1 for Philosophy of Mathematics: 5 Questions. Solomon Feferman
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
“The Church-Turing “Thesis” As a Special Corollary of Gödel's
“The Church-Turing “Thesis” as a Special Corollary of Gödel’s Completeness Theorem,” in Computability: Turing, Gödel, Church, and Beyond, B. J. Copeland, C. Posy, and O. Shagrir (eds.), MIT Press (Cambridge), 2013, pp. 77-104. Saul A. Kripke This is the published version of the book chapter indicated above, which can be obtained from the publisher at https://mitpress.mit.edu/books/computability. It is reproduced here by permission of the publisher who holds the copyright. © The MIT Press The Church-Turing “ Thesis ” as a Special Corollary of G ö del ’ s 4 Completeness Theorem 1 Saul A. Kripke Traditionally, many writers, following Kleene (1952) , thought of the Church-Turing thesis as unprovable by its nature but having various strong arguments in its favor, including Turing ’ s analysis of human computation. More recently, the beauty, power, and obvious fundamental importance of this analysis — what Turing (1936) calls “ argument I ” — has led some writers to give an almost exclusive emphasis on this argument as the unique justification for the Church-Turing thesis. In this chapter I advocate an alternative justification, essentially presupposed by Turing himself in what he calls “ argument II. ” The idea is that computation is a special form of math- ematical deduction. Assuming the steps of the deduction can be stated in a first- order language, the Church-Turing thesis follows as a special case of G ö del ’ s completeness theorem (first-order algorithm theorem). I propose this idea as an alternative foundation for the Church-Turing thesis, both for human and machine computation. Clearly the relevant assumptions are justified for computations pres- ently known. -
On Mathematical Problem Posing*
On Mathematical Problem Posing* EDWARD A. SILVER In mathematics classes at all levels of schooling in all itself an exercise in exploring, conjecturing, examining, and countries of the world, students can be observed solving testing-all aspects of problem solving .. 1 asks should be problems .. The quality and authenticity of these mathemat created and presented that are accessible to students and ics problems has been the subject of many discussions and ~xtend their knowledge of mathematics and problem solv debates in recent years. Much of this attention has resulted ing. Students should be given opportunities to formulate in a rich, more diverse collection of problems being incor problems from given situations and create new problems by porated into school mathematics curricula. Although the modifying the conditions of a given problem [NCIM, problems themselves have received much scrutiny, less 1991, p. 95] attention has been paid to diversifying the sources for the Despite this interest, however, there is no coherent, com problems that students are asked to consider in school Stu prehensive account of problem posing as a prut of mathe dents are almost always asked to solve only the problems matics curriculum and instruction nor has there been sys that have been presented by a teacher or a textbook Stu tematic research on mathematical problem posing [Kil dents are rarely, if ever, given opportunities to pose in patrick, 1987] For the past several years, I have been some public way their own mathematics problems. Tradi working with colleagues and students on a number of tional transmission/reception models of mathematics investigations into various aspects of problem posing . -
Mathematics 1
Mathematics 1 Mathematics Department Information • Department Chair: Friedrich Littmann, Ph.D. • Graduate Coordinator: Indranil Sengupta, Ph.D. • Department Location: 412 Minard Hall • Department Phone: (701) 231-8171 • Department Web Site: www.ndsu.edu/math (http://www.ndsu.edu/math/) • Application Deadline: March 1 to be considered for assistantships for fall. Openings may be very limited for spring. • Credential Offered: Ph.D., M.S. • English Proficiency Requirements: TOEFL iBT 71; IELTS 6 Program Description The Department of Mathematics offers graduate study leading to the degrees of Master of Science (M.S.) and Doctor of Philosophy (Ph.D.). Advanced work may be specialized among the following areas: • algebra, including algebraic number theory, commutative algebra, and homological algebra • analysis, including analytic number theory, approximation theory, ergodic theory, harmonic analysis, and operator algebras • applied mathematics, mathematical finance, mathematical biology, differential equations, dynamical systems, • combinatorics and graph theory • geometry/topology, including differential geometry, geometric group theory, and symplectic topology Beginning with their first year in residence, students are strongly urged to attend research seminars and discuss research opportunities with faculty members. By the end of their second semester, students select an advisory committee and develop a plan of study specifying how all degree requirements are to be met. One philosophical tenet of the Department of Mathematics graduate program is that each mathematics graduate student will be well grounded in at least two foundational areas of mathematics. To this end, each student's background will be assessed, and the student will be directed to the appropriate level of study. The Department of Mathematics graduate program is open to all qualified graduates of universities and colleges of recognized standing. -
