Interaction of a Plant Virus-Encoded Protein with the Major Nucleolar Protein Fibrillarin Is Required for Systemic Virus Infection

Total Page:16

File Type:pdf, Size:1020Kb

Interaction of a Plant Virus-Encoded Protein with the Major Nucleolar Protein Fibrillarin Is Required for Systemic Virus Infection Interaction of a plant virus-encoded protein with the major nucleolar protein fibrillarin is required for systemic virus infection Sang Hyon Kim†, Stuart MacFarlane†, Natalia O. Kalinina†‡, Daria V. Rakitina†‡, Eugene V. Ryabov§, Trudi Gillespie†, Sophie Haupt†, John W. S. Brown†, and Michael Taliansky†¶ †Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, United Kingdom; ‡A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119992, Russia; and §Horticulture Research International, University of Warwick, Wellesbourne, Warwick CV35 9EF, United Kingdom Communicated by Bryan D. Harrison, Scottish Crop Research Institute, Dundee, United Kingdom, May 17, 2007 (received for review April 4, 2007) The nucleolus and specific nucleolar proteins are involved in the life Umbraviruses have RNA genomes and differ from most other cycles of some plant and animal viruses, but the functions of these viruses in that they do not encode a coat protein (CP) and so do not proteins and of nucleolar trafficking in virus infections are largely produce conventional virus particles in infected plants (15, 16). unknown. The ORF3 protein of the plant virus, groundnut rosette Nevertheless, they accumulate and spread efficiently within the virus (an umbravirus), has been shown to cycle through the infected plant; their lack of a CP is compensated for by the ORF3 nucleus, passing through Cajal bodies to the nucleolus and then protein. This protein fulfils umbraviral functions that are normally exiting back into the cytoplasm. This journey is absolutely required provided by the CPs of other plant viruses, such as long-distance for the formation of viral ribonucleoprotein particles (RNPs) that, movement of viral RNA through the phloem (17, 18). themselves, are essential for the spread of the virus to noninocu- The GRV ORF3 protein interacts with viral RNA in vivo to form lated leaves of the shoot tip. Here, we show that these processes filamentous RNP particles, which have elements of a regular helical rely on the interaction of the ORF3 protein with fibrillarin, a major structure but not the uniformity typical of virus particles (16). The nucleolar protein. Silencing of the fibrillarin gene prevents long- RNPs accumulate in cytoplasmic inclusions that are the form in distance movement of groundnut rosette virus but does not affect which the virus is thought to move through the phloem to cause viral replication or cell-to-cell movement. Repressing fibrillarin systemic infection (16). In addition to its presence in the cytoplasm, production also localizes the ORF3 protein to multiple Cajal body- the ORF3 protein is able to traffic into the nucleus, predominantly like aggregates that fail to fuse with the nucleolus. Umbraviral targeting the nucleolus (19, 20). The presence of the ORF3 protein ORF3 protein and fibrillarin interact in vitro and, when mixed with in the nucleolus was unexpected, because the entire infection cycle umbravirus RNA, form an RNP complex. This complex has a fila- of GRV and other umbraviruses was previously considered to be mentous structure with some regular helical features, resembling restricted to the cytoplasm. ORF3 proteins contain two conserved the RNP complex formed in vivo during umbravirus infection. The domains: an arginine-rich sequence (positions 108–122; R-rich filaments formed in vitro are infectious when inoculated to plants, domain) and a leucine-rich region (amino acids 148–156; L-rich PLANT BIOLOGY and their infectivity is resistant to RNase. These results demon- domain) (Fig. 1) (16, 20). The R-rich domain is involved in nuclear strate previously undescribed functions for fibrillarin as an essen- import, and the L149 residue, in addition to the R-rich domain, is tial component of translocatable viral RNPs and may have impli- essential for nucleolar targeting of the ORF3 protein (14, 20). The cations for other plant and animal viruses that interact with the whole L-rich region also acts as a nuclear export signal (20), nucleolus. suggesting that the ORF3 protein traffics between the nucleus (nucleolus) and cytoplasm of infected cells. Cajal bodies ͉ plant virus movement ͉ ribonucleoprotein particles The ORF3 protein is produced in the cytoplasm, enters the nucleus, and is targeted to CBs. The CBs are then reorganized into he nucleolus is a subnuclear domain and is the site of