Notices of the American Mathematical Society ISSN 0002-9920

Total Page:16

File Type:pdf, Size:1020Kb

Notices of the American Mathematical Society ISSN 0002-9920 Notices of the American Mathematical Society ISSN 0002-9920 springer.com New and Noteworthy from Springer Lie Sphere How Does One Cut a Triangle? Random Curves nd of the American Mathematical Society Geometry 2 A. Soifer, University of Colorado, Colorado Journeys of a Mathematician EDITION November 2007 Volume 54, Number 10 With Applications Springs, CO, USA N. I. Koblitz , University of Washington, Seattle, to Submanifolds This title demonstrates how diff erent areas WA, USA T. E. Cecil , College of the Holy Cross, of mathematics can be juxtaposed in the These autobiographical memoirs of Neal Worcester, MA, USA solution of any given problem by presenting Koblitz, coinventor of one of the two most an interesting problem, “How does one cut a This book begins with Lie’s construction of the popular forms of encryption and digital triangle?”. By providing analytical proofs and space of spheres, including the fundamental signature, cover many topics besides his own counterexamples, he proves that research is notions of oriented contact, parabolic pencils personal career in mathematics and a collection of mathematical ideas developed of spheres and Lie sphere transformation. The cryptography - travels to the Soviet Union, throughout the course of history. Latin America, Vietnam and elsewhere, link with Euclidean submanifold theory is established via the Legendre map, providing a I very warmly recommend the book and political activism, and academic controversies framework for the study of submanifolds, hope the readers will have pleasure in thinking relating to math education, the C. P. Snow especially those characterized by restrictions about the unsolved problems and will nd new two-culture problem, and mistreatment of on their curvature spheres. This new edition ones. Paul Erdös women in academia. The stories speak for contains revised sections on taut submani- themselves and refl ect the experiences of a Doctoral Programs folds, compact proper Dupin submanifolds, 2nd ed. 2008. Approx. 155 p. 80 illus. Softcover student and later a scientist caught up in the reducible Dupin submanifolds, Lie frames and ISBN 978-0-387-74650-0 $19.95 tumultuous events of his generation. in Mathematics frame reductions. Also included is new 2008. Approx. 375 p. 28 illus. Hardcover Education in the material on isoparametric hyperspaces in Mathematics and Technology ISBN 978-3-540-74077-3 $49.95 spheres, Dupin hyperspaces with three and C. Rousseau , Y. Saint-Aubin , Université de United States: four principle curvatures. Montreal, QC, Canada Diff erential rd 2007 Status Report 2nd ed. 2008. Approx. 225 p. 26 illus. The authors present useful, elegant Analysis on 3 (Universitext) Softcover mathematical concepts such as Markov chains, Complex EDITION function iteration and simple groups, and page 1283 ISBN 978-0-387-74655-5 approx. $49.95 develop these concepts in the context of Manifolds A Singular applications to important, practical problems R. O. Wells, Jr. , Jacobs University Bremen, Survey of Introduction to such as web-navigation, data compression Germany CD-ROM and error correcting codes. The authors Commutative The third edition of this standard reference Non-Desarguesian highlight how mathematical modeling, contains a new appendix which gives an Algebra together with the power of mathematical overview of certain developments in the fi eld Planes G. Greuel , G. Pfi ster , University of Kaiser- tools and abstraction, have been crucial for during the decades since the book fi rst slautern, Germany innovation in technology. The topics are appeared. page 1294 presented with clarity,and the mathematics is This substantially enlarged second edition Volume 54, Number 10, Pages 1273–1448, November 2007 expressed in a straightforward manner. From a review of the 2nd Edition: …the aims to lead a further stage in the computa- Numerous exercises at the end of every