Mathematics (MATH)
Course Descriptions MATH 1080 QL MATH 1210 QL Mathematics (MATH) Precalculus Calculus I 5 5 MATH 100R * Prerequisite(s): Within the past two years, * Prerequisite(s): One of the following within Math Leap one of the following: MAT 1000 or MAT 1010 the past two years: (MATH 1050 or MATH 1 with a grade of B or better or an appropriate 1055) and MATH 1060, each with a grade of Is part of UVU’s math placement process; for math placement score. C or higher; OR MATH 1080 with a grade of C students who desire to review math topics Is an accelerated version of MATH 1050 or higher; OR appropriate placement by math in order to improve placement level before and MATH 1060. Includes functions and placement test. beginning a math course. Addresses unique their graphs including polynomial, rational, Covers limits, continuity, differentiation, strengths and weaknesses of students, by exponential, logarithmic, trigonometric, and applications of differentiation, integration, providing group problem solving activities along inverse trigonometric functions. Covers and applications of integration, including with an individual assessment and study inequalities, systems of linear and derivatives and integrals of polynomial plan for mastering target material. Requires nonlinear equations, matrices, determinants, functions, rational functions, exponential mandatory class attendance and a minimum arithmetic and geometric sequences, the functions, logarithmic functions, trigonometric number of hours per week logged into a Binomial Theorem, the unit circle, right functions, inverse trigonometric functions, and preparation module, with progress monitored triangle trigonometry, trigonometric equations, hyperbolic functions. Is a prerequisite for by a mentor. May be repeated for a maximum trigonometric identities, the Law of Sines, the calculus-based sciences. -
Mathematics: the Science of Patterns
_RE The Science of Patterns LYNNARTHUR STEEN forcesoutside mathematics while contributingto humancivilization The rapid growth of computing and applicationshas a rich and ever-changingvariety of intellectualflora and fauna. helpedcross-fertilize the mathematicalsciences, yielding These differencesin perceptionare due primarilyto the steep and an unprecedentedabundance of new methods,theories, harshterrain of abstractlanguage that separatesthe mathematical andmodels. Examples from statisiicalscienceX core math- rainforest from the domainof ordinaryhuman activity. ematics,and applied mathematics illustrate these changes, The densejungle of mathematicshas beennourished for millennia which have both broadenedand enrichedthe relation by challengesof practicalapplications. In recentyears, computers between mathematicsand science. No longer just the have amplifiedthe impact of applications;together, computation study of number and space, mathematicalscience has and applicationshave swept like a cyclone across the terrainof become the science of patterlls, with theory built on mathematics.Forces -unleashed by the interactionof theseintellectu- relations among patterns and on applicationsderived al stormshave changed forever and for the better the morpholo- from the fit betweenpattern and observation. gy of mathematics.In their wake have emergednew openingsthat link diverseparts of the mathematicalforest, making possible cross- fertilizationof isolatedparts that has immeasurablystrengthened the whole. MODERN MATHEMATICSJUST MARKED ITS 300TH BIRTH- -
Unfolding of Systems of Inductive Definitions
UNFOLDINGOFSYSTEMSOFINDUCTIVE DEFINITIONS A DISSERTATION SUBMITTED TO THE DEPARTMENT OF MATHEMATICS AND THE COMMITTEE OF GRADUATE STUDIES OF STANFORD UNIVERSITY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FORTHEDEGREEOF DOCTOROFPHILOSOPHY Ulrik Torben Buchholtz December 2013 © 2013 by Ulrik Torben Buchholtz. All Rights Reserved This work is licensed under the Creative Commons Attribution 3.0 United States License. To view a copy of this license, visit http://creativecommons.org/licenses/by/3.0/us/ or send a letter to Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041, USA. This dissertation is online at: http://purl.stanford.edu/kg627pm6592 ii I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Solomon Feferman, Primary Adviser I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Grigori Mints, Co-Adviser I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Thomas Strahm Approved for the Stanford University Committee on Graduate Studies. Patricia J. Gumport, Vice Provost for Graduate Education An original signed hard copy of the signature page is on file in University Archives. iii iv ABSTRACT This thesis is a contribution to Solomon Feferman’s Unfolding Program which aims to provide a general method of capturing the operations on individuals and predicates (and the principles governing them) that are implicit in a formal axiomatic system based on open-ended schemata. -
