Andreia Filipa Ferreira Salvador Tems

Total Page:16

File Type:pdf, Size:1020Kb

Andreia Filipa Ferreira Salvador Tems Universidade do Minho Escola de Engenharia Andreia Filipa Ferreira Salvador tems Functional analysis of syntrophic rading microbial ecosys LCFA-degrading microbial ecosystems -deg A CF ysis of syntrophic L unctional anal F a Salvador eir err ilipa F eia F Andr 3 1 UMinho|20 outubro de 2013 Universidade do Minho Escola de Engenharia Andreia Filipa Ferreira Salvador Functional analysis of syntrophic LCFA-degrading microbial ecosystems Tese de Doutoramento em Engenharia Química e Biológica Trabalho realizado sob a orientação da Doutora Diana Zita Machado de Sousa e da Doutora Maria Madalena dos Santos Alves outubro de 2013 Autor Andreia Filipa Ferreira Salvador email [email protected] Título da tese Functional analysis of syntrophic LCFA-degrading microbial ecosystems Orientadores Doutora Diana Zita Machado de Sousa Doutora Maria Madalena dos Santos Alves Ano de conclusão 2013 Doutoramento em Engenharia Química e Biológica É AUTORIZADA A REPRODUÇÃO INTEGRAL DESTA TESE APENAS PARA EFEITOS DE INVESTIGAÇÃO, MEDIANTE AUTORIZAÇÃO ESCRITA DO INTERESSADO, QUE A TAL SE COMPROMETE. Universidade do Minho, 1 de outubro de 2013 ________________________________________ iii AGRADECIMENTOS São muitos aqueles a quem devo um profundo agradecimento por me terem acompanhado e apoiado durante este percurso quer profissionalmente como pessoalmente. Agradeço em primeiro lugar às minhas orientadoras Diana Sousa e Madalena Alves. O optimismo, a força e o rigor com que agarram a investigação são inspiradores. Foi um privilégio ter desenvolvido este projecto convosco. Também merecem um agradecimento especial o Théodore Bouchez e a Ariane Bize do Irstea (França) que se envolveram neste tema e colaboraram sempre com dedicação e entusiasmo. A todos os co-autores deste trabalho um muito obrigado, nomeadamente à Ana Julia Cavaleiro, à Ana Guedes, à Sónia Barbosa, à Juliana Ramos, à Alcina Pereira, ao Alfons Stams, ao Théodore Bouchez, à Ariane Bize, à Madalena Alves e à Diana Sousa pelo trabalho, dedicação e discussões que promoveram. Também gostaria de agradecer a todos aqueles que se foram cruzando comigo no laboratório e nos corredores no Departamento de Engenharia Biológica, em especial aos meus colegas do BRIDGE, e também do Irstea. Um especial agradecimento à Madalena Vieira, à Tânia Ferreira, à Chrystelle Bureau, à Celine Madigou e à Laëtitia Cardona por toda a ajuda técnica. Aos meus colegas de doutoramento com quem partilhei o gabinete e com os quais se geraram conversas muito interessantes num espírito de entreajuda e partilha de conhecimentos. Um agradecimento muito especial às colegas e grandes amigas do “Clube secreto das amigas cientistas”. Sem vocês, não teria sido tão agradável! Ao Bruno por toda a atenção, carinho, companheirismo e interesse no meu trabalho e pelo grande apoio nas alturas mais difíceis. E por último um grande agradecimento à minha família, em especial à minha mãe pelo amor e apoio incondicionais. Sem vocês esta tese não existiria. Muito obrigada! iv The work presented in this thesis was financially supported by a research grant (SFRH/BD/48960/2008) from the Portuguese Foundation for Science and Technology (FCT) and European Social Fund (POPHQREN), and by the project FCOMP-01-0124-FEDER-014784, financed by the FEDER funds through the Operational Competitiveness Programme (COMPETE) and by national funds through the Portuguese Foundation for Science and Technology (FCT). v ABSTRACT Anaerobic degradation of long-chain fatty acids (LCFA), is not yet completely understood. Previous studies suggest that different microorganisms might