Supplement 2002 04

Total Page:16

File Type:pdf, Size:1020Kb

Supplement 2002 04 HMI-B 5xx Annual Report2002 Supplement tothe Invited Lectures HMI, Annual Report 2002 Supplement to the Annual Report 2002 Berlin 2003 Annual Report 2002 A 1 HMI, Annual Report 2002 Supplement Index Publications .......................................................................................................... A 3 SF – Structure and Dynamics in Condensed Matter ........................................................... A 4 SE – Solar Energy Research............................................................................................ A 24 HAD – Information Technology ........................................................................................ A 35 Conference Contributions ................................................................................. A 37 SF – Structure and Dynamics in Condensed Matter ......................................................... A 38 SE – Solar Energy Research............................................................................................ A 64 HAD – Information Technology ........................................................................................ A 78 Invited Lectures .................................................................................................. A 79 SF – Structure and Dynamics in Condensed Matter ......................................................... A 80 SE – Solar Energy Research............................................................................................ A 87 HAD – Information Technology ........................................................................................ A 92 Patents and Patent Applications ...................................................................... A 93 Academic Education........................................................................................... A 95 Appointments and Awards ..................................................................................................... A 101 Participation in External Scientific Bodies and Committees ................................................. A 102 Organization of Conferences and Meetings ........................................................................... A 104 Contributions to Exhibitions / Fairs / Events ......................................................................... A 106 Guests ..................................................................................................................................... A 107 Co-operation Partners ............................................................................................................. A 110 External Funding...................................................................................................................... A 121 Supplement, Annual Report 2002 Editor Hahn-Meitner-Institut Berlin GmbH Glienicker Str. 100 D-14109 Berlin (Wannsee) Co-ordination: Dr. Klaus Möhring Phone: (030) 8062-2763 Fax: (030) 8082 2047 E-mail: [email protected] A 2 Annual Report 2002 HMI, Annual Report 2002 Publications Publications Annual Report 2002 A 3 HMI, Annual Report 2002 SF – Structure and Dynamics Fritzsche, H.; Bonn, S.; Hauschild, J.; Klenke, J.; Prokes, K.; McIntyre, G. J. in Condensed Matter Antiferromagnetic order of thin epitaxial Cr layers in an Fe/Cr(110) multilayer Phys. Rev. B 65 (2002) 144408 SF – BENSC Fritzsche, H.; Temst, K.; Van Bael, M. J. Off-specular polarized neutron reflectometry from a periodic array of Co disks SF1.BENSC Appl. Phys. A 74 [Suppl.] (2002) 1535 Beirne, E.D.; McEwen, K.A.; Habicht, K.; Fort, D. Gierlings, M.; Prandolini, M.; Fritzsche, H.; Gruyters, Magnetic