transcrip- multiple smaller structures (CB-like aggregates, CBLs) that move Ttion and processing of rRNA and of ribosome biogenesis. In to and fuse with the nucleolus by an unknown mechanism (14). The addition, the nucleolus also participates in other aspects of RNA ORF3 protein is exported from the nucleus, leading to the forma- metabolism and cell function (1, 2). The nucleolus is structurally tion of cytoplasmic viral RNP particles that are transported to the and functionally associated with Cajal bodies (CBs), which are rest of the plant via the phloem. The integral connection between structures found in both animals and plants (3, 4). CBs contain nucleolar targeting of the ORF3 protein and its biological function different proteins including coilin, a protein essential for CB in virus long-distance spread has been demonstrated by the intro- formation, and fibrillarin, a major nucleolar protein that is a core duction of mutations in the R- and L-rich domains that block component of small nucleolar ribonucleoprotein particles nucleolar localization and nuclear export of the ORF3 protein, (snoRNPs) and is required for rRNA processing (4–7). CBs are involved in the maturation of small nuclear RNPs (snRNPs) and snoRNPs, which traffic through CBs before accumulating in splic- Author contributions: S.H.K., S.M., N.O.K., J.W.S.B., and M.T. designed research; S.H.K., ing speckles and the nucleolus, respectively (8, 9). Both the nucle- S.M., D.V.R., E.V.R., T.G., and S.H. performed research; S.H.K., N.O.K., D.V.R., J.W.S.B., and M.T. analyzed data; and S.H.K., J.W.S.B., and M.T. wrote the paper. olus and CBs have a role in RNA silencing in plants (10, 11). Finally, The authors declare no conflict of interest. a number of animal and plant viruses including the RNA- Abbreviations: CB, Cajal bodies; CBL, CB-like aggregates; GRV, groundnut rosette virus; containing tobacco etch virus and the DNA-containing tomato TMV, tobacco mosaic virus; PVX, potato virus X; TRV, tobacco rattle virus; RNP, ribonucle- yellow leaf curl virus have a nucleolar phase in their life cycle (12, oprotein; Fib2, fibrillarin 2; GAR, glycine- and arginine-rich domain; CP, coat protein. 13). Recently, we have shown that the ability of the umbravirus, Data deposition: The nucleotide sequence of the NbFib cDNA was deposited in GenBank groundnut rosette virus (GRV), to move long distances through the (accession no. AM269909). phloem, the specialized vascular system used by plants for the ¶To whom correspondence should be addressed. E-mail: [email protected]. transport of assimilates and macromolecules, depends strictly on This article contains supporting information online at www.pnas.org/cgi/content/full/ the interaction of one of its proteins, the ORF3 protein, with CBs 0704632104/DC1. and the nucleolus (14). © 2007 by The National Academy of Sciences of the USA www.pnas.org͞cgi͞doi͞10.1073͞pnas.0704632104 PNAS ͉ June 26, 2007 ͉ vol. 104 ͉ no. 26 ͉ 11115–11120 Downloaded by guest on September 28, 2021 Fig. 1. Correlation between the ability of the ORF3 protein to traffic through the nucleolus and the relocalization of fibrillarin, formation of viral RNPs, and long-distance movement. Wild-type and mutant ORF3 protein sequences of the R-rich and L–rich domains are shown in combination with data on nuclear (N) and nucleolar (No) localization, nuclear export (N-exp) of the ORF3 pro- tein, relocalization of fibrillarin (Cyt. fibrillarin), RNP formation, and virus long-distance movement (LDM) (14). respectively, resulting in failure to form viral RNPs, and of their long-distance movement (14) (Fig. 1). In elucidating the nuclear pathway of the ORF3 protein, we also observed the partial relocalization of the nucleolar protein, fibril- larin, to the cytoplasmic inclusions containing viral RNPs, whereas normally, fibrillarin does not accumulate in cytoplasm (14). Fibril- larin is one of the major proteins of the nucleolus. It is also localized to CBs, is a core component of box C/D snoRNPs, and has Fig. 2. Virus-induced silencing of the fibrillarin gene (NbFib) in N. benthami- methyltransferase activity directing methylation of rRNA and snR- ana plants by using a TRV vector. (A–C) Expression of fibrillarin was suppressed NAs (21). Interaction of some animal viruses with fibrillarin and by TRV-NbFib to different levels, and plants with effectively three different other nucleolar proteins has been reported (12, 13, 22, 23), but their phenotypes (I, II, and III) were generated. (A) Growth phenotypes of silenced specific role in virus infections remains elusive. In this article, we plants in comparison with control (c) nonsilenced plants. (B) Semiquantitative