be involved in the degradation of saturated and unsaturated LCFA and that these compounds inhibit severely the microbial activity, especially the methanogenic activity. In this study, the toxic effect of saturated- (palmitate (C16:0) and stearate (C18:0)) and unsaturated-LCFA (oleate (C18:1)), towards pure cultures of hydrogenotrophic methanogens was evaluated by measuring cells viability and methanogenic activity of Methanospirillum hungatei and Methanobacterium formicicum. The presence of hydrogenotrophic (M. formicicum and M. hungatei) and acetoclastic (Methanosaeta concilii and Methanosarcina. mazei) methanogens in oleate and palmitate enrichment cultures was detected by PCR-DGGE fingerprinting techniques. Acetoclastic methanogens and M. formicicum grew in oleate and palmitate enrichment cultures but M. hungatei only grew in the palmitate’s enrichment. M. hungatei was more sensitive than M. formicicum particularly to unsaturated LCFA. The later was also the most abundant hydrogenotroph detected during the continuous treatment of a synthetic wastewater composed mainly by oleate, as determined by PCR-DGGE. In the same study, M. concilii was identified as the most representative acetoclast. In order to investigate differences between the proteins expressed during the degradation of saturated and unsaturated LCFA, a metaproteomics experiment was designed, in which an anaerobic sludge was incubated with palmitate, stearate and oleate. The same COGs functional categories were identified in the different conditions. The majority of the proteins were assigned to functional categories, energy production and conversion, posttranslational modification and lipid metabolism. Most of the proteins identified belong to Methanosaeta concilli, Syntrophobacter fumaroxidans, Pelobacter propionicus and Pelotomaculum thermopropionicum. Methanosaeta concilii was indeed the most abundant archaea detected by pyrosequencing analysis of the 16S rRNA gene, but the other microorganisms were not even detected by pyrosequencing. Studying metaproteomes of complex microbial communities is still a big challenge especially because most of their genomes are not sequenced which difficult proteins identification. Likewise, when analyzing the proteome of the co-culture, Syntrophomonas zehnderi and M. formicicum, specialized on the degradation of LCFA, M. formicicum’s proteome could be much better characterized compared to S. zehnderi’s, since the genome of a very close related strain of the former is available in public databases and the genome of S. zehnderi is not. S. zehnderi was a dominant microorganism in oleate degrading enrichment cultures under methanogenic and non-methanogenic conditions, stablishing close relationships with hydrogenotrophic methanogens and homoacetogenic bacteria, respectively. vi vii RESUMO Os ácidos gordos de cadeia longa (AGCL) podem ser convertidos a metano por digestão anaeróbia. Contudo, aspectos relacionados com a microbiologia desta conversão ainda não estão completamente compreendidos. Estudos anteriores sugerem que diferentes microrganismos possam estar envolvidos na degradação de AGCL saturados e insaturados e ainda que os AGCL inibem a actividade microbiológica e de forma mais severa a actividade metanogénica. Neste trabalho foi avaliado o efeito toxico dos ACGL saturados (palmitato (C16:0) e estearato (C18:0)) e insaturados (oleato (C18:1)) sobre culturas puras de Methanobacterium formicicum e Methanospirillum hungatei monitorizando a sua viabilidade celular e actividade metanogénica. A presença destes organismos hidrogenotróficos bem como de dois organismos acetoclásticos, Methanosaeta concilii e Methanosarcina mazei, em culturas mistas