Excitations in Single Crystal PrNiSn M.; Riegel, D. Appl. Phys. Change and asymmetry of magnetization A 74 (2002) 910 reversal for a Co/CoO exchange-bias system Phys. Rev. Bonn, S.; Fritzsche, H.; Hauschild, J.; Klenke, J.; B 65 (2002) 092407 Maletta, H. Spin density waves of thin epitaxial Cr(110) Gutberlet, T.; Steitz, R.; Howse, J.; IEstrela-Lopis, I.; layers in a V/Cr multilayer Klösgen, B. Appl. Phys. Hybrid biomembrane substructure A 74 [Suppl.] (2002) 932 determination by contrast variation analysis Appl. Phys. Branca, C.; Faraone,A.; Magazu', S.; Maisano, G.; A 74 (2002) 1262 Mangione, A.; Pappas, C.; Triolo A.: Characterization of trehalose aqueous solutions Hauschild, J.; Fritzsche, H.; Bonn, S.; Liu, Y. by neutron spin echo Determination of the temperature dependence of Appl Phys the coercivity in Fe/Cr(110) multilayers A 74 (2002) [Suppl1] 461 Appl. Phys. A 74 [Suppl.] (2002) 1541 Cavadini, N.; Rüegg, Ch.; Furrer, A.; Güdel, H.U.; Krämer, K.; Mutka, H.; Vorderwisch, P. Howse, J.; Manzanares-Papayanopolous, E.; Triplet excitations in low-HC spin gap systems McLure, I.A.; Bowers, J.; Steitz, R.; Findenegg,G.H. KCuCl3 and TlCuCl3 – a neutron study Critical Adsorption and Boundary Layer Phys. Rev. Structure of 2-Butoxyethanol + D2O Mixtures at B 65 (2002) 132415-1 – 132415-4 a Hydrophilic Silica Surface J. Chem. Phys. Chatterji, T.; Schneider, R.; Hoffmann, J.-U.; 116 (2002) 7177 Hohlwein, D.; Suryanarayanan, R.; Dhalenne, G.; Revcolevschi, A. Jackler, G.; Steitz, R.; Czeslik, C. Diffuse magnetic scattering above TC in quasi- Effect of Temperature on the Adsorption of two-dimensional La1.2Sr1.8Mn2O7 Lysozyme at the Silica/Water Interface Studied Phys. Rev. by Optical and Neutron Reflectometry B 65, no.13 (2002) 134440/1-6 Langmuir 18 (2002) 6565 Coldea, R.; Tennant, D.A.; Habicht, K., Smeibidl, P.; Tylczynski, Z. Kaisermayr, M.; Rennhofer, M.; Vogl, G.; Pappas, Full ferromagnetic saturation of a 2D quantum C.; Longeville, S.: antiferromagnet Neutron spin-echo spectroscopy for diffusion in Appl. Phys. crystalline solids A74 (2002) 904 Phys. Rev. B 66 (2002) 024302/1-7. Coldea, R.; Tennant, D.A; Habicht, K.; Smeibidl, P.; Wolters, C.; Tylczynski, Z. Kaisermayr, M.; Sepiol, B.; Combet, J.; Ruffer, R.; Direct measurement of the spin Hamiltonian and Pappas, C.; Vogl, G.: observation of condensation of magnons in the Diffusion in solids studied by nuclear resonant 2D frustrated quantum magnet Cs2CuCl4 X-ray and neutron scattering. Phys. Rev. Lett. J. of Sync. Rad. 88 (2002) 137203 9 (2002) 210 Ehlers, G.; Ritter, C.; Schneider, R.; Knorr, Keller, T.; Habicht, K., Klann, H.; Ohl, M.; K.;Maletta, H. Schneider, H.; Keimer, B. Pressure-induced change of magnetic order in The NRSE-TAS spectrometer at the FRM-2 Tb1-xYxNiAl and TbNi1-xCuxAl Appl. Phys. Appl. Phys. A 74 (2002) 332 A 74 (2002) 619-621 A 4 Annual Report 2002 HMI, Annual Report 2002 Publications Keller, T.; Rekveldt, M.T.; Habicht, K. Spin dynamics in the high-field phase of Neutron Larmor diffration measurement of the quantum-critical S=1/2TICuCl3 lattice-spacing spread of pyrolytic graphite Appl. Phys. Appl. Phys. A 74(Supp.) (2002) 840-842. A74 (2002) 127 Sedev, R; Steitz, R.; Findenegg, G.H. Lake, B.; Roennow, H.M.; Christensen, N.B.; Aeppli, The structure of PEO-PPO-PEO triblock G.; Lefmann, K.; McMorrow, D.F.; Vorderwisch, P.; copolymers at the water/air interface Smeibidl, P.; Mangkorntong, N.; Sagawa, T.; Physica B: Condens. Matter Nohara, M.; Takagi, H.; Mason, T.E. 315 (2002) 267 Field-induced antiferromagnetism in a high- temperature superconductor Svoboda, P.; Vejpravová, J.; Rotter, M.; Doerr, M.; Nature Loewenhaupt, M.; Hofmann, M.; Schneider, R. 415 (2002) 299-302 Complex magnetic phase