demonstrate a previously uncharacterized function of fibrillarin in RT-PCR analysis of NbFib mRNA accumulation. Ethidium bromide-stained umbravirus systemic infection. The GRV ORF3 protein directly agarose gels show RT-PCR products corresponding to the fragments of NbFib interacts with fibrillarin, and this interaction is essential for nucle- (Fib) mRNA (320 bp) and ubiquitin mRNA (176 bp) used as a control, as indicated by arrows. Lanes 1–3 represent plant replicates. (C) Western blot olar localization of the ORF3 protein. Fibrillarin is also required, analysis of fibrillarin (Fib) accumulation. The position of fibrillarin is shown by along with umbravirus ORF3 protein and viral RNA, for the an arrow. Lanes 1–3 as above. (D) Immunofluorescence staining of cells of assembly of movement-competent, infectious RNP particles. Thus, fibrillarin-silenced (group II; Fib-s) and nonsilenced (Non-s) plants with fibril- the ORF3 protein may exploit fibrillarin trafficking to reach the larin and coilin antibodies visualized by confocal microscopy.
Recommended publications
  • Groundnut Rosette Disease and Their Diagnosis a F Murant, D J Robinson, and M E Taliansky 5
    Citation: Reddy, D.V.R., Delfosse, P., Lenne, J.M., and Subrahmanyam, P. (eds.) 1997. Groundnut virus diseases in Africa: summary and recommendations of the Sixth Meeting of the International Working Group, 18-19 Mar 1996, Agricultural Research Council, Plant Protection Research Institute, Pretoria, South Africa. (In En. Summaries in En, Fr, Pt) Patancheru 502 324, Andhra Pradesh, India: International Crops Research Institute for the Semi-Arid Tropics; and 1000 Brussels, Belgium: Belgian Administration for Development Cooperation. 64 pp. ISBN 92-9066-358-8. Order code: CPE 109. Abstract The International Working Group Meeting on groundnut viruses in Africa reviewed progress made on the detection, identification, characterization, and management of groundnut viruses in Africa, with special emphasis on rosette and clump viruses. Country representatives summarized the status of research on groundnut viruses in their countries. In order to accomplish integrated management of rosette and clump virus diseases, it was agreed that consolidated efforts should be made to understand their epidemiology. Among the important aspects discussed were the provision of diagnostic aids and training in the identifi­ cation and detection of viruses for the national agricultural research systems in Africa, and strengthening of laboratory facilities. Scientists from Burkina Faso, Kenya, Malawi, Nigeria, South Africa, and Zimbabwe, and from Bel­ gium, Germany, India, UK, and USA attended the meeting, which was the first gathering of so many plant virologists in
    [Show full text]
  • Sequence Diversity Within the Three Agents of Groundnut Rosette Disease
    Virology Sequence Diversity Within the Three Agents of Groundnut Rosette Disease C. M. Deom, R. A. Naidu, A. J. Chiyembekeza, B. R. Ntare, and P. Subrahmanyam First author: Department of Plant Pathology, Plant Sciences Building, The University of Georgia, Athens 30602-7274; second and fifth authors: Genetic Resources and Enhancement Program (GREP), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), P.O. Box 1096, Lilongwe, Malawi; third author: Department of Agricultural Research and Technical Services, Chitedze Agricultural Research Station, Lilongwe, Malawi; fourth author: GREP, ICRISAT, P.O. Box 320, Bamako, Mali. Current address of R. A. Naidu: Department of Plant Pathology, The University of Georgia, Athens 30602-7274. Accepted for publication 5 December 1999. ABSTRACT Deom, C. M., Naidu, R. A., Chiyembekeza, A. J., Ntare, B. R., and isolates within a geographic region but less conserved (88 to 89%) be- Subrahmanyam, P. 2000. Sequence diversity within the three agents of tween isolates from the two distinct geographic regions. Phylogenetic groundnut rosette disease. Phytopathology 90:214-219. analysis of the overlapping ORFs 3 and 4 show that the GRV isolates cluster according to the geographic region from which they were iso- Sequence diversity was examined in the coat protein (CP) gene of lated, indicating that Malawian GRV isolates are distinct from Nigerian Groundnut rosette assistor virus (GRAV), the overlapping open reading GRV isolates. Similarity within the sat-RNA sequences analyzed ranged frames (ORFs) 3 and 4 of Groundnut rosette virus (GRV), and the satel- from 88 to 99%. Phylogenetic analysis also showed clustering within the lite RNA (sat-RNA) of GRV obtained from field isolates from Malawi sat-RNA isolates according to country of origin, as well as within isolates and Nigeria.