enriquecidas em degradadores de palmitato e de oleato, foi determinada por PCR-DGGE. Todos permaneceram nos dois enriquecimentos com excepção do M. hungatei que não foi capaz de crescer no enriquecimento com oleato. Este microrganismo mostrou ser mais sensível do que o M. formicicum aos AGCL insaturados, segundo os resultados de viabilidade celular e actividade metanogénica. Em reactores anaeróbios alimentados com um efluente sintético, composto maioritariamente por ácido oleico, M. formicicum e M. concilii foram identificados como os metanogénicos predominantes. Foi efectuado um estudo de metaproteómica com o objectivo de detectar diferenças na expressão de proteínas por parte de uma cultura mista a crescer em AGCL saturados e insaturados. A maioria das proteínas identificadas nos vários ensaios estava relacionada com processos metabólicos de produção de energia, incluindo o metabolismo dos lípidos, e modificação pós-traducional. A maioria das proteínas identificadas corresponde a proteínas dos seguintes microrganismos: Methanosaeta concilli, Syntrophobacter fumaroxidans, Pelobacter propionicus e Pelotomaculum thermopropionicum. Estas amostras foram paralelamente classificadas taxonomicamente com base nos resultados de pirosequenciação do gene que codifica para a subunidade 16S do rRNA. Segundo esta análise a Methanosaeta concilii foi identificada como o organismo metanogénico mais dominante, contudo, não foram detectadas sequências correspondentes a S. fumaroxidans, P. propionicus ou P. thermopropionicum. A falta de informação genética/proteica sobre os microrganismos envolvidos na degradação de AGCL dificulta a identificação de proteínas que poderão ser relevantes neste processo. Analisou-se também a expressão proteica de dois organismos sintróficos, Syntrophomonas zehnderi and M. formicicum, que convertem os AGCL a metano. Neste caso particular foi possível obter uma melhor caracterização do proteoma de M. formicicum do que de S. zehnderi, consequência do facto de apenas o genoma de uma estirpe próxima do primeiro se encontrar sequenciado. A S. zehnderi foi identificada como uma bactéria dominante em culturas especializadas na degradação de oleato quer em condições metanogénicas, estabelecendo relações de sintrofia com microorganismos metanogénicos
Recommended publications
  • Springer Handbook of Enzymes
    Dietmar Schomburg and Ida Schomburg (Eds.) Springer Handbook of Enzymes Volume 25 Class 1 • Oxidoreductases X EC 1.9-1.13 co edited by Antje Chang Second Edition 4y Springer Index of Recommended Enzyme Names EC-No. Recommended Name Page 1.13.11.50 acetylacetone-cleaving enzyme 673 1.10.3.4 o-aminophenol oxidase 149 1.13.12.12 apo-/?-carotenoid-14',13'-dioxygenase 732 1.13.11.34 arachidonate 5-lipoxygenase 591 1.13.11.40 arachidonate 8-lipoxygenase 627 1.13.11.31 arachidonate 12-lipoxygenase 568 1.13.11.33 arachidonate 15-lipoxygenase 585 1.13.12.1 arginine 2-monooxygenase 675 1.13.11.13 ascorbate 2,3-dioxygenase 491 1.10.2.1 L-ascorbate-cytochrome-b5 reductase 79 1.10.3.3 L-ascorbate oxidase 134 1.11.1.11 L-ascorbate peroxidase 257 1.13.99.2 benzoate 1,2-dioxygenase (transferred to EC 1.14.12.10) 740 1.13.11.39 biphenyl-2,3-diol 1,2-dioxygenase 618 1.13.11.22 caffeate 3,4-dioxygenase 531 1.13.11.16 3-carboxyethylcatechol 2,3-dioxygenase 505 1.13.11.21 p-carotene 15,15'-dioxygenase (transferred to EC 1.14.99.36) 530 1.11.1.6 catalase 194 1.13.11.1 catechol 1,2-dioxygenase 382 1.13.11.2 catechol 2,3-dioxygenase 395 1.10.3.1 catechol oxidase 105 1.13.11.36 chloridazon-catechol dioxygenase 607 1.11.1.10 chloride peroxidase 245 1.13.11.49 chlorite O2-lyase 670 1.13.99.4 4-chlorophenylacetate 3,4-dioxygenase (transferred to EC 1.14.12.9) .