diagram of TmCu2 Appl. Phys. Mangin, S.; Montaigne, F.; Bellouard, C.; Fritzsche, A 74 (2002) 748-750 H. Study of magnetic configurations in exchange- Temst, K.; Van Bael, M. J.; Moshchalkov, V. V.; coupled bilayers by polarized neutron Bruynseraede, Y.; Fritzsche, H.; Jonckheere, R. reflectometry Off-specular polarized neutron reflectometry Appl. Phys. study of magnetic dots with a strong shape A 74 [Suppl.] (2002) 631 anisotropy Appl. Phys. Mastoraki, I.; Lappas, A.; Schneider, R.; A 74 [Suppl.] (2002) 1538 Giapintzakis, J. Spin-gap and antiferromagnetic correlations in Treimer W.; Strobl M.; Hilger A. low-dimensional PbNi2-xAxV2O8 compounds(A= Observation of Edge Diffraction with a Double Mg, Co) Crystal Diffractometer Appl. Phys. Cryst. Res. Technol. A 74 (2002) 640-642 37 (2002) 727–733. Ono, M.; Habicht, K.; Keller, T. Treimer W.; Strobl M.; Hilger A. Neutron Larmor Diffraction measurement of the Thermal neutron optical experiments with strain in the ductile composite Al2O3/Y2Al5O12 tuneable many-bounce channel-cut crystals (YAG) Appl. Phys. Appl. Phys A75 (2002) 1–3. A74 (2002) 73 Treimer W.; Strobl M.; Hilger A. Peters J.; Treimer W. Observation of edge refraction in ultra small On the influence of external forces on the Bloch angle neutron scattering wall thickness in a nickel single crystal Phys. Lett. A. Journal of Magnetism and Magnetic Materials 303 (2002) 87 – 92 241 (2002) 240 – 248. Yermakov, A.A.; Schneider, R.; Baranov, N.V. Peters, J.; Treimer, W. Effect of magnetic field on the itinerant Co- On the influence of external forces on the Bloch subsystem in Ho0.423Y0.577Co2 wall thickness in a Nickel Single Crystal. Appl. Phys. J. Magn. Magn. Mater. A 74 (2002) 667-669 241 (2002) 240 – 248 Pynn, R.; Fitzsimmons, M. R.; Rekveldt, M. T.; SF2.BENSC Major, J.; Fritzsche, H.; Weller, D.; Johns, E. C. Optimization of neutron scattering Baszynski, J.; Tolinski, T.; Idzikowski, B.; Többens, instrumentation using neutron spin echo: D. M.; Hoser, A. application to the discrimination of diffuse Structural effects of grinding on La0.7 Sr0.3MnO3 scattering in neutron reflectivity experiments ceramic studied by neutron diffraction. Rev. Sci. Instrum. Journal of Alloys and Compounds 73 (2002)
Recommended publications
  • Neutron Instrumentation
    Neutron Instrumentation Oxford School on Neutron Scattering 5th September 2019 Ken Andersen Summary • Neutron instrument concepts – time-of-flight – Bragg’s law • Neutron Instrumentation – guides – monochromators – shielding – detectors – choppers – sample environment – collimation • Neutron diffractometers • Neutron spectrometers 2 The time-of-flight (TOF) method distance Δt time Diffraction: Bragg’s Law Diffraction: Bragg’s Law Diffraction: Bragg’s Law Diffraction: Bragg’s Law Diffraction: Bragg’s Law Diffraction: Bragg’s Law λ = 2d sinθ Diffraction: Bragg’s Law λ = 2d sinθ 2θ Reflection: Snell’s Law incident reflected n=1 θ θ’ refracted n’<1 Reflection: Snell’s Law incident reflected n=1 θ θ’ refracted θ’=0: critical angle of total n’<1 reflection θc Reflection: Snell’s Law incident reflected n=1 θ θ’ refracted θ’=0: critical angle of total n’<1 reflection θc cosθc = n' n = n' Nλ2b n' = 1− ⇒ θc = λ Nb/π 2π ≈ − 2 cosθc 1 θc 2 Reflection: Snell’s Law incident reflected n=1 θ θ’ refracted θ’=0: critical angle of total n’<1 reflection θc cosθc = n' n = n' 2 for natural Ni, Nλ b n' = 1− ⇒ θc = λ Nb/π 2π θc = λ[Å]×0.1° cosθ ≈ 1− θ2 2 c c -1 Qc = 0.0218 Å Neutron Supermirrors Courtesy of J. Stahn, PSI Neutron Supermirrors Courtesy of J. Stahn, PSI Neutron Supermirrors Courtesy of J. Stahn, PSI Neutron Supermirrors λ Reflection: θc(Ni) = λ[Å] × 0.10° c λ 1 Multilayer: θc(SM) = m × λ[Å] × 0.10° λ 2 λ 3 λ 4 } d 1 } d 2 } d3 } d4 18 Neutron Supermirrors λ Reflection: θc(Ni) = λ[Å] × 0.10° c λ 1 Multilayer: θc(SM) = m × λ[Å] × 0.10° λ 2