Alfred Tarski and a Watershed Meeting in Logic: Cornell, 1957 Solomon Feferman1
Alfred Tarski and a watershed meeting in logic: Cornell, 1957 Solomon Feferman1 For Jan Wolenski, on the occasion of his 60th birthday2 In the summer of 1957 at Cornell University the first of a cavalcade of large-scale meetings partially or completely devoted to logic took place--the five-week long Summer Institute for Symbolic Logic. That meeting turned out to be a watershed event in the development of logic: it was unique in bringing together for such an extended period researchers at every level in all parts of the subject, and the synergetic connections established there would thenceforth change the face of mathematical logic both qualitatively and quantitatively. Prior to the Cornell meeting there had been nothing remotely like it for logicians. Previously, with the growing importance in the twentieth century of their subject both in mathematics and philosophy, it had been natural for many of the broadly representative meetings of mathematicians and of philosophers to include lectures by logicians or even have special sections devoted to logic. Only with the establishment of the Association for Symbolic Logic in 1936 did logicians begin to meet regularly by themselves, but until the 1950s these occasions were usually relatively short in duration, never more than a day or two. Alfred Tarski was one of the principal organizers of the Cornell institute and of some of the major meetings to follow on its heels. Before the outbreak of World War II, outside of Poland Tarski had primarily been involved in several Unity of Science Congresses, including the first, in Paris in 1935, and the fifth, at Harvard in September, 1939. -
Ludwig.Wittgenstein.-.Philosophical.Investigations.Pdf
PHILOSOPHICAL INVESTIGATIONS By LUDWIG WITTGENSTEIN Translated by G. E. M. ANSCOMBE BASIL BLACKWELL TRANSLATOR'S NOTE Copyright © Basil Blackwell Ltd 1958 MY acknowledgments are due to the following, who either checked First published 1953 Second edition 1958 the translation or allowed me to consult them about German and Reprint of English text alone 1963 Austrian usage or read the translation through and helped me to Third edition of English and German text with index 1967 improve the English: Mr. R. Rhees, Professor G. H. von Wright, Reprint of English text with index 1968, 1972, 1974, 1976, 1978, Mr. P. Geach, Mr. G. Kreisel, Miss L. Labowsky, Mr. D. Paul, Miss I. 1981, 1986 Murdoch. Basil Blackwell Ltd 108 Cowley Road, Oxford, OX4 1JF, UK All rights reserved. Except for the quotation of short passages for the purposes of criticism and review, no part of this publication may be NOTE TO SECOND EDITION reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or THE text has been revised for the new edition. A large number of otherwise, without the prior permission of the publisher. small changes have been made in the English text. The following passages have been significantly altered: Except in the United States of America, this book is sold to the In Part I: §§ 108, 109, 116, 189, 193, 251, 284, 352, 360, 393,418, condition that it shall not, by way of trade or otherwise, be lent, re- 426, 442, 456, 493, 520, 556, 582, 591, 644, 690, 692. -
History of Mathematics
History of Mathematics James Tattersall, Providence College (Chair) Janet Beery, University of Redlands Robert E. Bradley, Adelphi University V. Frederick Rickey, United States Military Academy Lawrence Shirley, Towson University Introduction. There are many excellent reasons to study the history of mathematics. It helps students develop a deeper understanding of the mathematics they have already studied by seeing how it was developed over time and in various places. It encourages creative and flexible thinking by allowing students to see historical evidence that there are different and perfectly valid ways to view concepts and to carry out computations. Ideally, a History of Mathematics course should be a part of every mathematics major program. A course taught at the sophomore-level allows mathematics students to see the great wealth of mathematics that lies before them and encourages them to continue studying the subject. A one- or two-semester course taught at the senior level can dig deeper into the history of mathematics, incorporating many ideas from the 19th and 20th centuries that could only be approached with difficulty by less prepared students. Such a senior-level course might be a capstone experience taught in a seminar format. It would be wonderful for students, especially those planning to become middle school or high school mathematics teachers, to have the opportunity to take advantage of both options. We also encourage History of Mathematics courses taught to entering students interested in mathematics, perhaps as First Year or Honors Seminars; to general education students at any level; and to junior and senior mathematics majors and minors. Ideally, mathematics history would be incorporated seamlessly into all courses in the undergraduate mathematics curriculum in addition to being addressed in a few courses of the type we have listed. -