    [Show full text]
  • In Silico Drug Activity Prediction of Chemical Components of Acalypha Indica Dr
    International Journal of Scientific Engineering and Applied Science (IJSEAS) – Volume-2, Issue-6,June 2016 ISSN: 2395-3470 www.ijseas.com In Silico drug activity prediction of chemical components of Acalypha Indica Dr. (Mrs.)S.Shanthi M.Sc.,M.Phil.,Ph.D. Associate professor Department of chemistry,SFR college,Sivakasi. S.Sri Nisha Tharani M.Phil Chemistry ,Department of Chemistry,SFR College,Sivakasi,Tamilnadu,India. ABSTRACT Acalypha indica is a common annual Acalypha indica distributed in the herb, found mostly in the backyards of southern part of India, particularly in houses and waste places throughout the Tamilnadu has potential medicinal plains of India. Plants are used as emetic, properties and used as diuretic, anthelmintic expectorant, laxative, diuretic , bronchitis, and for respiratory problems such as pneumonia, asthma and pulmonary [1] bronchitis, asthma and pneumonia. tuberculosisP .P Leaves are laxative and Acalypha indica plant contains alkaloids, antiparasiticide; ground with common salt or tannins, steroids, saponins, terpenoids, quicklime or lime juice applied externally in flavanoids, cardiac glycosides and phenolic scabies. Leaf paste with lime juice is compounds. Some chemical components prescribed for ringworm; leaf juice is emetic were selected to theoretically evaluate their for children. A decoction of the leaves is drug likeness score using some drug given in earache. Powder of the dry leaves is designing softwares.. Their molecular given to children to expell worms; also properties were calculated using the given in the form of decoction with little software Molinspiration., Prediction of garlic. In homoepathy, the plant is used in biological activities and pharmacological severe cough associated with bleeding from activities were done using PASS online.
    [Show full text]
  • Thermophiles and Thermozymes
    Thermophiles and Thermozymes Edited by María-Isabel González-Siso Printed Edition of the Special Issue Published in Microorganisms www.mdpi.com/journal/microorganisms Thermophiles and Thermozymes Thermophiles and Thermozymes Special Issue Editor Mar´ıa-Isabel Gonz´alez-Siso MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade Special Issue Editor Mar´ıa-Isabel Gonzalez-Siso´ Universidade da Coruna˜ Spain Editorial Office MDPI St. Alban-Anlage 66 4052 Basel, Switzerland This is a reprint of articles from the Special Issue published online in the open access journal Microorganisms (ISSN 2076-2607) from 2018 to 2019 (available at: https://www.mdpi.com/journal/ microorganisms/special issues/thermophiles) For citation purposes, cite each article independently as indicated on the article page online and as indicated below: LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Article Number, Page Range. ISBN 978-3-03897-816-9 (Pbk) ISBN 978-3-03897-817-6 (PDF) c 2019 by the authors. Articles in this book are Open Access and distributed under the Creative Commons Attribution (CC BY) license, which allows users to download, copy and build upon published articles, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons license CC BY-NC-ND. Contents About the Special Issue Editor ...................................... vii Mar´ıa-Isabel Gonz´alez-Siso Editorial for the Special Issue: Thermophiles and Thermozymes Reprinted from: Microorganisms 2019, 7, 62, doi:10.3390/microorganisms7030062 ........
