Sequence Diversity Within the Three Agents of Groundnut Rosette Disease
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Quarantine Regulation for Importation of Plants
Quarantine Requirements for The Importation of Plants or Plant Products into The Republic of China Bureau of Animal and Plant Health Inspection and Quarantine Council of Agriculture Executive Yuan In case of any discrepancy between the Chinese text and the English translation thereof, the Chinese text shall govern. Updated November 26, 2009 更新日期:2009 年 12 月 16 日 - 1 - Quarantine Requirements for The Importation of Plants or Plant Products into The Republic of China A. Prohibited Plants or Plant Products Pursuant to Paragraph 1, Article 14, Plant Protection and Quarantine Act 1. List of prohibited plants or plant products, countries or districts of origin and the reasons for prohibition: Plants or Plant Products Countries or Districts of Origin Reasons for Prohibition 1. Entire or any part of the All countries and districts 1. Rice hoja blanca virus following living plants (Tenuivirus) (excluding seeds): 2. Rice dwarf virus (1) Brachiaria spp. (Phytoreovirus) (2) Echinochloa spp. 3. Rice stem nematode (3) Panicum spp. (Ditylenchus angustus (4) Paspalum spp. Butler) (5) Oryza spp., Leersia hexandra, Saccioleps interrupta (6) Rottboellia spp. (7) Triticum aestivum 2. Entire or any part of the Asia and Pacific Region West Indian sweet potato following living plants (1) Palau weevil (excluding seeds) (2) China (Euscepes postfasciatus (1) Calystegia spp. (3) Cook Islands Fairmaire) (2) Dioscorea japonica (4) Federated States of Micronesia (3) Ipomoea spp. (5) Fiji (4) Pharbitis spp. (6) Guam (7) Kiribati (8) New Caledonia (9) Norfolk Island -
Groundnut Viral Diseases in West Africa
I 1 .. I? ?' GROUNDNUT VIRAL DISEASES IN WEST AFRICA DOLLET Michel*, DUBERN Jean**, FAUQUET Claude***, THOUVENEL Jean-Claude***,and BOCKELEE-MORVAN André**** Respectively : *IRHO/CIRAD, **ORSTOM/CIRAD, BP 5035, 34032 Montpellier, France. *** ORSTOM, BP V 51, Abidjan, Côte d'Ivoire ; all members of the LPRC (CIRAD/ INRA/ORSTOM), Laboratoire de Phytovirologie des Régions Chaudes. **** Division Oléagineux Annuels, IRHO/CIRAD, 11 Square Pétrarque, 75116 Paris', France. Introduction . The groundnut which is one of the most popular legume grown in West Africa, is naturally infected by a Large number of virus. or virus-like diseases. It is one of the most severely-infected tropical plants in number of viral diseases. Some of them were studied and viruses identified : Peanut clump virus (Thouvenel et al., 19761, Groundnut eye spot virys (Dubern' and Dollet, 19801, Groundnut crinkle virus (Dubern and Dollet, 19811, Groundnut rosette virus (Dubern, 19801, Tomato spotted wiIt virus (Dubern and Fauquet, 1985) and Groundnut chlorotic spotting virus (Fauquet et al., 19851. The most important properties according to differe'nt aspects are reported.' Some other diseases are only described in parts : Groundnut streak (Fauquet and Thouvenel, 19-35), Groundnut mosaic, Groundnut f Lecking and Groundnut golden diseases (Dubern, 1979). There are also , different symptoms!wKich could be attributed to viral diseases as rugose leaf, Groundnut leaf-curl, Groundnut bushy stunt ; their etiology is at present unknown. 9 t 2 6 - Peanut clump virus Peanut Clump Virus (PCV), R/1: 2.1/4: E/E: S/Fu. Intermediate between ,hordeivirus and tobamovirus groups (Furovirus ?l. Main disease and 'geographical distribution The disease reappears in the same place in succeeding crops. -
Groundnut Rosette Disease and Their Diagnosis a F Murant, D J Robinson, and M E Taliansky 5
