Download Download

Total Page:16

File Type:pdf, Size:1020Kb

Download Download R E C E N Z J E ROCZNIKI FILOZOFICZNE Tom LIX, numer 1 – 2011 Anita Burdman-Feferman, Solomon Feferman, Alfred Tarski. aycie i logika , przeł. Joanna Goli Lska-Pilarek, Marian Srebrny, Warszawa: Wydaw- nictwa Akademickie i Profesjonalne 2009, ss. 475. ISBN 978-83-60501-94-8. Nie trzeba by 4 „rasowym” logikiem lub filozofem, by wiedzie 4, kim był Alfred Tarski (1901-1983). Powszechnie znany jest jako „człowiek, który zdefiniował praw- dB” lub – w Bb szemu gronu – jako współautor twierdzenia o paradoksalnym rozkładzie kuli. Wywarł znacz =cy wpływ na rozwój całej XX-wiecznej logiki i podstaw mate- matyki, a tak be – poprzez badania z zakresu semantyki formalnej i podstaw logiki – na epistemologi B, metodologi B nauk i filozofi B j Bzyka. Stworzył semantyk B logiczn =, przyczynił si B do rozwoju metamatematyki oraz teorii modeli, osi =gn =ł znacz =ce rezultaty w teorii mnogo Vci, topologii, geometrii i arytmetyce. Ksi =b ka Alfred Tarski. aycie i logika autorstwa Anity i Solomona Fefermanów została wydana przez Wydawnictwa Akademickie i Profesjonalne, w profesjonalnym przekładzie Joanny Goli Lskiej-Pilarek i Mariana Srebrnego. Szkoda jedynie, be polski przekład pojawił si B dopiero pi B4 lat po opublikowaniu oryginału ameryka Lskiego Alfred Tarski. Life and Logic przez University of Cambridge. Nie jest chyba przypadkiem, be identyczny podtytuł nosi biografia innego wiel- kiego uczonego, który wraz z Tarskim, lecz niezale bnie od niego, zmienił oblicze logiki XX wieku – Kurta Gödla (John Casti, Werner DePauli, Gödel. aycie i logika , tłum. P. Amsterdamski, Warszawa: Wyd. CiS 2003). Z jednej strony samo bycie, jak be ró bne w obu przypadkach: pełne pasji i nami Btno Vci pierwszego, wyobcowane i egocentryczne drugiego; z drugiej – logika, wielka miło V4 ich obu. Fefermanowie byli nadzwyczaj dobrze przygotowani, aby napisa 4 o tych dwóch „wymiarach”. Znali Tarskiego osobi Vcie przez ok. 30 lat – byli go V4 mi spotka L towarzyskich w jego domu oraz uczestnikami weekendowych wycieczek, które organizował. Solomon Feferman doktoryzował si B u Tarskiego w 1957 r., nast Bpnie został profesorem matematyki i filozofii na Uniwersytecie Stanforda; w 2004 r. przeszedł na emerytur B. Był redak- torem naczelnym dzieł Kurta Gödla (5 tomów opublikowanych w latach 1986-2006). Anita Burdman-Feferman znana jest przede wszystkim jako autorka biografii Jeana van Heijenoorta. 80 RECENZJE Ksi =b ka składa si B z Przedmowy do wydania polskiego , pi Btnastu rozdziałów (punktów) poprzedzielanych sze Vcioma interludiami, Słowa od autorów , Podzi Bkowa L od tłumaczy oraz listy (w porz =dku chronologicznym) 24 doktorów wypromowanych przez Tarskiego i 4, na których prace wywarł znacz =cy wpływ, obszernej bibliografii i indeksu osobowego. Przy ko Lcu ksi =b ki znajduj = si B tak be przypisy i `ródła zdj B4 . Przedmow B napisał prof. Jan Wole Lski, najlepszy polski znawca prac Tarskiego i szkoły lwowsko-warszawskiej, uwa bany za duchowego spadkobierc B logików i filo- zofów z tej be szkoły. Dowiadujemy si B z niej nie tylko o kontek Vcie powstania ksi =b ki i zasłudze w tym wzgl Bdzie (wcale niemałej) samego Wole Lskiego, ale przede wszystkim o bohaterze ksi =b ki – Alfredzie Tarskim, którego Autor uwa ba za jednego z najwi Bkszych logików wszechczasów oraz jednego z