    [Show full text]
  • Neutron Spin Echo Spectroscopy
    Neutron Spin Echo Spectroscopy Peter Fouquet [email protected] Institut Laue-Langevin Grenoble, France Oxford Neutron School 2017 What you are supposed to learn in this tutorial 1. The length and time scales that can be studied using NSE spectroscopy 2. The measurement principle of NSE spectroscopy 3. Discrimination techniques for coherent, incoherent and magnetic dynamics 4. To which scientific problems can I apply NSE spectroscopy? NSE-Tutorial Mind Map Quantum Mechanical Model Resonance Spin-Echo Classical Model Measurement principle “4-point Echo” NSE spectroscopy Instrument Frustrated Components Magnets Bio- molecules Time/Space Map NSE around Surface the globe Diffusion Science Cases Paramagnetic Spin Echo Experiment planning and Interpretation Diffusion Glasses Polymers Models Coherent and Incoherent Scattering Data Treatment The measurement principle of neutron spin echo spectroscopy (quantum mechanical model) • The neutron wave function is split by magnetic fields • The 2 wave packets arrive at magnetic coil 1 magnetic coil 2 polarised sample the sample with a time neutron difference t • If the molecules move between the arrival of the first and second wave packet then coherence is lost • The intermediate scattering t λ3 Bdl function I(Q,t) reflects this ∝ loss in coherence strong wavelength field integral dependence Return The measurement principle of neutron spin echo spectroscopy Dynamic Scattering NSE spectra for diffusive motion Function S(Q,ω) G(R,ω) I(Q,t) = e-t/τ Fourier Transforms temperature up ⇒ τ down Intermediate VanHove
    [Show full text]
  • High Resolution Spectroscopy with the Neutron Resonance Spin Echo Method
    High Resolution Spectroscopy with the Neutron Resonance Spin Echo Method vorgelegt von Diplom-Physiker Felix Groitl aus Erlangen von der Fakultät II - Mathematik und Naturwissenschaften der Technischen Universität Berlin zur Erlangung des akademischen Grades Doktor der Naturwissenschaften Dr. rer. nat. genehmigte Dissertation Promotionsausschuss: Vorsitzender: Prof. Dr. M. Kneissl Gutachter: Prof. Dr. D. A. Tennant Gutachter: Prof. Dr. P. Böni Gutachter: Dr. K. Habicht Tag der wissenschaftlichen Aussprache: 18.12.2012 Berlin 2013 D 83 Abstract The first part of this thesis is dedicated to explore new territory for high resolution Neu- tron Resonance Spin Echo (NRSE) spectroscopy beyond measuring lifetimes of elementary excitations. The data analysis of such experiments requires a detailed model for the echo amplitude as a function of correlation time. The model also offers guidance for planning NRSE experiments in terms of a sensible choice of parameters and allows predicting quan- titatively the information content of NRSE spectroscopy for line shape analysis or energy level separation. Major generalizations of the existing formalism, developed in this thesis, allow for violated spin echo conditions, arbitrary local gradient components of the dispersion surface and detuned parameters of the background triple axis spectrometer (TAS) giving rise to important additional depolarizing effects, which have been neglected before. Fur- thermore, the formalism can now be applied to any crystal symmetry class. The model was successfully tested by experiments on phonons in a high quality single crystal of Pb and the results demonstrate the stringent necessity to consider second order depolarization effects. The formalism was subsequently extended to analyze mode doublets. As a major step for- ward, detuning effects for both modes are taken into account here.