    [Show full text]
  • Enrichment and Diversity Analysis of the Thermophilic Microbes in a High Temperature Petroleum Reservoir
    African Journal of Microbiology Research Vol. 5(14), pp. 1850-1857, 18 July, 2011 Available online http://www.academicjournals.org/ajmr DOI: 10.5897/AJMR11.354 ISSN 1996-0808 ©2011 Academic Journals Full Length Research Paper Enrichment and diversity analysis of the thermophilic microbes in a high temperature petroleum reservoir Guihong Lan1,2, Zengting Li1, Hui zhang3, Changjun Zou2, Dairong Qiao1 and Yi Cao1* 1School of Life Science, Sichuan University, Chengdu 610065, China. 2School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China. 3Biogas Institute of Ministry of Agriculture P. R. China, Chengdu 610041, China. Accepted 1 June, 2011 Thermophilic microbial diversity in production water from a high temperature, water-flooded petroleum reservoir of an offshore oilfield in China was characterized by enrichment and polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) analysis. Six different function enrichment cultures were cultivated one year, at 75°C DGGE and sequence analyses of 16S rRNA gene fragments were used to assess the thermophilic microbial diversity. A total of 27 bacterial and 9 archaeal DGGE bands were excised and sequenced. Phylogenetic analysis of these sequences indicated that 21 bacterial and 7 archaeal phylotypes were affiliated with thermophilic microbe. The bacterial sequences were mainly bonged to the genera Fervidobacterium, Thermotoga, Dictyoglomus, Symbiobacterium, Moorella, Thermoanaerobacter, Desulfotomaculum, Thermosyntropha, Coprothermobacter, Caloramator, Thermacetogenium, and the archaeal phylogypes were represented in the genera Geoglobus and Thermococcus, Methanomethylovorans, Methanothermobacter Methanoculleus and Methanosaeta. So many thermophiles were detected suggesting that they might be common habitants in high-temperature petroleum reservoirs. The results of this work provide further insight into the thermophilic composition of microbial communities in high temperature petroleum reservoirs.
    [Show full text]
  • Elucidating Syntrophic Butyrate-Degrading Populations in Anaerobic Digesters
    bioRxiv preprint doi: https://doi.org/10.1101/563387; this version posted February 28, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Elucidating syntrophic butyrate-degrading populations in anaerobic digesters 2 using stable isotope-informed genome-resolved metagenomics 3 4 Ryan M. Ziels1,2,#, Masaru K. Nobu3, Diana Z. Sousa4 5 6 7 1 Department of Civil Engineering, University of British Columbia, Vancouver, Canada 8 2 Department of Civil and Environmental Engineering, University Washington, Seattle, USA 9 3 Bioproduction Research Institute, National Institute of Advanced Industrial Science and 10 Technology, Tsukuba, Japan 11 4 Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands 12 13 #Corresponding Author: 14 Email: [email protected] 15 16 Running Title: DNA-SIP Metagenomics of Anaerobic Butyrate-Degraders 17 1 bioRxiv preprint doi: https://doi.org/10.1101/563387; this version posted February 28, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 18 Abstract: 19 Linking the genomic content of uncultivated microbes to their metabolic functions remains a 20 critical challenge in microbial ecology. Resolving this challenge has implications for improving 21 our management of key microbial interactions in biotechnologies such as anaerobic digestion, 22 which relies on slow-growing syntrophic and methanogenic communities to produce renewable 23 methane from organic waste.