najwybitniejszych polskich uczonych. Przedmowa zwraca uwag B na najwa bniejsze elementy „historii bycia” Tarskiego, podkre Vlaj =c szczegółowo V4 faktograficzn = oraz wysoki poziom empatii spraw polskich. Stanowi ona znakomite wprowadzenie do lektury dzieła Fefermanów. Trzon ksi =b ki stanowi = rozdziały, które omawiaj = wybrane aspekty bycia za- wodowego i osobistego Uczonego, oraz interludia, dotycz =ce jego osi =gni B4 nauko- wych. Poszczególne interludia po Vwi Bcone s = nast Bpuj =cym dziedzinom: teorii mno- go Vci (interludium I), metamatematyce (II), teorii prawdy (III), teorii modeli (V), algebrze logiki (VI). Interludium IV zatytułowane Kampania publikacyjna opisuje kontekst powstania najwa bniejszych prac Tarskiego (m.in. Introduction to Logic , A Decision Method for Elementary Algebra and Geometry , Cardinal Algebras , Ordinal Algebras , Undecidable Theories , Logic, Semantics, Methamathematics , Cylindric Algebras ). W pierwszym interludium Autorzy pisz =, be Tarski interesował si B teori = mnogo Vci przez całe bycie. Była ona jednym z głównych przedmiotów jego bada L, a zarazem ogólnym narz Bdziem stosowanym w metamatematyce, algebrze uniwer- salnej i logice infinitarnej. Fefermanowie przywołuj = wypowied ` Azriela Levy’ego, porównuj =cego rol B Tarskiego w badaniach teoriomnogo Vciowych „do roli Moj besza, który swemu ludowi wskazał drog B do Ziemi Obiecanej i drog = t = ich poprowadził, chocia b rzeczywistego wej Vcia do Ziemi Obiecanej dokonało nast Bpne pokolenie”. Tarski „był `ródłem energii i inspiracji dla swych uczniów i współpracowników […] nieustannie stawiał przed nimi nowe problemy i skłaniał do zdobywania nowych obszarów” (s. 74). Z drugiego interludium dowiadujemy si B, be jednym z centralnych zagadnie L metamatematyki był dla Tarskiego problem rozstrzygalno Vci. Znane s = jego dokona- nia w tym zakresie, mianowicie dowód (metod = eliminacji kwantyfikatorów) roz- strzygalno Vci elementarnych (tj. sformalizowanych w logice predykatów I rz Bdu) teorii matematycznych (np. teorii liczb rzeczywistych), opracowanie ogólnej metody dowodzenia nierozstrzygalno Vci teorii elementarnych za pomoc = interpretacji jednej teorii w drugiej oraz ustalenie nierozstrzygalno Vci pewnych teorii algebraicznych innych ni b elementarne. RECENZJE 81 Trzecie interludium zawiera opis wyników Tarskiego dotycz =cych prawdy i de- finiowalno Vci. Niew =tpliwie w tej dziedzinie nazwisko Uczonego rozsławiła mono- grafia Poj Bcie prawdy w j Bzykach nauk dedukcyjnych . Wzbudziła ona du be zainte- resowanie, zwłaszcza po przetłumaczeniu w 1935 r. na j Bzyk niemiecki: Der Wahr- heitsbegriff in den formalisierten Sprachen (odt =d była cytowana jako Wahrheits- begriff ), a jej wpływ wykraczał znacznie poza sfer B specjalistów z dziedziny logiki. Zdaniem Fefermanów kontrowersje dotycz =ce doniosło Vci teorii prawdy Tarskiego wynikaj = st =d, be Tarski sformułował dwie jej wersje: a) filozoficzn = – dotyczy prawdy w pewnym absolutnym sensie, b) logiczn = – dotyczy prawdy w sensie wzgl Bdnym, tj. prawdziwo Vci w strukturach matematycznych, takich jak modele geometrii i algebry. Odpowiedni = wersj = teorii prawdy chciał zainteresowa 4 filo- zofów oraz logików i matematyków. Według Autorów najwi Bkszy wpływ miała ona jednak na formalny rozwój logiki i jej zastosowa L w teorii modeli. Dokonania Tarskiego w dziedzinie teorii modeli s = przedmiotem pi =tego inter- ludium. Tarski wprawdzie nie stworzył teorii modeli, ale jego wpływ na t B dziedzin B był decyduj =cy – to on wprowadził jej podstawow = aparatur B poj Bciow =. Jako od- dzielna gał =` matematyki teoria modeli pojawiła si B w 1945 r., a wi Bc wówczas kiedy Tarski zacz =ł budowa 4 swoj = szkoł B logiki w Berkeley. Tu wła Vnie w 1963 r. zorganizował konferencj B w cało Vci po Vwi Bcon = tej teorii. W ostatnim interludium Fefermanowie stwierdzaj =, be Tarski w trakcie całej swojej kariery badawczej odwoływał si B do algebraicznego podej Vcia do logiki i matematyki, którego zalety upatrywał w elegancji i szerokiej stosowalno Vci. Pro- wadził badania nad czyst = (tak zwan =) uniwersaln = algebr =, zajmuj =c si B zale b- no Vciami mi Bdzy systemami algebraicznymi. Do ko Lca bycia algebry relacyjne i bo- gatsze algebry logiki były jednym z głównych tematów jego bada L, a tak be bada L prowadzonych przez jego doktorantów i kolegów. Zdaniem Autorów pierwszym i najwa bniejszym celem Tarskiego jako logika „było wykorzystanie algebraicznego sposobu my Vlenia w całej jego rozci =gło Vci” (s. 369). Całe bycie Tarskiego mo bna podzieli 4 na dwa główne okresy: 1) warszawski (1901-1939), który Autorzy opisuj = w czterech pocz =tkowych punktach, oraz 2) ameryka Lski (1939-1983), przedstawiony w jedenastu pozostałych. Czytelnik znaj- dzie w ksi =b ce dokładny opis rodzinnych korzeni Tarskiego, jego dzieci Lstwa i młodo Vci, rozdwojonej mi Bdzy bydowskim pochodzeniem a silnym poczuciem pol- sko Vci. Z racji tej dwoisto Vci narodowej Tarski mógł pó `niej opowiada 4, be zapytany przez kogo V: „Panie profesorze, jak zosta 4 wielkim logikiem, takim jak pan?” odpowiedział: „To proste. Trzeba by 4 albo aydem, albo Polakiem, a najlepiej jednym i drugim”. W 1924 r. zmienił swoje rodowe nazwisko Tajtelbaum na Tarski. Autorzy bio- grafii sugeruj =, be kierował si B przy tym nie tyle polskim patriotyzmem, lecz prawdo- podobnie konformizmem, gdy b taka decyzja mogła mu ułatwi 4 karier B naukow = w Polsce, a tak be planami mał beLskimi (o benił si B z Mari = Witkowsk =). W tym 82 RECENZJE samym roku otrzymał stopie L doktora filozofii na podstawie pracy O wyrazie pier- wotnym logistyki , napisanej pod kierunkiem Stanisława Le Vniewskiego, i został powołany na stanowisko docenta w Uniwersytecie Warszawskim. Doł =czył do grona uczonych z warszawskiej szkoły logicznej, prowadził nadzwyczaj intensywne ró bno- tematyczne badania. Chocia b od 1930 r. uwa bany był za najwi Bksz = gwiazd B logiki matematycznej w Polsce, bezskutecznie starał si B o obj Bcie katedry na Uniwersytecie Jana Kazimierza we Lwowie (1930) oraz na Uniwersytecie Pozna Lskim (1937). Punkt czwarty informuje o aktywnym uczestnictwie Tarskiego w rodzimym i mi Bdzynarodowym byciu naukowym. Tarski brał udział w Polskich Zjazdach Filo- zoficznych (1923, 1927, 1936) i Polskich Zjazdach Matematycznych (1927, 1937), w mi Bdzynarodowych
Recommended publications
  • Alfred Tarski and a Watershed Meeting in Logic: Cornell, 1957 Solomon Feferman1