Citation: Reddy, D.V.R., Delfosse, P., Lenne, J.M., and Subrahmanyam, P. (eds.) 1997. Groundnut virus diseases in Africa: summary and recommendations of the Sixth Meeting of the International Working Group, 18-19 Mar 1996, Agricultural Research Council, Plant Protection Research Institute, Pretoria, South Africa. (In En. Summaries in En, Fr, Pt) Patancheru 502 324, Andhra Pradesh, India: International Crops Research Institute for the Semi-Arid Tropics; and 1000 Brussels, Belgium: Belgian Administration for Development Cooperation. 64 pp. ISBN 92-9066-358-8. Order code: CPE 109. Abstract The International Working Group Meeting on groundnut viruses in Africa reviewed progress made on the detection, identification, characterization, and management of groundnut viruses in Africa, with special emphasis on rosette and clump viruses. Country representatives summarized the status of research on groundnut viruses in their countries. In order to accomplish integrated management of rosette and clump virus diseases, it was agreed that consolidated efforts should be made to understand their epidemiology. Among the important aspects discussed were the provision of diagnostic aids and training in the identifi cation and detection of viruses for the national agricultural research systems in Africa, and strengthening of laboratory facilities. Scientists from Burkina Faso, Kenya, Malawi, Nigeria, South Africa, and Zimbabwe, and from Bel gium, Germany, India, UK, and USA attended the meeting, which was the first gathering of so many plant virologists in -
Interaction of a Plant Virus-Encoded Protein with the Major Nucleolar Protein Fibrillarin Is Required for Systemic Virus Infection
Interaction of a plant virus-encoded protein with the major nucleolar protein fibrillarin is required for systemic virus infection Sang Hyon Kim†, Stuart MacFarlane†, Natalia O. Kalinina†‡, Daria V. Rakitina†‡, Eugene V. Ryabov§, Trudi Gillespie†, Sophie Haupt†, John W. S. Brown†, and Michael Taliansky†¶ †Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, United Kingdom; ‡A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119992, Russia; and §Horticulture Research International, University of Warwick, Wellesbourne, Warwick CV35 9EF, United Kingdom Communicated by Bryan D. Harrison, Scottish Crop Research Institute, Dundee, United Kingdom, May 17, 2007 (received for review April 4, 2007) The nucleolus and specific nucleolar proteins are involved in the life Umbraviruses have RNA genomes and differ from most other cycles of some plant and animal viruses, but the functions of these viruses in that they do not encode a coat protein (CP) and so do not proteins and of nucleolar trafficking in virus infections are largely produce conventional virus particles in infected plants (15, 16). unknown. The ORF3 protein of the plant virus, groundnut rosette Nevertheless, they accumulate and spread efficiently within the virus (an umbravirus), has been shown to cycle through the infected plant; their lack of a CP is compensated for by the ORF3 nucleus, passing through Cajal bodies to the nucleolus and then protein. This protein fulfils umbraviral functions that are normally exiting back into the cytoplasm. This journey is absolutely required provided by the CPs of other plant viruses, such as long-distance for the formation of viral ribonucleoprotein particles (RNPs) that, movement of viral RNA through the phloem (17, 18). -
The Ins and Outs of Nondestructive Cell-To-Cell and Systemic Movement of Plant Viruses
Critical Reviews in Plant Sciences, 23(3):195–250 (2004) Copyright C Taylor and Francis Inc. ISSN: 0735-2689 print / 1549-7836 online DOI: 10.1080/07352680490452807 The Ins and Outs of Nondestructive Cell-to-Cell and Systemic Movement of Plant Viruses Elisabeth Waigmann Max F. Perutz Laboratories, University Departments at the Vienna Biocenter, Institute of Medical Biochemistry, Medical University of Vienna, Dr. Bohrgasse 9 A-1030, Vienna, Austria Shoko Ueki Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, NY 11794-5215 Kateryna Trutnyeva Max F. Perutz Laboratories, University Departments at the Vienna Biocenter, Institute of Medical Biochemistry, Medical University of Vienna, Dr. Bohrgasse 9 A-1030, Vienna, Austria Vitaly Citovsky∗ Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, NY 11794-5215 Referee: Dr. Ernest Hiebert, Professor, Department of Plant Pathology, University of Florida/IFAS, P.O. Box 110680, 1541 Fifield Hall, Gainesville, FL 32611-0680, USA. Table of Contents 1. Introduction ..........................................................................................................................................................196 2. Structure and Composition of Plasmodesmata, the Intercellular Conduits for Viral Movement ..............................198 3. Cell-to-Cell Transport of Plant Viruses: Have Movement Protein, Will Travel ........................................................200 3.1. MP Structure: Are Common Functions Supported by -