    [Show full text]
  • 12) United States Patent (10
    US007635572B2 (12) UnitedO States Patent (10) Patent No.: US 7,635,572 B2 Zhou et al. (45) Date of Patent: Dec. 22, 2009 (54) METHODS FOR CONDUCTING ASSAYS FOR 5,506,121 A 4/1996 Skerra et al. ENZYME ACTIVITY ON PROTEIN 5,510,270 A 4/1996 Fodor et al. MICROARRAYS 5,512,492 A 4/1996 Herron et al. 5,516,635 A 5/1996 Ekins et al. (75) Inventors: Fang X. Zhou, New Haven, CT (US); 5,532,128 A 7/1996 Eggers Barry Schweitzer, Cheshire, CT (US) 5,538,897 A 7/1996 Yates, III et al. s s 5,541,070 A 7/1996 Kauvar (73) Assignee: Life Technologies Corporation, .. S.E. al Carlsbad, CA (US) 5,585,069 A 12/1996 Zanzucchi et al. 5,585,639 A 12/1996 Dorsel et al. (*) Notice: Subject to any disclaimer, the term of this 5,593,838 A 1/1997 Zanzucchi et al. patent is extended or adjusted under 35 5,605,662 A 2f1997 Heller et al. U.S.C. 154(b) by 0 days. 5,620,850 A 4/1997 Bamdad et al. 5,624,711 A 4/1997 Sundberg et al. (21) Appl. No.: 10/865,431 5,627,369 A 5/1997 Vestal et al. 5,629,213 A 5/1997 Kornguth et al. (22) Filed: Jun. 9, 2004 (Continued) (65) Prior Publication Data FOREIGN PATENT DOCUMENTS US 2005/O118665 A1 Jun. 2, 2005 EP 596421 10, 1993 EP 0619321 12/1994 (51) Int. Cl. EP O664452 7, 1995 CI2O 1/50 (2006.01) EP O818467 1, 1998 (52) U.S.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 8,561,811 B2 Bluchel Et Al
    USOO8561811 B2 (12) United States Patent (10) Patent No.: US 8,561,811 B2 Bluchel et al. (45) Date of Patent: Oct. 22, 2013 (54) SUBSTRATE FOR IMMOBILIZING (56) References Cited FUNCTIONAL SUBSTANCES AND METHOD FOR PREPARING THE SAME U.S. PATENT DOCUMENTS 3,952,053 A 4, 1976 Brown, Jr. et al. (71) Applicants: Christian Gert Bluchel, Singapore 4.415,663 A 1 1/1983 Symon et al. (SG); Yanmei Wang, Singapore (SG) 4,576,928 A 3, 1986 Tani et al. 4.915,839 A 4, 1990 Marinaccio et al. (72) Inventors: Christian Gert Bluchel, Singapore 6,946,527 B2 9, 2005 Lemke et al. (SG); Yanmei Wang, Singapore (SG) FOREIGN PATENT DOCUMENTS (73) Assignee: Temasek Polytechnic, Singapore (SG) CN 101596422 A 12/2009 JP 2253813 A 10, 1990 (*) Notice: Subject to any disclaimer, the term of this JP 2258006 A 10, 1990 patent is extended or adjusted under 35 WO O2O2585 A2 1, 2002 U.S.C. 154(b) by 0 days. OTHER PUBLICATIONS (21) Appl. No.: 13/837,254 Inaternational Search Report for PCT/SG2011/000069 mailing date (22) Filed: Mar 15, 2013 of Apr. 12, 2011. Suen, Shing-Yi, et al. “Comparison of Ligand Density and Protein (65) Prior Publication Data Adsorption on Dye Affinity Membranes Using Difference Spacer Arms'. Separation Science and Technology, 35:1 (2000), pp. 69-87. US 2013/0210111A1 Aug. 15, 2013 Related U.S. Application Data Primary Examiner — Chester Barry (62) Division of application No. 13/580,055, filed as (74) Attorney, Agent, or Firm — Cantor Colburn LLP application No.
