﺗﺼﺎاﻻ تﻟﻜﻬﺮﺑﻴﺔ رﺋﻴ ﻗﺲاﺴﻢ ﻟﻬﻨﺪﺳ ﺔ-ﻣﺮﻛﺰاﻟ ﺒﺤﻮث ا ﻛﻠﻴﺔﻟﻬﻨﺪﺳ ﺔ-ﺟﺎﻣﻌﺔ اﻷزﻫﺮ اﻟﻨﻮﻫوﻳ ﻴ ﺔ-ﺌﺔاﻟﻄﺎﻗﺔاﻟ ﺬرﻳﺔ 2 ١ 20 اﻟﻘﺎﻫﺮة- ﻣﺼﺮ Acknowledgement I present all thanks for my "GOD" for helping me to finish this thesis. My great thanks to Prof. Dr. Hussein A. Konber for his supervision, support and sincere help. My appreciation is expressed to Prof. Dr Imbaby I. Mahmoud for his supervision, introducing block diagram programming using VisSim, encouragement, and continuous help. This work is partially supported by International Atomic Energy Authority (IAEA) grant under Coordinated Research Project contract Number CRP (16409/R0). MOHAMED EL SAYED EL TOKHY i LIST OF ABBREVIATION LIST OF ABBREVIATION ABBREVIATIONS MEANING ADC Analog-To-Digital Converter CaTe Cadmium Telluride CaZnTe Cadmium Zinc Telluride CdSe Cadmium Selenide 60 Co Cobalt-60 CRT Cathode Ray Tube 137 Cs Cesium-137 CsI Cesium Iodide DAS Data Acquisition System DMYER Discrete Meyer FIR Finite Impulse Response FWHM Full Width at Half Maximum Ge Germanium GM Geiger-Muller GUI Graphical User Interface HgI Mercuric Iodide HRGS High-Resolution Gamma-Ray Spectroscopy IR Infrared IWT Inverse Wavelet Transform LEDs Light Emitting Diodes LiI Lithium Iodide LLD Lower Level Discriminator MCA Multichannel Analyzer NaI(TI) Thallium-Doped Sodium Iodide NDA Non-Destructive Assay PbS Lead Sulfide PC Personal Computer PDS Parallel Direct Search Algorithm PL Peak Photoluminescence PMT Photomultiplier Tube QD Quantum Dot QDIP Quantum Dot Infrared Photodetectors Rbior1.1 Reverse Biorthogonal1.1 RMS Root Mean Square SCA Single Channel Analyzer SCH Separate Confinement Heterostructure Si Silicon Si (Li) Lithium Drifted Silicon SNR Signal To Noise Ratio ULD Upper Level Discriminator WL Wetting Layer WT Wavelet Transform ZnS Zinc Sulfide v CONTENTS Acknowledgement …………………………………………………………………………..... i Abstract …………………………………………………………………………...................... ii List of Abbreviation ………………………………………………………………………….. v CHAPTER (1) INTRODUCTION 1.1 Introduction………………………………………………………………………........ 1 1.2 Objective of the Thesis……………………………………………………………….. 4 1.3 Organization of the Thesis………………………………………………………......... 6 CHAPTER (2) OVERVIEW OF GAMMA-RAY SPECTROSCOPY 2.1 Introduction…………………………………………………………………………… 7 2.2 Gamma Radiation Detection………………………………………………………….. 7 2.2.1 Gas-filled detectors…………………………………………………………… 8 2.2.2 Solid-state detectors…………………………………………………………... 9 2.2.3 Scintillator detectors………………………………………………………….. 10 2.2.3.1 Quantum dot technology for gamma radiation detection…………... 11 2.3 Spectrum Analysis……………………………………………………………………. 13 2.3.1 Analysis of spectra with peaks………………………………………………... 13 2.3.1.1 Spectral features…………………………………………………….. 14 2.3.1.1.1 The full energy photopeak……………………………… 14 2.3.1.1.2 Compton background continuum………………………. 14 2.3.1.1.3 The Compton edge……………………………………… 15 2.3.1.1.4 The Compton valley……………………………………. 15 2.3.1.1.5 Back scatter peak………………………………………... 15 2.3.1.1.6 Excess energy region…………………………………… 15 2.3.1.1.7 Low energy rise………………………………………… 15 2.4 Single Channel Analyzer……………………………………………………………… 15 2.4.1 Multiple single channel analyzers…………………………………………….. 16 2.5 Multichannel Analyzer………………………………………………………………... 18 2.5.1 Principle of operation of MCA……………………………………………….. 18 2.5.2 Basic components of gamma ray spectroscopy………………………………. 18 vi CONTENTS 2.5.3 General MCA characteristics …………………………………………………. 20 2.5.3.1 Number of channels required……………………………………….. 20 2.5.3.2 Calibration of spectrometers………………………………………... 22 2.6 MCA Problems……………………………………………………………………….. 22 2.6.1 MCA dead time……………………………………………………………….. 22 2.6.2 MCA pileup…………………………………………………………………… 23 CHAPTER (3) MODELS OF QUANTUM DOT DEVICES FOR GAMMA RADIATION DETECTION 3.1 Introduction………………………………………………………………………….... 25 3.2 VisSim Simulator……………………………………………………………………... 26 3.3 QD Devices as a Detector…………………………………………………………….. 27 3.4 The Proposed Models of Quantum Dot Devices……………………………………... 28 3.4.1 The proposed simulator of quantum dot source under gamma radiation……... 28 3.4.1.1 The proposed simulator of carriers densities of quantum dot gamma ray detection………………………………………………………… 28 3.4.1.2 Proposed simulator of optical wavelength……….…………………. 