    [Show full text]
  • The Ins and Outs of Nondestructive Cell-To-Cell and Systemic Movement of Plant Viruses
    Critical Reviews in Plant Sciences, 23(3):195–250 (2004) Copyright C Taylor and Francis Inc. ISSN: 0735-2689 print / 1549-7836 online DOI: 10.1080/07352680490452807 The Ins and Outs of Nondestructive Cell-to-Cell and Systemic Movement of Plant Viruses Elisabeth Waigmann Max F. Perutz Laboratories, University Departments at the Vienna Biocenter, Institute of Medical Biochemistry, Medical University of Vienna, Dr. Bohrgasse 9 A-1030, Vienna, Austria Shoko Ueki Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, NY 11794-5215 Kateryna Trutnyeva Max F. Perutz Laboratories, University Departments at the Vienna Biocenter, Institute of Medical Biochemistry, Medical University of Vienna, Dr. Bohrgasse 9 A-1030, Vienna, Austria Vitaly Citovsky∗ Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, NY 11794-5215 Referee: Dr. Ernest Hiebert, Professor, Department of Plant Pathology, University of Florida/IFAS, P.O. Box 110680, 1541 Fifield Hall, Gainesville, FL 32611-0680, USA. Table of Contents 1. Introduction ..........................................................................................................................................................196 2. Structure and Composition of Plasmodesmata, the Intercellular Conduits for Viral Movement ..............................198 3. Cell-to-Cell Transport of Plant Viruses: Have Movement Protein, Will Travel ........................................................200 3.1. MP Structure: Are Common Functions Supported by
    [Show full text]
  • Virus World As an Evolutionary Network of Viruses and Capsidless Selfish Elements
    Virus World as an Evolutionary Network of Viruses and Capsidless Selfish Elements Koonin, E. V., & Dolja, V. V. (2014). Virus World as an Evolutionary Network of Viruses and Capsidless Selfish Elements. Microbiology and Molecular Biology Reviews, 78(2), 278-303. doi:10.1128/MMBR.00049-13 10.1128/MMBR.00049-13 American Society for Microbiology Version of Record http://cdss.library.oregonstate.edu/sa-termsofuse Virus World as an Evolutionary Network of Viruses and Capsidless Selfish Elements Eugene V. Koonin,a Valerian V. Doljab National Center for Biotechnology Information, National Library of Medicine, Bethesda, Maryland, USAa; Department of Botany and Plant Pathology and Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon, USAb Downloaded from SUMMARY ..................................................................................................................................................278 INTRODUCTION ............................................................................................................................................278 PREVALENCE OF REPLICATION SYSTEM COMPONENTS COMPARED TO CAPSID PROTEINS AMONG VIRUS HALLMARK GENES.......................279 CLASSIFICATION OF VIRUSES BY REPLICATION-EXPRESSION STRATEGY: TYPICAL VIRUSES AND CAPSIDLESS FORMS ................................279 EVOLUTIONARY RELATIONSHIPS BETWEEN VIRUSES AND CAPSIDLESS VIRUS-LIKE GENETIC ELEMENTS ..............................................280 Capsidless Derivatives of Positive-Strand RNA Viruses....................................................................................................280
    [Show full text]
  • Jiang J, Kuo YW, Salem N, Erickson A, Falk BW. 2021. Carrot Mottle
    Research Carrot mottle virus ORF4 movement protein targets plasmodesmata by interacting with the host cell SUMOylation system Jun Jiang1 , Yen-Wen Kuo1 , Nida Salem2 , Anna Erickson1 and Bryce W. Falk1 1Department of Plant Pathology, University of California, Davis, CA 95616, USA; 2Department of Plant Protection, School of Agriculture, The University of Jordan, Amman 11942, Jordan Summary Author for correspondence: Plant virus movement proteins (MPs) facilitate virus spread in their plant hosts, and some of Bryce W. Falk them are known to target plasmodesmata (PD). However, how the MPs target PD is still Email: [email protected] largely unknown. Carrot mottle virus (CMoV) encodes the ORF3 and ORF4 proteins, which are involved in Received: 8 February 2021 CMoV movement. In this study, we used CMoV as a model to study the PD targeting of a plant virus MP. We showed that the CMoV ORF4 protein, but not the ORF3 protein, modified PD and led New Phytologist (2021) to the virus movement. We found that the CMoV ORF4 protein interacts with the host cell doi: 10.1111/nph.17370 small ubiquitin-like modifier (SUMO) 1, 2 and the SUMO-conjugating enzyme SCE1, result- ing in the ORF4 protein SUMOylation. Downregulation of mRNAs for NbSCE1 and NbSUMO Key words: Carrot mottle virus (CMoV), impaired CMoV infection. The SUMO-interacting motifs (SIMs) LVIVF, VIWV, and a lysine movement proteins (MPs), plasmodesmata residue at position 78 (K78) are required for the ORF4 protein SUMOylation. The mutation of (PD), small ubiquitin-like modifier (SUMO), these motifs prevented the protein to efficiently target PD, and further slowed or completely Umbravirus.