new edition of Professor Wells’ book is timely tional revolution in commutative algebra. This section provide practice and reinforce the and welcome…an excellent introduction for is the fi rst handbook/tutorial to extensively material in the chapter. An engaging quality any mathematician who suspects that complex deal with SINGULAR. Among the book’s most of this book is that the authors also put the manifold techniques may be relevant to his distinctive features is a new, completely mathematical material in a historical context work. Nigel Hitchin, Bulletin of the unifi ed treatment of the global and local and not just a practical one. London Mathematical Society theories. Another feature of the book is its Part of the new Springer series for under- breadth of coverage of theoretical topics in 3rd ed. 2008. Approx. 300 p. (Graduate Texts in graduates SUMAT: Springer Undergraduate the portions of commutative algebra closest Mathematics, Volume 65) Hardcover Series in Mathematics and Technology to algebraic geometry, with algorithmic ISBN 978-0-387-73891-8 approx. $59.95 treatments of almost every topic. 2008. Approx. 440 p. 100 ill. (Springer Undergraduate Series in Mathematics and 2nd ed. 2008. XVIII, 689 p. With CD-ROM. Technology) Softcover, Hardcover English version: ISBN 978-3-540-73541-0 $69.95 ISBN 978-0-387-69215-9 approx. $59.95 French version: ISBN 978-0-387-69212-8 Easy Ways to Order for the Americas Write: Springer Order Department, PO Box 2485, Secaucus, NJ 07096-2485, USA Call: (toll free) 1- 800-SPRINGER Fax: +1(201)348-4505 Email: [email protected] or for outside the Americas Write: Springer Distribution Center GmbH, Haberstrasse 7, 69126 Heidelberg, Germany Call: +49 (0) 6221-345-4301 Fax : +49 (0) 6221-345-4229 Email: SDC-bookorder@ springer.com Prices are subject to change without notice. All prices are net prices. 013331x Collapsing Boy's umbrellas (see page 1356) Trim: 8.25" x 10.75" 176 pages on 40 lb Cougar Opaque • Spine: 1/4" • Print Cover on 9pt Carolina ,!4%8 ,!4%8 ,!4%8 Pro INSTITUTE FOR PURE AND APPLIED MATHEMATICS Los Angeles, California March 10 – June 13, 2008 ORGANIZING COMMITTEE: ANDREA BERTOZZI (UCLA), YANN BRENIER (UNIVERSITÉ DE NICE SOPHIA ANTIPOLIS), WILFRID GANGBO (GEORGIA INSTITUTE OF TECHNOLOGY), PETER MARKOWICH (UNIVERSITÄT WIEN), JEAN-MICHEL MOREL (ÉCOLE NORMALE SUPÉRIEURE DE CACHAN) Scientific Overview The general problem of irrigation and transportation in physics and biology is to transport in the most economical way a source mass distribution onto a fixed well distribution. Both source and wells distributions are usually modeled as positive measures in a Cartesian space or in a metric space. This problem can be looked at as a generalization of the optimal assignment or the optimal flow problem in operational research, in which case the subjacent space is a fixed graph. In the new more general setting, the irrigation network is itself an unknown of the problem. The examples are manifold: lungs, blood vessels, irrigation or draining networks, natural or artificial. On the side of urban optimization, the question ranges from the optimization of the supply networks (power, water, wires) to the public transportation and traffic optimization problem. One of the simplest versions of the problem is the Monge-Kantorovich problem, where the cost assigned to transportation is just a convex increasing function of distance. Fluid mechanics arguments have to be added as soon as the transportation network is optimized with a flow-dependent cost as is natural in most of the above mentioned situation: the thicker the vessel, the road, the channel, the wire etc., the cheaper the transportation. The aim of the workshop is to put together physicists, biologists, mathematicians working on the optimization of transportation networks. Workshop Schedule • Tutorials, March 10-14, 2008 • Workshop 1: Aspects of Optimal Transport in Geometry and Calculus of Variations, March 31 – April 4, 2008 • Workshop 2: Numerics and Dynamics for Optimal Transport, April 14 – 18, 2008 • Workshop 