    Alfred Tarski and a watershed meeting in logic: Cornell, 1957 Solomon Feferman1 For Jan Wolenski, on the occasion of his 60th birthday2 In the summer of 1957 at Cornell University the first of a cavalcade of large-scale meetings partially or completely devoted to logic took place--the five-week long Summer Institute for Symbolic Logic. That meeting turned out to be a watershed event in the development of logic: it was unique in bringing together for such an extended period researchers at every level in all parts of the subject, and the synergetic connections established there would thenceforth change the face of mathematical logic both qualitatively and quantitatively. Prior to the Cornell meeting there had been nothing remotely like it for logicians. Previously, with the growing importance in the twentieth century of their subject both in mathematics and philosophy, it had been natural for many of the broadly representative meetings of mathematicians and of philosophers to include lectures by logicians or even have special sections devoted to logic. Only with the establishment of the Association for Symbolic Logic in 1936 did logicians begin to meet regularly by themselves, but until the 1950s these occasions were usually relatively short in duration, never more than a day or two. Alfred Tarski was one of the principal organizers of the Cornell institute and of some of the major meetings to follow on its heels. Before the outbreak of World War II, outside of Poland Tarski had primarily been involved in several Unity of Science Congresses, including the first, in Paris in 1935, and the fifth, at Harvard in September, 1939.
    [Show full text]
  • An Interview with Martin Davis
    Notices of the American Mathematical Society ISSN 0002-9920 ABCD springer.com New and Noteworthy from Springer Geometry Ramanujan‘s Lost Notebook An Introduction to Mathematical of the American Mathematical Society Selected Topics in Plane and Solid Part II Cryptography May 2008 Volume 55, Number 5 Geometry G. E. Andrews, Penn State University, University J. Hoffstein, J. Pipher, J. Silverman, Brown J. Aarts, Delft University of Technology, Park, PA, USA; B. C. Berndt, University of Illinois University, Providence, RI, USA Mediamatics, The Netherlands at Urbana, IL, USA This self-contained introduction to modern This is a book on Euclidean geometry that covers The “lost notebook” contains considerable cryptography emphasizes the mathematics the standard material in a completely new way, material on mock theta functions—undoubtedly behind the theory of public key cryptosystems while also introducing a number of new topics emanating from the last year of Ramanujan’s life. and digital signature schemes. The book focuses Interview with Martin Davis that would be suitable as a junior-senior level It should be emphasized that the material on on these key topics while developing the undergraduate textbook. The author does not mock theta functions is perhaps Ramanujan’s mathematical tools needed for the construction page 560 begin in the traditional manner with abstract deepest work more than half of the material in and security analysis of diverse cryptosystems. geometric axioms. Instead, he assumes the real the book is on q- series, including mock theta Only basic linear algebra is required of the numbers, and begins his treatment by functions; the remaining part deals with theta reader; techniques from algebra, number theory, introducing such modern concepts as a metric function identities, modular equations, and probability are introduced and developed as space, vector space notation, and groups, and incomplete elliptic integrals of the first kind and required.