    [Show full text]
  • Experimental Γ Ray Spectroscopy and Investigations of Environmental Radioactivity
    Experimental γ Ray Spectroscopy and Investigations of Environmental Radioactivity BY RANDOLPH S. PETERSON 216 α Po 84 10.64h. 212 Pb 1- 415 82 0- 239 β- 01- 0 60.6m 212 1+ 1630 Bi 2+ 1513 83 α β- 2+ 787 304ns 0+ 0 212 α Po 84 Experimental γ Ray Spectroscopy and Investigations of Environmental Radioactivity Randolph S. Peterson Physics Department The University of the South Sewanee, Tennessee Published by Spectrum Techniques All Rights Reserved Copyright 1996 TABLE OF CONTENTS Page Introduction ....................................................................................................................4 Basic Gamma Spectroscopy 1. Energy Calibration ................................................................................................... 7 2. Gamma Spectra from Common Commercial Sources ........................................ 10 3. Detector Energy Resolution .................................................................................. 12 Interaction of Radiation with Matter 4. Compton Scattering............................................................................................... 14 5. Pair Production and Annihilation ........................................................................ 17 6. Absorption of Gammas by Materials ..................................................................... 19 7. X Rays ..................................................................................................................... 21 Radioactive Decay 8. Multichannel Scaling and Half-life .....................................................................
    [Show full text]
  • LCLS: the First Experiments
    LCLS THE FIRST EXPERIMENTS September 2000 ii Table of Contents First Scientific Experiments for the LCLS .....................................................v Atomic Physics Experiments ..........................................................................1 Plasma and Warm Dense Matter Studies......................................................13 Structural Studies on Single Particles and Biomolecules .............................35 Femtochemistry.............................................................................................63 Studies of Nanoscale Dynamics in Condensed Matter Physics....................85 X-ray Laser Physics ....................................................................................101 Appendix 1: Committee Members..............................................................113 iii iv First Scientific Experiments for the LCLS The Scientific Advisory Committee (SAC) for the Linac Coherent Light Source (LCLS) has selected six scientific experiments for the early phase of the project. The LCLS, with proposed construction in the 2003-2006 time frame, has been designed to utilize the last third of the existing Stanford Linear Accelerator Center (SLAC) linac. The linac produces a high-current 5- 15 GeV electron beam that is bunched into 230 fs slices with a 120 Hz repetition rate. When traveling through a sufficiently long (of order of 100 m) undulator, the electron bunches will lead to self amplification of the emitted x-ray intensity constituting an x-ray free electron laser (XFEL). If funded as proposed, the LCLS will be the first XFEL in the world, operating in the 800-8,000 eV energy range. The emitted coherent x-rays will have unprecedented brightness with 1012-1013 photons/pulse in a 0.2-0.4% energy bandpass and an unprecedented time structure with a design pulse length of 230 fs. Studies are under way to reduce the pulse length to tens of femtoseconds. This document presents descriptions of the early scientific experiments selected by SAC in the spring of 2000.