3: Transport Systems in Geography, Geosciences, and Networks, May 5 – 9, 2008 • Workshop 4: Optimal Transport in the Human Body: Lungs and Blood, May 19 – 23, 2008 • Mini Workshop: Entropies and Optimal Transport in Quantum Mechanics, June 5 – 6, 2008 • Culminating Workshop at Lake Arrowhead Conference Center, June 8 – 13, 2008 Participation This long program will involve a community of senior and junior researchers. The intent is for participants to have an opportunity to learn about the mathematics of optimal transport from the perspective of multiple fields and to meet a diverse group of people and have an opportunity and to meet a diverse group of people and have an opportunity to form new collaborations. Full and partial support for long-term participants is available. We are especially interested in applicants who intend to participate in the entire program (March 10 – June 13, 2008), but will consider applications for shorter periods. Funding is available for participants at all academic levels, though recent PhDs, graduate students, and researchers in the early stages of their careers are especially encouraged to apply. Encouraging the careers of women and minority mathematicians and scientists is an important component of IPAM's mission and we welcome their applications. More information and an application is available online. www.ipam.ucla.edu/programs/ot2008 IPAM is an NSF funded institute New & Forthcoming from Birkhäuser Vortices in the Magnetic Self-Dual Gauge Field Vortices Advanced Algebra Ginzburg–Landau Model An Analytical Approach ANTHONY W. KNAPP, State University of New York, Stony Brook, USA ETIENNE SANDIER, Université Paris-XII Val-de-Marne, GABRIELLA TARANTELLO, Università di Roma Créteil, France; SYLVIA SERFATY*, Courant Institute of ‘Tor Vergata’, Italy Basic Algebra and Advanced Algebra systematically Mathematical Sciences, New York, NY, USA The goal of this text is to form an understanding of develop concepts and tools in algebra that are vital *Winner of the European Young Investigator self-dual solutions and gauge fi eld theories which to every mathematician, whether pure or applied, Award (EURYI) 2007 are of great importance since they keep internal aspiring or established.
Recommended publications
  • CURRENT EVENTS BULLETIN Friday, January 8, 2016, 1:00 PM to 5:00 PM Room 4C-3 Washington State Convention Center Joint Mathematics Meetings, Seattle, WA
    A MERICAN M ATHEMATICAL S OCIETY CURRENT EVENTS BULLETIN Friday, January 8, 2016, 1:00 PM to 5:00 PM Room 4C-3 Washington State Convention Center Joint Mathematics Meetings, Seattle, WA 1:00 PM Carina Curto, Pennsylvania State University What can topology tell us about the neural code? Surprising new applications of what used to be thought of as “pure” mathematics. 2:00 PM Yuval Peres, Microsoft Research and University of California, Berkeley, and Lionel Levine, Cornell University Laplacian growth, sandpiles and scaling limits Striking large-scale structure arising from simple cellular automata. 3:00 PM Timothy Gowers, Cambridge University Probabilistic combinatorics and the recent work of Peter Keevash The major existence conjecture for combinatorial designs has been proven! 4:00 PM Amie Wilkinson, University of Chicago What are Lyapunov exponents, and why are they interesting? A basic tool in understanding the predictability of physical systems, explained. Organized by David Eisenbud, Mathematical Sciences Research Institute Introduction to the Current Events Bulletin Will the Riemann Hypothesis be proved this week? What is the Geometric Langlands Conjecture about? How could you best exploit a stream of data flowing by too fast to capture? I think we mathematicians are provoked to ask such questions by our sense that underneath the vastness of mathematics is a fundamental unity allowing us to look into many different corners -- though we couldn't possibly work in all of them. I love the idea of having an expert explain such things to me in a brief, accessible way. And I, like most of us, love common-room gossip.