    [Show full text]
  • This Lists All Proposals Ratified at Glasgow Congress on the 10Th August 1993
    New taxa ratified in 1993 [from Pringle (1993) Arch Virol 133:491-495] This lists all proposals ratified at Glasgow Congress on the 10th August 1993. These appear to be all the proposals since the 1990 Congress and are to be incorporated into the 6th Report so should contain all changes between the 5th and 6th Reports. Informal codes in red have been assigned by MJA for convenient reference but are not used in any minutes or other formal records. Bacterial viruses The Chlamydia phages [1993.01B] 1. To establish a new genus within the family Microviridae 2. To name the new genus Chlamydiamicrovirus 3. To designate Chlamydia phage Chp 1 as type virus of the genus The Mac-1 type phages [1993.02B] l. To establish a new genus within the family Microviridae 2. To name the genus containing Mac-1 and related phages Bdellomicrovirus 3. To establish Mac-1 as the type species of the genus The SSV-1 type phages [1993.03B] 1. To name the family containing SSV-1 type phages Fuselloviridae 2. To name the SSV-1 group genus Fusellovirus Protozoal and fungal viruses Totiviruses [1993.01F] 1. To revise the classification of the Giardiavirus genus of dsDNA protozoal viruses from a possible genus in the family Totiviridae to a legitimate genus 2. To establish a new genus of isometric dsRNA viruses of the parasitic protozoan Leishmania braziliensis within the family Totiviridae 3. To name the genus Leishmaniavirus 4. To designate Leishmania RNA Virus 1-1 (LRV1-1) as the type species of the genus Bacilliform viruses of fungi [1993.02F] 1.
    [Show full text]
  • Satellite RNA Is Essential for Encapsidation of Groundnut Rosette Umbravirus RNA by Groundnut Rosette Assistor Luteovirus Coat Protein
    Virology 254, 105–114 (1999) Article ID viro.1998.9527, available online at http://www.idealibrary.com on View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Satellite RNA Is Essential for Encapsidation of Groundnut Rosette Umbravirus RNA by Groundnut Rosette Assistor Luteovirus Coat Protein D. J. Robinson, E. V. Ryabov, S. K. Raj,1 I. M. Roberts, and M. E. Taliansky2 Virology Department, Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, United Kingdom Received September 11, 1998; returned to author for revision September 28, 1998; accepted November 17, 1998 Groundnut rosette disease is caused by a complex of agents comprising groundnut rosette umbravirus (GRV), GRV satellite RNA (sat-RNA) and groundnut rosette assistor luteovirus (GRAV). Both GRAV and GRV sat-RNA are needed for GRV to be aphid transmissible. To understand the role of GRAV and GRV sat-RNA in the aphid transmission of GRV, encapsidation of GRV genomic and satellite RNAs has been studied using transgenic Nicotiana benthamiana plants expressing GRAV coat protein (CP). GRAV CP expressed from a transgene was shown to package GRV genomic and satellite RNAs efficiently, giving a high yield of transcap- sidated virus particles. GRV sat-RNA was absolutely essential for this process. GRV genomic RNA was not encapsidated by GRAV CP in the absence of the sat-RNA. Using different mutants of GRV sat-RNA, it was found that some property of full-length satellite RNA molecules, such as size or specific conformation rather than potential open reading frames, was required for the production of virus particles.