    [Show full text]
  • 1 for Philosophy of Mathematics: 5 Questions. Solomon Feferman
    For Philosophy of Mathematics: 5 Questions. Solomon Feferman Patrick Suppes Family Professor of Humanities and Sciences, Em. Professor of Mathematics and Philosophy, Em. Stanford University The 5 Questions 1. Why were you initially drawn to the foundations of mathematics and/or the philosophy of mathematics? 2. What examples from your work (or the work of others) illustrate the use of mathematics for philosophy? 3. What is the proper role of philosophy of mathematics in relation to logic, foundations of mathematics, the traditional core areas of mathematics, and science? 4. What do you consider the most neglected topics and/or contributions in late 20th century philosophy of mathematics? 5. What are the most important open problems in the philosophy of mathematics and what are the prospects for progress? My Responses 1. I’m a philosopher by temperament but not by training, and a philosopher of logic and mathematics in part, as I shall relate, by accidents of study and career. Yet, it seems to me that if I was destined for anything it was to be a logician primarily motivated by philosophical concerns. When I was a teenager growing up in Los Angeles in the early 1940s, my dream was to become a mathematical physicist: I was fascinated by the ideas of relativity theory and quantum mechanics, and I read popular expositions which, in those days, besides Einstein’s The Meaning of Relativity, was limited to books by the likes of Arthur S. Eddington and James Jeans. I breezed through the high-school mathematics courses (calculus was not then on offer, and my teachers barely understood it), but did less well in physics, which I should have taken as a reality check.
    [Show full text]
  • Nationalism, Formal Logic, and Interwar Poland
    Science in Central and Eastern Europe David E. Dunning ORCID 0000-0001-6824-5926 Princeton University, Department of History (Princeton, USA) [email protected] The logic of the nation: Nationalism, formal logic, and interwar Poland Abstract Between the World Wars, a robust research community emerged in the nascent discipline of mathematical logic in Warsaw. Logic in Warsaw grew out of overlapping imperial legacies, launched mainly by Polish-speaking scholars who had trained in Habsburg universities and had come during the First World War to the Uni- versity of Warsaw, an institution controlled until recently by Rus- sia and reconstructed as Polish under the auspices of German occupation. The intellectuals who formed the Warsaw School of Logic embraced a patriotic Polish identity. Competitive na- tionalist attitudes were common among interwar scientists – a stance historians have called “Olympic internationalism,” in which nationalism and internationalism interacted as comple- mentary rather than conflicting impulses. PUBLICATION e-ISSN 2543-702X INFO ISSN 2451-3202 DIAMOND OPEN ACCESS CITATION Dunning, David E. 2018: The logic of the nation: Nationalism, formal logic, and interwar Poland. Studia Historiae Scientiarum 17, pp. 207–251. Available online: https://doi.org/10.4467/2543702XSHS.18.009.9329. ARCHIVE RECEIVED: 2.03.2018 LICENSE POLICY ACCEPTED: 20.09.2018 Green SHERPA / PUBLISHED ONLINE: 12.12.2018 RoMEO Colour WWW http://www.ejournals.eu/sj/index.php/SHS/; http://pau.krakow.pl/Studia-Historiae-Scientiarum/ David E. Dunning The logic of the nation: Nationalism, formal logic, and interwar Poland One of the School’s leaders, Jan Łukasiewicz, developed a system of notation that he promoted as a universal tool for logical research and communication.