    [Show full text]
  • TWAS Fellowships Worldwide
    CDC Round Table, ICTP April 2016 With science and engineering, countries can address challenges in agriculture, climate, health TWAS’s and energy. guiding principles 2 Food security Challenges Water quality for a Energy security new era Biodiversity loss Infectious diseases Climate change 3 A Globally, 81 nations fall troubling into the category of S&T- gap lagging countries. 48 are classified as Least Developed Countries. 4 The role of TWAS The day-to-day work of TWAS is focused in two critical areas: •Improving research infrastructure •Building a corps of PhD scholars 5 TWAS Research Grants 2,202 grants awarded to individuals and research groups (1986-2015) 6 TWAS’ AIM: to train 1000 PhD students by 2017 Training PhD-level scientists: •Researchers and university-level educators •Future leaders for science policy, business and international cooperation Rapidly growing opportunities P BRAZIL A K I N D I CA I RI A S AF TH T SOU A N M KENYA EX ICO C H I MALAYSIA N A IRAN THAILAND TWAS Fellowships Worldwide NRF, South Africa - newly on board 650+ fellowships per year PhD fellowships +460 Postdoctoral fellowships +150 Visiting researchers/professors + 45 17 Programme Partners BRAZIL: CNPq - National Council MALAYSIA: UPM – Universiti for Scientific and Technological Putra Malaysia WorldwideDevelopment CHINA: CAS - Chinese Academy of KENYA: icipe – International Sciences Centre for Insect Physiology and Ecology INDIA: CSIR - Council of Scientific MEXICO: CONACYT– National & Industrial Research Council on Science and Technology PAKISTAN: CEMB – National INDIA: DBT - Department of Centre of Excellence in Molecular Biotechnology Biology PAKISTAN: ICCBS – International Centre for Chemical and INDIA: IACS - Indian Association Biological Sciences for the Cultivation of Science PAKISTAN: CIIT – COMSATS Institute of Information INDIA: S.N.
    [Show full text]
  • Ζ−1 Using Theorem 1.2
    UC San Diego UC San Diego Electronic Theses and Dissertations Title Ihara zeta functions of irregular graphs Permalink https://escholarship.org/uc/item/3ws358jm Author Horton, Matthew D. Publication Date 2006 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA, SAN DIEGO Ihara zeta functions of irregular graphs A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Mathematics by Matthew D. Horton Committee in charge: Professor Audrey Terras, Chair Professor Mihir Bellare Professor Ron Evans Professor Herbert Levine Professor Harold Stark 2006 Copyright Matthew D. Horton, 2006 All rights reserved. The dissertation of Matthew D. Horton is ap- proved, and it is acceptable in quality and form for publication on micro¯lm: Chair University of California, San Diego 2006 iii To my wife and family Never hold discussions with the monkey when the organ grinder is in the room. |Sir Winston Churchill iv TABLE OF CONTENTS Signature Page . iii Dedication . iv Table of Contents . v List of Figures . vii List of Tables . viii Acknowledgements . ix Vita ...................................... x Abstract of the Dissertation . xi 1 Introduction . 1 1.1 Preliminaries . 1 1.2 Ihara zeta function of a graph . 4 1.3 Simplifying assumptions . 8 2 Poles of the Ihara zeta function . 10 2.1 Bounds on the poles . 10 2.2 Relations among the poles . 13 3 Recovering information . 17 3.1 The hope . 17 3.2 Recovering Girth . 18 3.3 Chromatic polynomials and Ihara zeta functions . 20 4 Relations among Ihara zeta functions .