    [Show full text]
  • Controlling Epidemics of Emerging and Established Plant Virus Diseases - the Way Forward
    10th International Plant Virus Epidemiology Symposium Controlling Epidemics of Emerging and Established Plant Virus Diseases - The Way Forward 15-19 October 2007, ICRISAT Patancheru 502324, AP, India Program and Abstracts ® Organized and Hosted by the International Crops Research Institute for the Semi-Arid Tropics Program 10th International Plant Virus Epidemiology Symposium Controlling Epidemics of Emerging and Established Plant Virus Diseases - The Way Forward 15 - 19 October 2007 International Crops Research Institute for the Semi-Arid Tropics Patancheru 502 324, Hyderabad, Andhra Pradesh, India Program and Abstracts Compiled by 1 2 3 P Lava Kumar , RAC Jones and F Waliyar 1International Institute of Tropical Agriculture, Nigeria 2Agriculture Research Western Australia, Australia 3International Crops Research Institute for the Semi-Arid Tropics, India 10th Plant Virus Epidemiology Symposium, 15 – 19 Oct 07, ICRISAT, India i Program About ICRISAT The International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) is a non-profit, non-political international for science based agricultural development. ICRISAT conducts research on sorghum, pearl millet, chickpea, groundnut and pigeonpea – crops that support the livelihoods of the poorest of the poor in the semi- arid tropics encompassing 48 countries. ICRISAT also shares information and knowledge through capacity building, publications, and information and communication technologies. Established in 1972, ICRISAT belongs to the Alliance of Centers supported by the Consultative Group on International Agricultural Research (CGIAR) [www.icrisat.org; www.cgiar.org]. About IPVE International Plant Virus Epidemiology (IPVE) Group is a coordinated by the IPVE Committee of the International Society of Plant Pathology (ISPP). The ISPP was founded in 1968 in the United Kingdom to sponsor the development of plant pathology worldwide.
    [Show full text]
  • Interaction of a Plant Virus-Encoded Protein with the Major Nucleolar Protein Fibrillarin Is Required for Systemic Virus Infection
    Interaction of a plant virus-encoded protein with the major nucleolar protein fibrillarin is required for systemic virus infection Sang Hyon Kim†, Stuart MacFarlane†, Natalia O. Kalinina†‡, Daria V. Rakitina†‡, Eugene V. Ryabov§, Trudi Gillespie†, Sophie Haupt†, John W. S. Brown†, and Michael Taliansky†¶ †Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, United Kingdom; ‡A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119992, Russia; and §Horticulture Research International, University of Warwick, Wellesbourne, Warwick CV35 9EF, United Kingdom Communicated by Bryan D. Harrison, Scottish Crop Research Institute, Dundee, United Kingdom, May 17, 2007 (received for review April 4, 2007) The nucleolus and specific nucleolar proteins are involved in the life Umbraviruses have RNA genomes and differ from most other cycles of some plant and animal viruses, but the functions of these viruses in that they do not encode a coat protein (CP) and so do not proteins and of nucleolar trafficking in virus infections are largely produce conventional virus particles in infected plants (15, 16). unknown. The ORF3 protein of the plant virus, groundnut rosette Nevertheless, they accumulate and spread efficiently within the virus (an umbravirus), has been shown to cycle through the infected plant; their lack of a CP is compensated for by the ORF3 nucleus, passing through Cajal bodies to the nucleolus and then protein. This protein fulfils umbraviral functions that are normally exiting back into the cytoplasm. This journey is absolutely required provided by the CPs of other plant viruses, such as long-distance for the formation of viral ribonucleoprotein particles (RNPs) that, movement of viral RNA through the phloem (17, 18).