    [Show full text]
  • Alfred Tarski. Life and Logic Reviewed by Hourya Benis Sinaceur
    Book Review Alfred Tarski. Life and Logic Reviewed by Hourya Benis Sinaceur Alfred Tarski. Life and Logic cal notions by mathematical means. For instance, Anita Burdman Feferman and Solomon Feferman his decision method for elementary algebra and Cambridge University Press, 2004 geometry is indeed a generalization of a Sturm’s US$34.99, 425 pages algorithm for counting the real roots of a poly- ISBN-13: 978-0-521-80240-6 nomial. Tarski was eager to bring to the fore new connections between mathematics and logic and Alfred Tarski (1901–1983) is one of the two to show how mathematized concepts of logic can greatest logicians of the twentieth century, the help to solve mathematical problems. Thus, Tarski other being Kurt Gödel (1906–1978). Each began initiated the shift from the foundational aims for his career in Europe, respectively in Warsaw and which various branches of modern logic were origi- Vienna, and came to America shortly before the nally developed to heuristic aims for which a new Second World War. In contrast to the otherworldly branch would turn out to be especially efficient. Gödel, Tarski was ambitious and practical. He Namely, Tarski is the father of model theory, the strove for, and succeeded at, building a school of results and tools of which are nowadays commonly logic at the University of California, Berkeley, that used in various mathematical disciplines (algebra, attracted students and distinguished researchers analysis, geometry, computer science, etc.). from all over the world. Tarski’s views and achievements have also Tarski was the leader of the “semantic turn” in changed the way we think about the nature, scope, mathematical logic.
    [Show full text]
  • CMS NOTES Is Long
    CMS: THE CANADIAN MOBILE SOCIETY Joseph Khoury and Graham P. Wright Associate Executive Director Executive Director IN THIS ISSUE DANS CE NUMÉRO Relocation of the Executive Office. Editorial ....................................2 it possible for an office for the December 2008, and possibly Meetings Coordinator to be April 2009. Éditorial ....................................3 incorporated within the other available space at 577 King We are grateful for the Book Review: Summa Edward. The re-arrangements tremendous spirit showed Summarum .............................4 For almost thirty years, the were completed in July and by the Executive Office staff Canadian Mathematical the demolition took place at during this period and for the Book Review: The Society has enjoyed a strong the beginning of August. The enormous effort made by the Wraparound Universe ..........5 relationship with the University University agreed to let the University of Ottawa to ensure of Ottawa at the scientific and Nouvelles du department.........5 CMS use one office at 575 King a smooth move with a minimal the administrative levels. The Edward as a storage room. level of disruption. For their CMS Executive Office has been Brief Book Reviews ..................6 support and assistance with located at 577 King Edward During demolition, the outside the relocation, thanks are Education Notes .......................7 Avenue, next door to the walls of another extension of due to the Executive Office Department of Mathematics 577 King Edward showed signs staff, Victor Leblanc (Chair CMS Winter 2008 Meeting and Statistics. During these of significant deterioration – Department of Mathematics Réunion d’hiver 2008 .............10 years, this relationship has and this part was declared and Statistics), André Lalonde proven to be extremely efficient, Call for nominations - 2009 unsafe for occupancy.
    [Show full text]
  • Notices of the American Mathematical Society ISSN 0002-9920
    Notices of the American Mathematical Society ISSN 0002-9920 springer.com New and Noteworthy from Springer Lie Sphere How Does One Cut a Triangle? Random Curves nd of the American Mathematical Society Geometry 2 A. Soifer, University of Colorado, Colorado Journeys of a Mathematician EDITION November 2007 Volume 54, Number 10 With Applications Springs, CO, USA N. I. Koblitz , University of Washington, Seattle, to Submanifolds This title demonstrates how diff erent areas WA, USA T. E. Cecil , College of the Holy Cross, of mathematics can be juxtaposed in the These autobiographical memoirs of Neal Worcester, MA, USA solution of any given problem by presenting Koblitz, coinventor of one of the two most an interesting problem, “How does one cut a This book begins with Lie’s construction of the popular forms of encryption and digital triangle?”. By providing analytical proofs and space of spheres, including the fundamental signature, cover many topics besides his own counterexamples, he proves that research is notions of oriented contact, parabolic pencils personal career in mathematics and a collection of mathematical ideas developed of spheres and Lie sphere transformation. The cryptography - travels to the Soviet Union, throughout the course of history. Latin America, Vietnam and elsewhere, link with Euclidean submanifold theory is established via the Legendre map, providing a I very warmly recommend the book and political activism, and academic controversies framework for the study of submanifolds, hope the readers will have pleasure in thinking relating to math education, the C. P. Snow especially those characterized by restrictions about the unsolved problems and will nd new two-culture problem, and mistreatment of on their curvature spheres.