    [Show full text]
  • I. Overview of Activities, April, 2005-March, 2006 …
    MATHEMATICAL SCIENCES RESEARCH INSTITUTE ANNUAL REPORT FOR 2005-2006 I. Overview of Activities, April, 2005-March, 2006 …......……………………. 2 Innovations ………………………………………………………..... 2 Scientific Highlights …..…………………………………………… 4 MSRI Experiences ….……………………………………………… 6 II. Programs …………………………………………………………………….. 13 III. Workshops ……………………………………………………………………. 17 IV. Postdoctoral Fellows …………………………………………………………. 19 Papers by Postdoctoral Fellows …………………………………… 21 V. Mathematics Education and Awareness …...………………………………. 23 VI. Industrial Participation ...…………………………………………………… 26 VII. Future Programs …………………………………………………………….. 28 VIII. Collaborations ………………………………………………………………… 30 IX. Papers Reported by Members ………………………………………………. 35 X. Appendix - Final Reports ……………………………………………………. 45 Programs Workshops Summer Graduate Workshops MSRI Network Conferences MATHEMATICAL SCIENCES RESEARCH INSTITUTE ANNUAL REPORT FOR 2005-2006 I. Overview of Activities, April, 2005-March, 2006 This annual report covers MSRI projects and activities that have been concluded since the submission of the last report in May, 2005. This includes the Spring, 2005 semester programs, the 2005 summer graduate workshops, the Fall, 2005 programs and the January and February workshops of Spring, 2006. This report does not contain fiscal or demographic data. Those data will be submitted in the Fall, 2006 final report covering the completed fiscal 2006 year, based on audited financial reports. This report begins with a discussion of MSRI innovations undertaken this year, followed by highlights
    [Show full text]
  • Mirror Symmetry for Honeycombs
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 373, Number 1, January 2020, Pages 71–107 https://doi.org/10.1090/tran/7909 Article electronically published on September 10, 2019 MIRROR SYMMETRY FOR HONEYCOMBS BENJAMIN GAMMAGE AND DAVID NADLER Abstract. We prove a homological mirror symmetry equivalence between the A-brane category of the pair of pants, computed as a wrapped microlocal sheaf category, and the B-brane category of its mirror LG model, understood as a category of matrix factorizations. The equivalence improves upon prior results in two ways: it intertwines evident affine Weyl group symmetries on both sides, and it exhibits the relation of wrapped microlocal sheaves along different types of Lagrangian skeleta for the same hypersurface. The equivalence proceeds through the construction of a combinatorial realization of the A-model via arboreal singularities. The constructions here represent the start of a program to generalize to higher dimensions many of the structures which have appeared in topological approaches to Fukaya categories of surfaces. Contents 1. Introduction 71 2. Combinatorial A-model 78 3. Mirror symmetry 95 4. Symplectic geometry 100 Acknowledgments 106 References 106 1. Introduction This paper fits into the framework of homological mirror symmetry, as introduced in [23] and expanded in [19, 20, 22]. The formulation of interest to us relates the A-model of a hypersurface X in a toric variety to the mirror Landau-Ginzburg B- model of a toric variety X∨ equipped with superpotential W ∨ ∈O(X∨). Following Mikhalkin [27], a distinguished “atomic” case is when the hypersurface is the pair of pants ∗ n ∼ ∗ 1 n Pn−1 = {z1 + ···+ zn +1=0}⊂(C ) = T (S ) n+1 with mirror Landau-Ginzburg model (A ,z1 ···zn+1).