Virus World As an Evolutionary Network of Viruses and Capsidless Selfish Elements
Virus World as an Evolutionary Network of Viruses and Capsidless Selfish Elements Koonin, E. V., & Dolja, V. V. (2014). Virus World as an Evolutionary Network of Viruses and Capsidless Selfish Elements. Microbiology and Molecular Biology Reviews, 78(2), 278-303. doi:10.1128/MMBR.00049-13 10.1128/MMBR.00049-13 American Society for Microbiology Version of Record http://cdss.library.oregonstate.edu/sa-termsofuse Virus World as an Evolutionary Network of Viruses and Capsidless Selfish Elements Eugene V. Koonin,a Valerian V. Doljab National Center for Biotechnology Information, National Library of Medicine, Bethesda, Maryland, USAa; Department of Botany and Plant Pathology and Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon, USAb Downloaded from SUMMARY ..................................................................................................................................................278 INTRODUCTION ............................................................................................................................................278 PREVALENCE OF REPLICATION SYSTEM COMPONENTS COMPARED TO CAPSID PROTEINS AMONG VIRUS HALLMARK GENES.......................279 CLASSIFICATION OF VIRUSES BY REPLICATION-EXPRESSION STRATEGY: TYPICAL VIRUSES AND CAPSIDLESS FORMS ................................279 EVOLUTIONARY RELATIONSHIPS BETWEEN VIRUSES AND CAPSIDLESS VIRUS-LIKE GENETIC ELEMENTS ..............................................280 Capsidless Derivatives of Positive-Strand RNA Viruses....................................................................................................280 -
Epidemiology of Groundnut Rosette Virus at Samaru, Northern Guinea Savanna of Nigeria
NIGBRIAN JOURNAL OJ' BNTOMOLOGY (2001) 18:95-102 Epidemiology of Groundnut Rosette Virus at Samaru, Northern Guinea Savanna of Nigeria. M. D. ALEGBEJO Department of Crop Protection, Institute for Agricultural.Research/Faculty of Agriculture, Ahmadu Bello University, P.M.B. 1044 Zaria, Nigeria. (A~pted 05 July, 2001) ABSTRACT Epidemiology of groundnut rosette virus (GRV) was investigated over a three - year period at Samaru, Northern Guinea Savanna of Nigeria. Significant positive correlations were obtained for the following: incidence of GRV andnumber of alate aphids trapped; temperature and age of plants; temperature and number of alate aphids trapped; relative humidity and incidence of GRV. Conversely, a significant negative correlation was obtained between age of plants and' number of alate aphids trapped; relative humidity and number of alate aphids trapped; and relative humidity and sunshine hours. Seventy percent of the aphids trapped were A. craccivora, while the proportion of A. jabae, A. gossypii and M. persicae were 15, 9 and 6%, respectively. The susceptible groundnut genotype, 48-1158, had the highest incidence of aphids and GRV disease, followed in descending order by the moderately resistant RRB and the resistant RMP91 genotypes. INTRODUCTION Groundnut rosette virus (GRV) is the most important factor limiting the production ofgroundnut (Arachis hypogaea L.) in Africa especially in Nigeria (Brunt and Bonney, 1964; Rossel, 1977; Alegbejo, 1997). It is transmitted persistently by Aphis craccivora Koch (Rossel, 1997; Misari et al., 1988), My'lJJS persicae Sulzer and Aphis gossypii Glover (Todd et al., 1993; Alegbejo, 2000a). An epidemic of the disease occurred in Nigeria in 1975 and destroyed an estimated 0.7 million hectares of groundnut (Yayock et al., 1976). -
Jiang J, Kuo YW, Salem N, Erickson A, Falk BW. 2021. Carrot Mottle