    [Show full text]
  • Neutron Spin Echo Spectroscopy
    Neutron Spin Echo Spectroscopy Catherine Pappas TU Delft uncluding slides and animations from R. Gähler, R. Cywinski, W. Bouwman Berlin Neutron School - 30.3.09 from the source to the detector sample and source moderator PSΕ ΙΝ sample environment PSE OUT detector Neutron flux φ = Φ η dE dΩ / 4π source flux intensity field of neutron distribution losses instrumentation definition of the beam : Q, E and polarisation Berlin Neutron School - 30.3.09 Neutron Spin Echo why ? very high resolution how ? using the transverse components of beam polarization Larmor precession Berlin Neutron School - 30.3.09 Neutron Spin Echo I: polarized neutrons - Larmor precession II: NSE : Larmor precession III: NSE : semi-classical description IV: movies V: quantum mechanical approach VI: examples VII: NSE and structure Berlin Neutron School - 30.3.09 Neutron Spin Echo I: polarized neutrons - Larmor precession II: NSE : classical description III: NSE : quantum mechanical description IV: movies V: NSE and coherence VI: exemples VII: NSE and structure Berlin Neutron School - 30.3.09 Polarized Neutrons ๏ polarizer ๏ analyzer magnetic field (guide - precession) magnetic field Neutron Neutron source polarizer B P analyzer detector flipper sample Berlin Neutron School - 30.3.09 Longitudinal polarization analysis Why longitudinal ???? after F. Tasset because we apply a magnetic field and measure the Berlinprojection Neutron School of - 30.3.09 the polarization vector along this field Larmor Precession Motion of the polarization of a neutron beam in a magnetic field dµ = γ (µ
    [Show full text]
  • Nuclear Engineering and Technology 49 (2017) 1489E1494
    Nuclear Engineering and Technology 49 (2017) 1489e1494 Contents lists available at ScienceDirect Nuclear Engineering and Technology journal homepage: www.elsevier.com/locate/net Original Article Large-volume and room-temperature gamma spectrometer for environmental radiation monitoring * Romain Coulon , Jonathan Dumazert, Tola Tith, Emmanuel Rohee, Karim Boudergui CEA, LIST, F-91191 Gif-sur-Yvette Cedex, France article info abstract Article history: The use of a room-temperature gamma spectrometer is an issue in environmental radiation monitoring. Received 29 April 2016 To monitor radionuclides released around a nuclear power plant, suitable instruments giving fast and Received in revised form reliable information are required. High-pressure xenon (HPXe) chambers have range of resolution and 15 May 2017 efficiency equivalent to those of other medium resolution detectors such as those using NaI(Tl), CdZnTe, Accepted 4 June 2017 and LaBr :Ce. An HPXe chamber could be a cost-effective alternative, assuming temperature stability and Available online 3 July 2017 3 reliability. The CEA LIST actively studied and developed HPXe-based technology applied for environ- mental monitoring. Xenon purification and conditioning was performed. The design of a 4-L HPXe de- Keywords: Xenon tector was performed to minimize the detector capacitance and the required power supply. Simulations fi Spectrometry were done with the MCNPX2.7 particle transport code to estimate the intrinsic ef ciency of the HPXe Environmental detector. A behavioral study dealing with ballistic deficits and electronic noise will be utilized to provide Detector perspective for further analysis. Radiation © 2017 Korean Nuclear Society, Published by Elsevier Korea LLC. This is an open access article under the Ionization chamber CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