    [Show full text]
  • Anita Burdman Feferman
    Anita Burdman Feferman July 27, 1927-April 9, 2015 Anita Burdman Feferman died peacefully at the age of 87 in hospice care at her home, to the surprise of many who thought her invincible. Professionally, she was noted as the author of two highly praised biographies, and personally as a vibrant, stylish, athletic, direct, spontaneous, engaging and engaged human being. She was a loyal friend to young and old; to her family she was sine qua non as a loving and caring wife, mother and grandmother. Born in Los Angeles, Anita Feferman attended Hollywood High School, UCLA and the University of California at Berkeley, from which she graduated in 1948 with a B.A. After working as a teacher on a pediatric psychiatric ward in San Francisco she returned to the university in Berkeley for a degree in education, and then taught to her constant satisfaction in the Oakland elementary school system. In 1956 she moved to the Peninsula with her husband Solomon Feferman, who had just joined the faculty of Stanford University in the departments of Mathematics and Philosophy. They came with two very young daughters and so Anita traded teaching for raising a family. Always a serious reader and natural storyteller, in her 40s she took writing courses at Stanford and began her writing career with a number of short stories and interviews. It was also at Stanford that she became an early and active member of a notable biographers’ seminar initiated by Diane Middlebrook and Barbara Babcock. Anita Feferman’s first biography was Politics, Logic and Love: The Life of Jean van Heijenoort (reprinted in paper as From Trotsky to Gödel), published in 1993.
    [Show full text]
  • Philosophy in Review/Comptes Rendus Philosophiques Academic
    Philosophy in Review/Comptes rendus philosophiques Editor/ Associate Editors / directeur directeurs adjoints Dauid J. F. Scott Jeffrey Foss Robert Piercey Department of Philosophy Department of Philosophy Campion College at the University of Victoria University of Victoria University of Regina P.O. Box 3045 Stn. CSC P.O. Box 3045 Stn. CSC 3737 Wascana Parkway Victoria, BC Victoria, BC Regina, SK Canada V8W 3P4 Canada V8W 3P4 Canada S4S OA2 Tel: 250-721-7512 Tel: 250-721-7512 Tel: 306-359-1214 Fax: 250-721-7511 Fax: 250-721-7511 Fax: 306-359-1200 E-Mail: [email protected] E-Mail: [email protected] E-Mail: [email protected] Website: http://www.uvic.ca/philosophy/pir/index.html PIR publishes both invited reviews and unsolicited reviews of new and significant books in philosophy. We post on our website a list of books for which we seek reviewers, and welcome identification of books deserving review. Normally reviews are 1000 words. CRP diffuse des comptes rendus dument oonvies, ainsi que d'autres leur etant soumis, a condition que les auteurs traitent de publications nouvelles et marquantes dans le domaine de la philosophie. Le liste des livres suggeres pour lesquels un compte rendu est requis est affichee sur notre site internet. Bien sur, nous accueillons aussi favorablement toute autre suggestion de titres pour compte rendu. De fa<;on generale, oes comptes rendus doivent se restreindre a 1000 mots. Subscription prices for a volume of six issues institutions Individuals $132 (Canada) $63.50 (Canada) US$142 (U.S.A.) US$73 (U.S.A.) Cdn$175/US$160/£80/E120
    [Show full text]
  • My Route to Arithmetization Solomon Feferman
    My route to arithmetization Solomon Feferman For Per Lindström I had the pleasure of renewing my acquaintance with Per Lindström at the meeting of the Seventh Scandinavian Logic Symposium, held in Uppsala in August 1996. There at lunch one day, Per said he had long been curious about the development of some of the ideas in my paper [1960] on the arithmetization of metamathematics. In particular, I had used the construction of a non-standard definition !* of the set of axioms of P (Peano Arithmetic) to show that P + {¬ Con!} is interpretable in P, where ! is a standard definition of the axioms of P and Con! expresses the consistency of P via that presentation. Per pointed out that there is a simple “two-line” proof of this interpretability result which does not require the use of such formulas as !*, and he wondered whether I had been aware of that. In fact, his proof had never occurred to me, and if it had at the time, it is possible I would never have been led to the use of non-natural definitions. Per regarded this as a happy accident, since subsequent work by him and others on interpretability made essential use of such definitions. In our conversation, I enlarged a bit on the background to my work on arithmetization, and when I was invited to contribute to this special issue of Theoria dedicated to Lindström, it seemed a natural choice to use the occasion to fill out the story. One caveat, though: the following is drawn largely from memory, not always reliable, supplemented by consultation of the 1960 paper and the 1957 dissertation from which it was drawn.