    [Show full text]
  • Publication List, Dated 2010
    References [1] V. A. Voevodski˘ı. Galois group Gal(Q¯ =Q) and Teihmuller modular groups. In Proc. Conf. Constr. Methods and Alg. Number Theory, Minsk, 1989. [2] V. A. Voevodski˘ıand G. B. Shabat. Equilateral triangulations of Riemann surfaces, and curves over algebraic number fields. Dokl. Akad. Nauk SSSR, 304(2):265{268, 1989. [3] G. B. Shabat and V. A. Voevodsky. Drawing curves over number fields. In The Grothendieck Festschrift, Vol. III, volume 88 of Progr. Math., pages 199{227. Birkh¨auser Boston, Boston, MA, 1990. [4] V. A. Voevodski˘ı. Etale´ topologies of schemes over fields of finite type over Q. Izv. Akad. Nauk SSSR Ser. Mat., 54(6):1155{1167, 1990. [5] V. A. Voevodski˘ı. Flags and Grothendieck cartographical group in higher dimensions. CSTARCI Math. Preprints, (05-90), 1990. [6] V. A. Voevodski˘ı.Triangulations of oriented manifolds and ramified coverings of sphere (in Russian). In Proc. Conf. of Young Scientists. Moscow Univ. Press, 1990. [7] V. A. Voevodski˘ı and M. M. Kapranov. 1-groupoids as a model for a homotopy category. Uspekhi Mat. Nauk, 45(5(275)):183{184, 1990. [8] V. A. Voevodski˘ıand M. M. Kapranov. Multidimensional categories (in Russian). In Proc. Conf. of Young Scientists. Moscow Univ. Press, 1990. [9] V. A. Voevodski˘ıand G. B. Shabat. Piece-wise euclidean approximation of Jacobians of algebraic curves. CSTARCI Math. Preprints, (01-90), 1990. [10] M. M. Kapranov and V. A. Voevodsky. Combinatorial-geometric aspects of polycategory theory: pasting schemes and higher Bruhat orders (list of results). Cahiers Topologie G´eom.Diff´erentielle Cat´eg., 32(1):11{27, 1991.
    [Show full text]
  • Alfred Tarski and a Watershed Meeting in Logic: Cornell, 1957 Solomon Feferman1
    Alfred Tarski and a watershed meeting in logic: Cornell, 1957 Solomon Feferman1 For Jan Wolenski, on the occasion of his 60th birthday2 In the summer of 1957 at Cornell University the first of a cavalcade of large-scale meetings partially or completely devoted to logic took place--the five-week long Summer Institute for Symbolic Logic. That meeting turned out to be a watershed event in the development of logic: it was unique in bringing together for such an extended period researchers at every level in all parts of the subject, and the synergetic connections established there would thenceforth change the face of mathematical logic both qualitatively and quantitatively. Prior to the Cornell meeting there had been nothing remotely like it for logicians. Previously, with the growing importance in the twentieth century of their subject both in mathematics and philosophy, it had been natural for many of the broadly representative meetings of mathematicians and of philosophers to include lectures by logicians or even have special sections devoted to logic. Only with the establishment of the Association for Symbolic Logic in 1936 did logicians begin to meet regularly by themselves, but until the 1950s these occasions were usually relatively short in duration, never more than a day or two. Alfred Tarski was one of the principal organizers of the Cornell institute and of some of the major meetings to follow on its heels. Before the outbreak of World War II, outside of Poland Tarski had primarily been involved in several Unity of Science Congresses, including the first, in Paris in 1935, and the fifth, at Harvard in September, 1939.
    [Show full text]
  • Fifteenth Annual Commencement Exercises Benjamin N
    Yeshiva University, Cardozo School of Law LARC @ Cardozo Law Pre-2019 Commencement Programs Graduation 6-6-1993 Fifteenth Annual Commencement Exercises Benjamin N. Cardozo School of Law Follow this and additional works at: https://larc.cardozo.yu.edu/pre-19-programs Part of the Law Commons Recommended Citation Benjamin N. Cardozo School of Law, "Fifteenth Annual Commencement Exercises" (1993). Pre-2019 Commencement Programs. 15. https://larc.cardozo.yu.edu/pre-19-programs/15 This Book is brought to you for free and open access by the Graduation at LARC @ Cardozo Law. It has been accepted for inclusion in Pre-2019 Commencement Programs by an authorized administrator of LARC @ Cardozo Law. For more information, please contact [email protected], [email protected]. - FIFTEENTI-1 ANNUAL COMMENCEMENT EXERCISES Sunday, June Sixth Nineteen Hundred and Ninety-Three at Two-Thirty in the Afternoon Avery Fisher Hall Lincoln Center New York City This program contains a listing of candidates for degrees and honors during the period July 1992-June 1993; it is not an official roster of graduates. ORDER of EXERCISES Processional HERBERT C. DOBRINSKY, Ed.D. Vice President for University Affairs Herald EGON BRENNER, D.E.E. Executive Vice President Chief Marshal Presiding NORMAN LAMM, Ph.D. President ISRAEL MILLER, D.D. Senior Vice President The National Anthem CANTOR IRA W. HELLER, M.A. Yeshiva College, 1983 Ferkauf Graduate School of Psychology, 1985 The Jewish Center, New York City Invocation MARK NELSON WILDES Class of 1993 Candidate for Semikhah, 1993 Rabbi Isaac Elchanan Theological Seminary Welcome FRANK J. MACCHIAROLA, LL.B., Ph.D.