    [Show full text]
  • Umbravirus-Encoded Proteins Both Stabilize Heterologous Viral RNA and Mediate Its Systemic Movement in Some Plant Species
    Virology 288, 391–400 (2001) doi:10.1006/viro.2001.1078, available online at http://www.idealibrary.com on View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Umbravirus-Encoded Proteins both Stabilize Heterologous Viral RNA and Mediate Its Systemic Movement in Some Plant Species Eugene V. Ryabov,1 David J. Robinson, and Michael Taliansky2 Unit of Virology, Scottish Crop Research Institute, Invergowrie, Dundee, DD2 5DA, United Kingdom Received June 1, 2001; returned to author for revision June 25, 2001; accepted July 5, 2001 The proteins encoded by open reading frame 3 (ORF3) of the umbraviruses pea enation mosaic virus-2 and tobacco mottle virus, like that of groundnut rosette virus, mediated the movement of viral RNA through the phloem of infected Nicotiana benthamiana or N. clevelandii plants when they were expressed from chimeric tobacco mosaic virus in place of the coat protein. However, these chimeras did not move systemically in N. tabacum. In lysates of N. benthamiana or N. tabacum protoplasts, the chimeric RNAs were more stable than was RNA of tobacco mosaic virus lacking the coat protein gene. The chimeric viruses also protected the latter in trans, suggesting that the ORF3 proteins can increase the stability of heterologous viral RNA. Umbraviral ORF3 proteins contain a conserved arginine-rich domain, and the possible roles of this motif in the functions of the proteins are discussed. © 2001 Academic Press Key Words: plant virus; umbraviruses; virus movement; stabilization of viral RNA. INTRODUCTION spread of the umbraviruses (Demler et al., 1994).
    [Show full text]
  • Encyclopedia of Plant Viruses and Viroids K
    Encyclopedia of Plant Viruses and Viroids K. Subramanya Sastry • Bikash Mandal John Hammond • S. W. Scott R. W. Briddon Encyclopedia of Plant Viruses and Viroids K. Subramanya Sastry Bikash Mandal Indian Council of Agricultural Indian Agricultural Research Institute Research, IIHR New Delhi, India Bengaluru, India Indian Council of Agricultural Research, IIOR and IIMR Hyderabad, India John Hammond S. W. Scott USDA, Agricultural Research Service Clemson University Beltsville, MD, USA Clemson, SC, USA R. W. Briddon John Innes Centre Norwich, UK ISBN 978-81-322-3911-6 ISBN 978-81-322-3912-3 (eBook) ISBN 978-81-322-3913-0 (print and electronic bundle) https://doi.org/10.1007/978-81-322-3912-3 # Springer Nature India Private Limited 2019 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made.
    [Show full text]
  • Genetic Diversity of Groundnut Rosette Disease Causal Agents Towards Its Management: a Review
    International Journal of Genetics and Genomics 2019; 7(1): 12-17 http://www.sciencepublishinggroup.com/j/ijgg doi: 10.11648/j.ijgg.20190701.12 ISSN: 2376-7340 (Print); ISSN: 2376-7359 (Online) Review Article Genetic Diversity of Groundnut Rosette Disease Causal Agents Towards Its Management: A Review Benard Mukoye *, Anthony Simiyu Mabele Department of Biological Sciences, School of Natural Sciences (SONAS), Masinde Muliro University of Science and Technology (MMUST), Kakamega, Kenya Email address: *Corresponding author To cite this article: Benard Mukoye, Anthony Simiyu Mabele. Genetic Diversity of Groundnut Rosette Disease Causal Agents Towards Its Management: A Review. International Journal of Genetics and Genomics. Vol. 7, No. 1, 2019, pp. 12-17. doi: 10.11648/j.ijgg.20190701.12 Received : March 7, 2019; Accepted : April 16, 2019; Published : June 3, 2019 Abstract: In this review, the genetic diversity of the three causal agents of Groundnut Rosette Disease (GRD) in Sub-Saharan Africa (SSA) are discussed. Epidemics of GRD viruses in SSA, often reduce groundnut productivity. The etiology of GRD is a complex, involving three agents; Groundnut rosette assistor luteovirus (GRAV), Groundnut rosette umbravirus (GRV) and a Satellite-RNA (Sat-RNA) of GRV. The complex etiology and lack of sensitive and specific diagnostic tools, are major limitations in understanding the epidemiology of GRD viruses, and developing appropriate management strategies for the disease. Nucleotide identity of 97 to 100% among GRAV isolates from different regions in Kenya have been reported. Sat-RNA sequences from Kenya shared nucleotide identity of 95% with Malawian isolate (M24S) and 89% with Nigerian isolate (NG3a). GRAV CP gene was highly conserved (97-99%) regardless of the geographical distance.
    [Show full text]