    [Show full text]
  • 19 International Workshop on Low Temperature Detectors
    19th International Workshop on Low Temperature Detectors Program version 1.24 - Moscow Standard Time 1 Date Time Session Monday 19 July 16:00 - 16:15 Introduction and Welcome 16:15 - 17:15 Oral O1: Devices 1 17:15 - 17:25 Break 17:25 - 18:55 Oral O1: Devices 1 (continued) 18:55 - 19:05 Break 19:05 - 20:00 Poster P1: MKIDs and TESs 1 Tuesday 20 July 16:00 - 17:15 Oral O2: Cold Readout 17:15 - 17:25 Break 17:25 - 18:55 Oral O2: Cold Readout (continued) 18:55 - 19:05 Break 19:05 - 20:30 Poster P2: Readout, Other Devices, Supporting Science 1 22:00 - 23:00 Virtual Tour of NIST Quantum Sensor Group Labs Wednesday 21 July 16:00 - 17:15 Oral O3: Instruments 17:15 - 17:25 Break 17:25 - 18:55 Oral O3: Instruments (continued) 18:55 - 19:05 Break 19:05 - 20:30 Poster P3: Instruments, Astrophysics and Cosmology 1 20:00 - 21:00 Vendor Exhibitor Hour Thursday 22 July 16:00 - 17:15 Oral O4A: Rare Events 1 Oral O4B: Material Analysis, Metrology, Other 17:15 - 17:25 Break 17:25 - 18:55 Oral O4A: Rare Events 1 (continued) Oral O4B: Material Analysis, Metrology, Other (continued) 18:55 - 19:05 Break 19:05 - 20:30 Poster P4: Rare Events, Materials Analysis, Metrology, Other Applications 22:00 - 23:00 Virtual Tour of NIST Cleanoom Tuesday 27 July 01:00 - 02:15 Oral O5: Devices 2 02:15 - 02:25 Break 02:25 - 03:55 Oral O5: Devices 2 (continued) 03:55 - 04:05 Break 04:05 - 05:30 Poster P5: MMCs, SNSPDs, more TESs Wednesday 28 July 01:00 - 02:15 Oral O6: Warm Readout and Supporting Science 02:15 - 02:25 Break 02:25 - 03:55 Oral O6: Warm Readout and Supporting
    [Show full text]
  • Supplement to The
    Hahn-Meitner-Institut Berlin Supplement to the Annual Report 2001 Berlin 2002 Supplement Index Publications 3 Structural Research 4 Solar Energy Research 21 Information Technology 30 Conference Contributions / Invited Lectures 31 Structural Research 32 Solar Energy Research 62 Information Technology 77 Technology Transfer / Patents 79 Academic Education 83 Courses 84 Exams 87 Co-operation Partners and Guests 89 Structural Research 90 Solar Energy Research 99 Information Technology 103 External Funding 105 Structural Research 106 Solar Energy Research 108 Participation in External Scientific Bodies and Committees 111 Miscellaneous 115 Awards / Exhibitions / Fairs / Organization of Conferences and Meetings / Events 1. Edition June 2002 Supplement of the Annual Report 2001 HMI-B 585 Hahn-Meitner-Institut Berlin GmbH Glienicker Str. 100 D-14109 Berlin (Wannsee) Coordination: Maren Achilles Phone: +49 – (0)30 – 8062 2668 Fax: +49 – (0)30 – 8062 2047 E-mail: [email protected] A 2 HMI Annual Report 2001 Publications 2001 Publications HMI Annual Report 2001 A 3 Publications 2001 Structural Research Department SF1 Pappas, C.; Kischnik, R.; Mezei, F. Wide angle NSE : the spectrometer SPAN at Instruments and Methods BENSC Physica B 297 (2001) 14-17 Pappas, C.; Mezei, F. Reviewed Publications How to achieve high intensity in NSE spectros- copy? BENSC-Activities Proceedings of the ILL Millenium Workshop, 2001, p.318 Ehlers, G.; Farago, B;. Pappas, C; Mezei, F. A new IN11 with an almost 35 times higher Peters, J.; Treimer, W. counting rate than that of IN11C Bloch walls in a nickel single crystal Proceedings of the ILL Millenium Workshop, 2001 p. Phys. Rev. B 64 (2001) 214415 – 214422 316 Scheffer, M.; Rouijaa, M.; Suck, J.-B.; Sterzel, R.; Fitzsimmons, M.