31 3.4.2 Block diagram models of QDIP………………………………………………. 32 3.4.2.1 Dark current density block diagram model of QDIP…..…………… 33 3.4.2.2 Photocurrent density block diagram model of QDIP……………….. 35 3.4.2.3 Detectivity block diagram model of QDIP……................................. 36 3.5 Results and Discussion………………………………………………………………... 39 3.5.1 Results of QD sources………………………………………………………… 39 3.5.1.1 Carrier densities and population inversion of QD devices results….. 39 3.5.1.2 Emission wavelength results………………………………………... 43 3.5.2 Results of QDIPs……………………………………………………………… 44 3.5.2.1 Dark current result...……………………………………………...…. 44 3.5.2.2 Photocurrent result...……………………………………………..…. 47 3.5.2.3 Detectivity result……………………………………………………. 49 vii CONTENTS CHAPTER (4) THE PROPOSED DIGITAL GAMMA-RAY SPECTROSCOPY ALGORITHMS 4.1 Introduction…………………………………………………………………………… 51 4.2 System Component…………………………………………………………………… 52 4.3 Signal Preprocessing Algorithms……………………………………………………... 53 4.3.1 Background correction………………………………………………………... 53 4.3.2 Afterpulse removal……………………………………………………………. 53 4.3.3 Noise elimination algorithm based on wavelet transform………………..…… 54 4.4 Algorithms of Problems Correction for Digital Gamma-Ray Spectroscopy Signal….. 55 4.4.1 Pile up correction……..………………………………………………………. 55 4.4.1.1 Pileup recovery using deconvolution……………………………….. 56 4.4.1.2 Direct search pileup recovery algorithm……………………………. 56 4.4.1.3 Least square fitting pileup recovery algorithm……………………... 59 4.4.1.4 First derivative with maximum peak search pileup recovery algorithm…………………………………………………………..... 60 4.4.1.5 First derivative with matrix division pileup recovery algorithm......... 61 4.4.1.6 Comparison between the algorithms………………………….......... 62 4.4.2 Dead time correction algorithm due to radiation detector……….……………. 62 4.5 Spectrum Drawing and Evaluation Flow…...…………………………………………. 64 4.6 Energy Calibration……………………………………………………………………. 65 4.7 Activity Measurements……………………………………………………………….. 66 CHAPTER (5) DIGITAL GAMMA-RAY SPECTROSCOPY RESULTS 5.1 Introduction………………………………………………………………………….... 67 5.2 Signal Preprocessing Results…………………………………………………………. 68 5.2.1 Background correction result...………………………………………………... 68 5.2.2 Smoothing algorithm result..………………………………………………….. 68 5.2.3 Noise removal result using wavelet transform……………..…………………. 69 5.3 Problems Correction of Gamma-Ray Spectroscopy………………………………….. 71 5.3.1 Pileup recovery and correction results………………………………………... 71 5.3.2 Pileup recovery using hypothetical signal……………………………………. 72 viii CONTENTS 5.3.2.1 Direct search algorithm result …... ………………………………….. 72 5.3.2.2 Least square fitting algorithm result…...……………………………. 74 5.3.2.3 First derivative with maximum peak search algorithm result………. 76 5.3.2.4 First derivative with matrix division algorithm result………………. 77 5.3.2.5 Gaussian noise handling……………………………………………. 79 5.3.2.6 Registration and rejection of the peak height………………………. 80 5.3.2.7 Comparison between the algorithms and discussion for hypothetical signal………………........................................................................... 80 5.3.3 Experimental comparison among pileup recovery algorithms for digital gamma-ray spectroscopy……………………………………………………… 83 5.3.3.1 Direct search algorithm result…...……………………………….. 83 5.3.3.2 Least square fitting algorithm result………..……………………. 84 5.3.3.3 First derivative with maximum peak search algorithm result……. 86 5.3.3.4 Comparison between algorithms and discussion for real signal…. 88 5.3.4 Dead time correction results due to radiation detector………………………... 89 5.4 Spectrum Drawing and Evaluation Results…………………………………………... 90 5.4.1 Spectrum of 137 Cs……………………………………………………………... 90 5.4.2 Spectrum of 60 Co……………………………………………………………… 91 5.4.3 Effect of pileup recovery algorithms on spectrum evaluation………………... 93 5.4.4 The Compton interaction……………………………………………………... 96 5.5 Energy Calibration Results…………………………………………………………… 97 5.6 Activity Measurement Results………………………………………………………... 98 CHAPTER (6) CONCLUSION 6.1 Conclusion……………………………….……………………………………………. 99 6.2 Future Work…………………………………………………………………………... 101 References …………………………………………………………………………………...... 102 List of Publications ……………………………………………………………………………