Research Carrot mottle virus ORF4 movement protein targets plasmodesmata by interacting with the host cell SUMOylation system Jun Jiang1 , Yen-Wen Kuo1 , Nida Salem2 , Anna Erickson1 and Bryce W. Falk1 1Department of Plant Pathology, University of California, Davis, CA 95616, USA; 2Department of Plant Protection, School of Agriculture, The University of Jordan, Amman 11942, Jordan Summary Author for correspondence: Plant virus movement proteins (MPs) facilitate virus spread in their plant hosts, and some of Bryce W. Falk them are known to target plasmodesmata (PD). However, how the MPs target PD is still Email: [email protected] largely unknown. Carrot mottle virus (CMoV) encodes the ORF3 and ORF4 proteins, which are involved in Received: 8 February 2021 CMoV movement. In this study, we used CMoV as a model to study the PD targeting of a plant virus MP. We showed that the CMoV ORF4 protein, but not the ORF3 protein, modified PD and led New Phytologist (2021) to the virus movement. We found that the CMoV ORF4 protein interacts with the host cell doi: 10.1111/nph.17370 small ubiquitin-like modifier (SUMO) 1, 2 and the SUMO-conjugating enzyme SCE1, result- ing in the ORF4 protein SUMOylation. Downregulation of mRNAs for NbSCE1 and NbSUMO Key words: Carrot mottle virus (CMoV), impaired CMoV infection. The SUMO-interacting motifs (SIMs) LVIVF, VIWV, and a lysine movement proteins (MPs), plasmodesmata residue at position 78 (K78) are required for the ORF4 protein SUMOylation. The mutation of (PD), small ubiquitin-like modifier (SUMO), these motifs prevented the protein to efficiently target PD, and further slowed or completely Umbravirus. -
Download (1MB)
International Arachis Newsletter Co-publishers Peanut CRSP ICRISAT Peanut Collaborative Research Support Program International Crops Research Institute for the Semi-Arid Tropics (http://www.griffln.pcachnet.edu/pnutcrsp.html) (http://www.cgiar.org/icrisat) A b o u t P e a n u t C R S P The Peanut Collaborative Research Support Program is an international program supported by USAID Grant LAG-G- 00-96-00013-00 to The University of Georgia. The research supported seeks environmentally sound, sustainable agriculture production and food delivery systems for peanut. The program has five thrusts addressing priority constraints to the global peanut industry (aflatoxin, production efficiency, socio-economic forces, post-harvest processing, and utilization). Peanut CRSP also works to foster human resource development and the communication of research results. The Peanut CRSP provides support for collaborative research, training, and exchange of information through grants to 10 universities in the USA linked to 14 host countries in the developing world. Both host countries and the USA are expected to benefit from the activities of Peanut CRSP. Peanut CRSP actively collaborates with other organizations with interest in advancing development through the application of science and technology. About ICRISAT The semi-arid tropics (SAT) encompasses parts of 48 developing countries including most of India, pails of southeast Asia, a swathe across sub-Saharan Africa, much of southern and eastern Africa, and parts of Latin America. Many of these countries are among the poorest in the world. Approximately one-sixth of the world's population lives in the SAT, which is typified by unpredictable weather, limited and erratic rainfall, and nutrient-poor soils. -
Groundnut Viral Diseases in West Africa
I GROUNDNUT VIRAL DISEASES IN WEST AFRICA J. M. DOLLET, DUBERN,C. FAUQUET, J.C. THOUVENELand A. BOCKELEE-MORVAN i March 1986 Reprinted from Tropical Agriculture Research Series No. 19 t Tropical Agriculture Research Center Ministry of Agriculture, Forestry and Fisheries JAPAN 134 GROUNDNUT VIRAL DISEASES IN WEST AFRICA Michel -Dollet*,Jean Dubern**, Claude Fauquet***, Jean-Claude Thouvenel***and Andre Bockelee-Mowan**** ABSTRACT This paper describes groundnut viral diseases observed in West Africa. Six viruses are identified and their main properties are reported here: peanut clump, groundnut rosette, groundnut eyespot, groundnut crinkle, tomato spotted wilt and groundnut chlorotic spotting viruses. Four other diseases are described in part: groundnut streak, groundnut mosaic, groundnut flecking and groundnut golden mosaic diseases. Some of them are economically very important such as the two types of rosette, peanut clump and tomato spotted wilt diseases. Others are apparently of minor importance though they occur relatively frequently and I show a wide distribution, such as groundnut eyespot, groundnut crinkle, groundnut streak and I groundnut golden mosaic diseases. The others appear occasionally but are nevertheless described: some which are very infectious, as groundnut chlorotic spotting disease could become very important within a few years. 