    [Show full text]
  • Ihara Zeta Functions
    Audrey Terras 2/16/2004 fun with zeta and L- functions of graphs Audrey Terras U.C.S.D. February, 2004 IPAM Workshop on Automorphic Forms, Group Theory and Graph Expansion Introduction The Riemann zeta function for Re(s)>1 ∞ 1 −1 ζ ()sp== 1 −−s . ∑ s ∏ () n=1 n pprime= Riemann extended to all complex s with pole at s=1. Functional equation relates value at s and 1-s Riemann hypothesis duality between primes and complex zeros of zeta See Davenport, Multiplicative Number Theory. 1 Audrey Terras 2/16/2004 Graph of |Zeta| Graph of z=| z(x+iy) | showing the pole at x+iy=1 and the first 6 zeros which are on the line x=1/2, of course. The picture was made by D. Asimov and S. Wagon to accompany their article on the evidence for the Riemann hypothesis as of 1986. A. Odlyzko’s Comparison of Spacings of Zeros of Zeta and Eigenvalues of Random Hermitian Matrix. See B. Cipra, What’s Happening in Math. Sciences, 1998-1999. 2 Audrey Terras 2/16/2004 Dedekind zeta of an We’ll algebraic number field F, say where primes become prime more ideals p and infinite product of about number terms field (1-Np-s)-1, zetas Many Kinds of Zeta Np = norm of p = #(O/p), soon O=ring of integers in F but not Selberg zeta Selberg zeta associated to a compact Riemannian manifold M=G\H, H = upper half plane with arc length ds2=(dx2+dy2)y-2 , G=discrete group of real fractional linear transformations primes = primitive closed geodesics C in M of length −+()()sjν C ν(C), Selberg Zs()=− 1 e (primitive means only go Zeta = ∏ ∏( ) around once) []Cj≥ 0 Reference: A.T., Harmonic Analysis on Symmetric Duality between spectrum ∆ on M & lengths closed geodesics in M Spaces and Applications, I.
    [Show full text]
  • Interview with Mathmedia
    i “Taiwan-I-12-transcript2” — 2013/11/7 — 15:23 — page 1 — #1 i i i Interview with MathMedia Interviewee: Frans Oort Interviewer: Ching-Li Chai Venue: Institute of Mathematics Academia Sinica Date: December 3rd, 2012 Ching-Li Chai(CHAI): Good morning, Frans. Doing this interview is a pleasure. I didn’t expect this. Frans Oort (OORT): The pleasure is mine. It’s a surprise for both of us. CHAI: There is a ritual that we first invite people to talk about their formative years which is always interesting because people’s backgrounds are all different. Would you like to say something about your formative years or when you are younger and decided to go to mathematics? Some people believe that mathematicians are born. The beginning1 OORT: Let me first say something about life as a mathematician, and later I will tell some stories about my personal life. For me it is a surprise you can be together with other people, with different cultural backgrounds, in history, in bringing up, with parents on the one hand, while on the other hand you can be so close to other people. With other mathematicians all of a sudden you understand each other on a much higher level than you ever thought possible. This is one of the most exciting things I have seen in my life. Certainly this is true with my collaborator here; with Ching-Li I have so much in common, and we understand each other. I think mathematically we have a deep contact and I am very grateful for that.