Notices of the American Mathematical Society
June 18 and 19)- Page 341 Vl 0 ~ Mathematical Society Calendar of AMS Meetings THIS CALENDAR lists all meetings which have been approved by the Council prior to the date this issue of the Notices was sent to press. The summer and annual meetings are joint meetings of the Mathematical Association of America and the Ameri· can Mathematical Society. The meeting dates which fall rather far in the future are subject to change; this is particularly true of meetings to which no numbers have yet been assigned. Programs of the meetings will appear in the issues indicated below. First and second announcements of the meetings will have appeared in earlier issues. ABSTRACTS OF PAPERS presented at a meeting of the Society are published in the journal Abstracts of papers presented to the American Mathematical Society in the issue corresponding to that of the Notices which contains the program of the meet ing. Abstracts should be submitted on special forms which are available in many departments of mathematics and from the office of the Society in Providence. Abstracts of papers to be presented at the meeting must be received at the headquarters of the Society in Providence, Rhode Island, on or before the deadline given below for the meeting. Note that the deadline for ab· stracts submitted for consideration for presentation at special sessions is usually three weeks earlier than that specified below. For additional information consult the meeting announcement and the list of organizers of special sessions. MEETING ABSTRACT NUMBER DATE PLACE DEADLINE -
History and Pedagogy of Mathematics in Mathematics Education: History of the Field, the Potential of Current Examples, and Directions for the Future Kathleen Clark
History and pedagogy of mathematics in mathematics education: History of the field, the potential of current examples, and directions for the future Kathleen Clark To cite this version: Kathleen Clark. History and pedagogy of mathematics in mathematics education: History of the field, the potential of current examples, and directions for the future. Eleventh Congress of the European Society for Research in Mathematics Education, Utrecht University, Feb 2019, Utrecht, Netherlands. hal-02436281 HAL Id: hal-02436281 https://hal.archives-ouvertes.fr/hal-02436281 Submitted on 12 Jan 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. History and pedagogy of mathematics in mathematics education: History of the field, the potential of current examples, and directions for the future Kathleen M. Clark Florida State University, School of Teacher Education, Tallahassee, Florida USA; [email protected] The field of history of mathematics in mathematics education—often referred to as the history and pedagogy of mathematics domain (or, HPM domain)—can be characterized by an interesting and rich past and a vibrant and promising future. In this plenary, I describe highlights from the development of the field, and in doing so, I focus on several ways in which research in the field of history of mathematics in mathematics education offers important connections to frameworks and areas of long-standing interest within mathematics education research, with a particular emphasis on student learning. -
Download Download
R E C E N Z J E ROCZNIKI FILOZOFICZNE Tom LIX, numer 1 – 2011 Anita Burdman-Feferman, Solomon Feferman, Alfred Tarski. aycie i logika , przeł. Joanna Goli Lska-Pilarek, Marian Srebrny, Warszawa: Wydaw- nictwa Akademickie i Profesjonalne 2009, ss. 475. ISBN 978-83-60501-94-8. Nie trzeba by 4 „rasowym” logikiem lub filozofem, by wiedzie 4, kim był Alfred Tarski (1901-1983). Powszechnie znany jest jako „człowiek, który zdefiniował praw- dB” lub – w Bb szemu gronu – jako współautor twierdzenia o paradoksalnym rozkładzie kuli. Wywarł znacz =cy wpływ na rozwój całej XX-wiecznej logiki i podstaw mate- matyki, a tak be – poprzez badania z zakresu semantyki formalnej i podstaw logiki – na epistemologi B, metodologi B nauk i filozofi B j Bzyka. Stworzył semantyk B logiczn =, przyczynił si B do rozwoju metamatematyki oraz teorii modeli, osi =gn =ł znacz =ce rezultaty w teorii mnogo Vci, topologii, geometrii i arytmetyce. Ksi =b ka Alfred Tarski. aycie i logika autorstwa Anity i Solomona Fefermanów została wydana przez Wydawnictwa Akademickie i Profesjonalne, w profesjonalnym przekładzie Joanny Goli Lskiej-Pilarek i Mariana Srebrnego. Szkoda jedynie, be polski przekład pojawił si B dopiero pi B4 lat po opublikowaniu oryginału ameryka Lskiego Alfred Tarski. Life and Logic przez University of Cambridge. Nie jest chyba przypadkiem, be identyczny podtytuł nosi biografia innego wiel- kiego uczonego, który wraz z Tarskim, lecz niezale bnie od niego, zmienił oblicze logiki XX wieku – Kurta Gödla (John Casti, Werner DePauli, Gödel. aycie i logika , tłum. P. Amsterdamski, Warszawa: Wyd. CiS 2003). Z jednej strony samo bycie, jak be ró bne w obu przypadkach: pełne pasji i nami Btno Vci pierwszego, wyobcowane i egocentryczne drugiego; z drugiej – logika, wielka miło V4 ich obu.