1 .. *> r '1 Introduction l Groundnut which is one of the most popular legumes grown in West Africa, is naturally affected by a large number of virus or virus-like diseases. It is one of the most severely infected tropical plants in terms of viral diseases. Some of them have been studied and the viruses identified: peanut clump virus (Thouvenel et al., 1976), groundnut eye spot virus (Dubern and Dollet, 1980), groundnut crinkle virus (Dubem and Dollet, 198l), groundnut rosette virus 1 (Dubem, 1980), tomato spotted wilt virus (Dubem and Fauquet, 1985) and groundnut chlorotic spotting virus (Fauquet et al., 1985). -
This Lists All Proposals Ratified at Glasgow Congress on the 10Th August 1993
New taxa ratified in 1993 [from Pringle (1993) Arch Virol 133:491-495] This lists all proposals ratified at Glasgow Congress on the 10th August 1993. These appear to be all the proposals since the 1990 Congress and are to be incorporated into the 6th Report so should contain all changes between the 5th and 6th Reports. Informal codes in red have been assigned by MJA for convenient reference but are not used in any minutes or other formal records. Bacterial viruses The Chlamydia phages [1993.01B] 1. To establish a new genus within the family Microviridae 2. To name the new genus Chlamydiamicrovirus 3. To designate Chlamydia phage Chp 1 as type virus of the genus The Mac-1 type phages [1993.02B] l. To establish a new genus within the family Microviridae 2. To name the genus containing Mac-1 and related phages Bdellomicrovirus 3. To establish Mac-1 as the type species of the genus The SSV-1 type phages [1993.03B] 1. To name the family containing SSV-1 type phages Fuselloviridae 2. To name the SSV-1 group genus Fusellovirus Protozoal and fungal viruses Totiviruses [1993.01F] 1. To revise the classification of the Giardiavirus genus of dsDNA protozoal viruses from a possible genus in the family Totiviridae to a legitimate genus 2. To establish a new genus of isometric dsRNA viruses of the parasitic protozoan Leishmania braziliensis within the family Totiviridae 3. To name the genus Leishmaniavirus 4. To designate Leishmania RNA Virus 1-1 (LRV1-1) as the type species of the genus Bacilliform viruses of fungi [1993.02F] 1. -
Satellite RNA Is Essential for Encapsidation of Groundnut Rosette Umbravirus RNA by Groundnut Rosette Assistor Luteovirus Coat Protein
Virology 254, 105–114 (1999) Article ID viro.1998.9527, available online at http://www.idealibrary.com on View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Satellite RNA Is Essential for Encapsidation of Groundnut Rosette Umbravirus RNA by Groundnut Rosette Assistor Luteovirus Coat Protein D. J. Robinson, E. V. Ryabov, S. K. Raj,1 I. M. Roberts, and M. E. Taliansky2 Virology Department, Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, United Kingdom Received September 11, 1998; returned to author for revision September 28, 1998; accepted November 17, 1998 Groundnut rosette disease is caused by a complex of agents comprising groundnut rosette umbravirus (GRV), GRV satellite RNA (sat-RNA) and groundnut rosette assistor luteovirus (GRAV). Both GRAV and GRV sat-RNA are needed for GRV to be aphid transmissible. To understand the role of GRAV and GRV sat-RNA in the aphid transmission of GRV, encapsidation of GRV genomic and satellite RNAs has been studied using transgenic Nicotiana benthamiana plants expressing GRAV coat protein (CP). GRAV CP expressed from a transgene was shown to package GRV genomic and satellite RNAs efficiently, giving a high yield of transcap- sidated virus particles. GRV sat-RNA was absolutely essential for this process. GRV genomic RNA was not encapsidated by GRAV CP in the absence of the sat-RNA. Using different mutants of GRV sat-RNA, it was found that some property of full-length satellite RNA molecules, such as size or specific conformation rather than potential open reading frames, was required for the production of virus particles.