    [Show full text]
  • Anita Burdman Feferman Papers SC1206
    http://oac.cdlib.org/findaid/ark:/13030/c8668gf3 No online items Guide to the Anita Burdman Feferman Papers SC1206 Daniel Hartwig & Jenny Johnson Department of Special Collections and University Archives May 2014 Green Library 557 Escondido Mall Stanford 94305-6064 [email protected] URL: http://library.stanford.edu/spc Guide to the Anita Burdman SC1206 1 Feferman Papers SC1206 Language of Material: English Contributing Institution: Department of Special Collections and University Archives Title: Anita Burdman Feferman papers creator: Feferman, Solomon. creator: Feferman, Anita Burdman. Identifier/Call Number: SC1206 Physical Description: 6.5 Linear Feet(6 cassette boxes, one half-manuscript box, 1 carton, 1 media box) Date (inclusive): 1932-2001, bulk 1993-1996 Date (bulk): bulk Information about Access The materials are open for research use. Audio-visual materials are not available in original format, and must be reformatted to a digital use copy. Ownership & Copyright All requests to reproduce, publish, quote from, or otherwise use collection materials must be submitted in writing to the Head of Special Collections and University Archives, Stanford University Libraries, Stanford, California 94305-6064. Consent is given on behalf of Special Collections as the owner of the physical items and is not intended to include or imply permission from the copyright owner. Such permission must be obtained from the copyright owner, heir(s) or assigns. See: http://library.stanford.edu/spc/using-collections/permission-publish. Restrictions also apply to digital representations of the original materials. Use of digital files is restricted to research and educational purposes. Preferred Citation [identification of item], Anita Burdman Feferman papers (SC1206).
    [Show full text]
  • NEW ESSAYS on TARSKI and PHILOSOPHY This Page Intentionally Left Blank New Essays on Tarski and Philosophy
    NEW ESSAYS ON TARSKI AND PHILOSOPHY This page intentionally left blank New Essays on Tarski and Philosophy Edited by DOUGLAS PATTERSON 1 1 Great Clarendon Street, Oxford Oxford University Press is a department of the University of Oxford. It furthers the University’s objective of excellence in research, scholarship, and education by publishing worldwide in Oxford New York Auckland Cape Town Dar es Salaam Hong Kong Karachi Kuala Lumpur Madrid Melbourne Mexico City Nairobi New Delhi Shanghai Taipei Toronto With offices in Argentina Austria Brazil Chile Czech Republic France Greece Guatemala Hungary Italy Japan Poland Portugal Singapore South Korea Switzerland Thailand Turkey Ukraine Vietnam Oxford is a registered trade mark of Oxford University Press in the UK and in certain other countries Published in the United States by Oxford University Press Inc., New York the Several Contributors 2008 The moral rights of the authors have been asserted Database right Oxford University Press (maker) First published 2008 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, without the prior permission in writing of Oxford University Press, or as expressly permitted by law, or under terms agreed with the appropriate reprographics rights organization. Enquiries concerning reproduction outside the scope of the above should be sent to the Rights Department, Oxford University Press, at the address above You must not circulate this book in any other binding or cover
    [Show full text]