    [Show full text]
  • Metatranscriptomic Insights on Gene Expression and Regulatory Controls in Candidatus Accumulibacter Phosphatis
    The ISME Journal (2016) 10, 810–822 © 2016 International Society for Microbial Ecology All rights reserved 1751-7362/16 OPEN www.nature.com/ismej ORIGINAL ARTICLE Metatranscriptomic insights on gene expression and regulatory controls in Candidatus Accumulibacter phosphatis Ben O Oyserman1, Daniel R Noguera1, Tijana Glavina del Rio2, Susannah G Tringe2 and Katherine D McMahon1,3 1Department of Civil and Environmental Engineering, University of Wisconsin at Madison, Madison, WI, USA; 2US Department of Energy Joint Genome Institute, Walnut Creek, CA, USA and 3Department of Bacteriology, University of Wisconsin at Madison, Madison, WI, USA Previous studies on enhanced biological phosphorus removal (EBPR) have focused on reconstruct- ing genomic blueprints for the model polyphosphate-accumulating organism Candidatus Accumu- libacter phosphatis. Here, a time series metatranscriptome generated from enrichment cultures of Accumulibacter was used to gain insight into anerobic/aerobic metabolism and regulatory mechanisms within an EBPR cycle. Co-expressed gene clusters were identified displaying ecologically relevant trends consistent with batch cycle phases. Transcripts displaying increased abundance during anerobic acetate contact were functionally enriched in energy production and conversion, including upregulation of both cytoplasmic and membrane-bound hydrogenases demonstrating the importance of transcriptional regulation to manage energy and electron flux during anerobic acetate contact. We hypothesized and demonstrated hydrogen production after anerobic acetate contact, a previously unknown strategy for Accumulibacter to maintain redox balance. Genes involved in anerobic glycine utilization were identified and phosphorus release after anerobic glycine contact demonstrated, suggesting that Accumulibacter routes diverse carbon sources to acetyl-CoA formation via previously unrecognized pathways. A comparative genomics analysis of sequences upstream of co-expressed genes identified two statistically significant putative regulatory motifs.
    [Show full text]
  • Springer Handbook of Enzymes Volume 25 Dietmar Schomburg and Ida Schomburg (Eds.)
    Springer Handbook of Enzymes Volume 25 Dietmar Schomburg and Ida Schomburg (Eds.) Springer Handbook of Enzymes Volume 25 Class 1 Oxidoreductases X EC 1.9±1.13 coedited by Antje Chang Second Edition 13 Professor Dietmar Schomburg University to Cologne e-mail: [email protected] Institute for Biochemistry Zülpicher Strasse 47 Dr. Ida Schomburg 50674 Cologne e-mail: [email protected] Germany Dr. Antje Chang e-mail: [email protected] Library of Congress ControlNumber: 2005928336 ISBN-10 3-540-26585-6 2nd Edition Springer Berlin Heidelberg New York ISBN-13 978-3-540-26585-6 2nd Edition Springer Berlin Heidelberg New York The first edition was published as Volume 10 (ISBN 3-540-59494-9) of the ªEnzyme Handbookº. This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the German Copyright Law. Springer is a part of Springer Science+Business Media springeronline.com # Springer-Verlag Berlin Heidelberg 2006 Printed in Germany The use of general descriptive names, registered names, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and free for general use.
    [Show full text]
  • Ecophysiology of Sulfate-Reducing Bacteria and Syntrophic Communities in Marine Anoxic Sediments” Derya Özüölmez Wageningen, 12 September 2017
    Propositions 1. Prolonged incubation is a key strategy toward the enrichment of marine syntrophs. (this thesis) 2. Hydrogen-consuming methanogens can effectively compete with hydrogen- consuming sulfate reducers even at high sulfate concentration. (this thesis) 3. The plastic-eating wax worm, Galleria mellonella, can help cleaning up existing plastic mass (Bombelli et al. 2017, Current Biology 27(8): 292-293), but the real solution to environmental pollution still relies on shifting from disposable plastics to reusable and biodegradable materials. 4. With the discovery of abundant molecular hydrogen in Enceladus’ salty ocean (Waite et al. (2017) Science 356:6334, 155-159) extraterrestrial life in our solar system has become highly probable, and should shift our life-hunting focus from distant stars to our nearby neighbors. 5. With the "Help me to do it myself" motto, the Montessori education leads children to grow into mature, creative and self-confident adults. 6. Nothing is impossible as long as the dream is held close to the heart and patience and persistence are applied for the accomplishment. Propositions belonging to the PhD thesis entitled: “Ecophysiology of sulfate-reducing bacteria and syntrophic communities in marine anoxic sediments” Derya Özüölmez Wageningen, 12 September 2017 Ecophysiology of sulfate-reducing bacteria and syntrophic communities in marine anoxic sediments Derya Özüölmez Thesis committee Promotor Prof. Dr Alfons J.M. Stams Personal chair at the Laboratory of Microbiology Wageningen University & Research Co-promotor Dr Caroline M. Plugge Associate professor, Laboratory of Microbiology Wageningen University & Research Other members Prof. Dr Tinka Murk, Wageningen University & Research Prof. Dr Gerard Muyzer, University of Amsterdam, The Netherlands Prof.