    [Show full text]
  • Download Download
    R E C E N Z J E ROCZNIKI FILOZOFICZNE Tom LIX, numer 1 – 2011 Anita Burdman-Feferman, Solomon Feferman, Alfred Tarski. aycie i logika , przeł. Joanna Goli Lska-Pilarek, Marian Srebrny, Warszawa: Wydaw- nictwa Akademickie i Profesjonalne 2009, ss. 475. ISBN 978-83-60501-94-8. Nie trzeba by 4 „rasowym” logikiem lub filozofem, by wiedzie 4, kim był Alfred Tarski (1901-1983). Powszechnie znany jest jako „człowiek, który zdefiniował praw- dB” lub – w Bb szemu gronu – jako współautor twierdzenia o paradoksalnym rozkładzie kuli. Wywarł znacz =cy wpływ na rozwój całej XX-wiecznej logiki i podstaw mate- matyki, a tak be – poprzez badania z zakresu semantyki formalnej i podstaw logiki – na epistemologi B, metodologi B nauk i filozofi B j Bzyka. Stworzył semantyk B logiczn =, przyczynił si B do rozwoju metamatematyki oraz teorii modeli, osi =gn =ł znacz =ce rezultaty w teorii mnogo Vci, topologii, geometrii i arytmetyce. Ksi =b ka Alfred Tarski. aycie i logika autorstwa Anity i Solomona Fefermanów została wydana przez Wydawnictwa Akademickie i Profesjonalne, w profesjonalnym przekładzie Joanny Goli Lskiej-Pilarek i Mariana Srebrnego. Szkoda jedynie, be polski przekład pojawił si B dopiero pi B4 lat po opublikowaniu oryginału ameryka Lskiego Alfred Tarski. Life and Logic przez University of Cambridge. Nie jest chyba przypadkiem, be identyczny podtytuł nosi biografia innego wiel- kiego uczonego, który wraz z Tarskim, lecz niezale bnie od niego, zmienił oblicze logiki XX wieku – Kurta Gödla (John Casti, Werner DePauli, Gödel. aycie i logika , tłum. P. Amsterdamski, Warszawa: Wyd. CiS 2003). Z jednej strony samo bycie, jak be ró bne w obu przypadkach: pełne pasji i nami Btno Vci pierwszego, wyobcowane i egocentryczne drugiego; z drugiej – logika, wielka miło V4 ich obu.
    [Show full text]
  • ___Booknotes for Flatland Authorial Background: Edwin
    ____________ Booknotes for Flatland Authorial Background: Edwin Abbott Abbott was born in 1838, in a time when the nineteenth-century middle class had begun to rise up from social oppression in Britain. A highly distinguished head schoolmaster, English clergyman, and Shakespearean scholar, he was more interested in the fields of theology and classic literature than in mathematics. Because he sought to express concern over the social problems of the period, he recognized his motivation for writing Flatland; the book was published in 1884 under the pseudonym A. Square to protect himself from attack by those he satirizes in the book. However, although he held his interests in theology and classic literature, his presentation of geometrical concepts earned him acclaim for his intricate barbed satire of the hierarchical Victorian age. For eighty-eight years he lived; in 1926 he died, renowned and remembered for his treatise on mathematical fiction and the power of knowledge. Literary Period/Country: Victorian Period, Great Britain. Setting: The social context of the satire was during the 1800s, when socioeconomic and political changes began to create a flux of new ideas, rebellion, and tense order. The satire takes place in the two-dimensional space Flatland, where lines and shapes move “freely about, on or in the surface” (1). A hierarchical dominion exists in Flatland: Circles are priests, figures having the greater number of sides comprising the higher class, isosceles and irregular triangles are shunned from society, and women--only pinlike lines--are considered the lowliest class of all. This hierarchy emulates exactly the social order of Britain at the time.
    [Show full text]