    [Show full text]
  • Gamma Ray Spectroscopy
    Gamma Ray Spectroscopy Ian Rittersdorf Nuclear Engineering & Radiological Sciences [email protected] March 20, 2007 Rittersdorf Gamma Ray Spectroscopy Contents 1 Abstract 3 2 Introduction & Objectives 3 3 Theory 4 3.1 Gamma-Ray Interactions . 5 3.1.1 Photoelectric Absorption . 5 3.1.2 Compton Scattering . 6 3.1.3 Pair Production . 8 3.2 Detector Response Function . 9 3.3 Complications in the Response Function . 11 3.3.1 Secondary Electron Escape . 11 3.3.2 Bremsstrahlung Escape . 12 3.3.3 Characteristic X-Ray Escape . 12 3.3.4 Secondary Radiations Created Near the Source . 13 3.3.5 Effects of Surrounding Materials . 13 3.3.6 Summation Peaks . 14 3.4 Semiconductor Diode Detectors . 15 3.5 High Purity Germanium Semiconductor Detectors . 17 3.5.1 HPGe Geometry . 18 3.6 Germanium Detector Setup . 18 3.7 Energy Resolution . 19 3.8 Background Radiation . 20 4 Equipment List 21 5 Setup & Settings 21 6 Analysis 23 6.1 Prominent Peak Information . 24 6.2 Calibration Curve . 24 6.3 Experiment Part 6 – 57Co ............................ 26 6.4 Experiment Part 6 – 60Co ............................ 28 6.5 Experiment Part 6 – 137Cs............................ 29 6.6 Experiment Part 6 – 22Na ............................ 31 6.7 Experiment Part 6 – 133Ba............................ 32 6.8 Experiment Part 6 – 109Cd............................ 34 6.9 Experiment Part 6 – 54Mn............................ 35 6.10 Energy Resolution . 37 6.11 Background Analysis . 39 1 Rittersdorf Gamma Ray Spectroscopy 7 Conclusions 43 Appendices i A 57Co Decay Scheme i B 60Co Decay Scheme ii C 137Cs Decay Scheme iii D 22Na Decay Scheme iv E 133Ba Decay Scheme v F 109Cd Decay Scheme vi G 54Mn Decay Scheme vii H HPGe Detector Apparatus viii I Raw Gamma-Ray Spectra ix References ix 2 Rittersdorf Gamma Ray Spectroscopy 1 Abstract In lab, a total of eight spectra were measured.
    [Show full text]
  • CALENDAR 2011 Sydney.Edu.Au/Calendar Calendar 2011 Calendar 2011
    CALENDAR 2011 sydney.edu.au/calendar Calendar 2011 Calendar 2011 The Arms of the University Sidere mens eadem mutato Though the constellations change, the mind is universal The Arms Numbering of resolutions The following is an extract from the document granting Arms to the Renumbering of resolutions is for convenience only and does not University, dated May 1857: affect the interpretation of the resolutions, unless the context otherwise requires. Argent on a Cross Azure an open book proper, clasps Gold, between four Stars of eight points Or, on a chief Gules a Lion passant guardant Production also Or, together with this motto "Sidere mens eadem mutato" ... to Web and Print Production, Marketing and Communications be borne and used forever hereafter by the said University of Sydney Website: sydney.edu.au/web_print on their Common Seal, Shields, or otherwise according to the Law of Arms. The University of Sydney NSW 2006 Australia The motto, which was devised by FLS Merewether, Second Vice- Phone: +61 2 9351 2222 Provost of the University, conveys the feeling that in this hemisphere Website: sydney.edu.au all feelings and attitudes to scholarship are the same as those of our CRICOS Provider Code: 00026A predecessors in the northern hemisphere. Disclaimer ISSN: 0313-4466 This publication is copyright and remains the property of the University ISBN: 978-1-74210-173-6 of Sydney. This information is valid at the time of publication and the University reserves the right to alter information contained in the Calendar. Calendar 2010 ii Contents
    [Show full text]
  • Detecting, Monitoring, and Sampling Hazardous Materials
    Analyzing the Incident: Detecting, Monitoring, and Sampling Hazardous Materials Chapter Contents Exposure .......................................161 Thermal Imagers .......................................................188 Routes of Entry ..........................................................161 Infrared Thermometers .............................................188 Contamination versus Exposure ...............................162 Other Detection Devices .....................189 Acute versus Chronic Exposure ................................163 Halogenated Hydrocarbon Meters ............................189 Radiological and Biological Exposures ...164 Flame Ionization Detectors ........................................190 Exposure Limits .........................................................164 Gas Chromatography .................................................190 Radiological Exposures .............................................168 Mass Spectroscopy ...................................................191 Biological Exposures .................................................169 Ion Mobility Spectrometry ........................................192 Sensor-Based Instruments and Surface Acoustic Wave ..............................................192 Other Devices ...............................170 Gamma-Ray Spectrometer ........................................193 Oxygen Indicators .....................................................170 Fourier Transform IR .................................................194 Combustible Gas Indicators
    [Show full text]