    [Show full text]
  • Pelospora Glutarica Gen. Nov., Sp. Nov., a Glutarate-Fermenting, Strictly Anaerobic, Spore-Forming Bacterium
    Pelospora glutarica gen. nov., sp. nov., a glutarate-fermenting, strictly anaerobic, spore-forming bacterium Carola Matthies,1 Nina Springer,2 Wolfgang Ludwig2 and Bernhard Schink3 Author for correspondence: Bernhard Schink. Tel: j49 7531 882140. Fax: j49 7531 882966. e-mail: bernhard.schink!uni-konstanz.de 1 Lehrstuhl fu$ rO$ kologische The strictly anaerobic, Gram-negative, spore-forming bacterium strain WoGl3T $ Mikrobiologie, BITOK, had been enriched and isolated in mineral medium with glutarate as the sole Universita$ t Bayreuth, 95440 Bayreuth, Germany source of energy and organic carbon. Glutarate was fermented to a mixture of butyrate, isobutyrate, CO and small amounts of acetate. Strain WoGl3T grew 2 Lehrstuhl fu$ r 2 Mikrobiologie, Technische only with the dicarboxylates glutarate, methylsuccinate and succinate. 16S Universita$ tMu$ nchen, rDNA sequence analysis revealed an affiliation of strain WoGl3T to the family Arcisstr. 16, 80290 Syntrophomonadaceae. This monophyletic group is comprised of strain WoGl3T Mu$ nchen, Germany and the genera Syntrophomonas, Syntrophospora and Thermosyntropha, 3 Lehrstuhl fu$ r Mikrobielle within the phylum of Gram-positive bacteria with a low DNA GMC content. O$ kologie, Fakulta$ tfu$ r Biologie, Universita$ t Overall intra-group 16S rRNA sequence similarities of 892–939% document a Konstanz, Fach M 654, separate phylogenetic status for strain WoGl3T. Strain WoGl3T (l DSM 6652T)is 78457 Konstanz, Germany described as the type strain of a new species within a new genus, Pelospora glutarica gen. nov., sp. nov. Keywords: Pelospora glutarica sp. nov., anaerobic degradation, dicarboxylic acids, glutarate INTRODUCTION and nitrate-reducing pseudomonads (Anders et al., 1995). In a study on the degradation of higher Fermentative degradation of short-chain dicarboxylic dicarboxylic acids, we isolated a strictly anaerobic acids such as oxalate, malonate and succinate has been bacterium, strain WoGl3T, that grew only with gluta- documented.
    [Show full text]
  • All Enzymes in BRENDA™ the Comprehensive Enzyme Information System
    All enzymes in BRENDA™ The Comprehensive Enzyme Information System http://www.brenda-enzymes.org/index.php4?page=information/all_enzymes.php4 1.1.1.1 alcohol dehydrogenase 1.1.1.B1 D-arabitol-phosphate dehydrogenase 1.1.1.2 alcohol dehydrogenase (NADP+) 1.1.1.B3 (S)-specific secondary alcohol dehydrogenase 1.1.1.3 homoserine dehydrogenase 1.1.1.B4 (R)-specific secondary alcohol dehydrogenase 1.1.1.4 (R,R)-butanediol dehydrogenase 1.1.1.5 acetoin dehydrogenase 1.1.1.B5 NADP-retinol dehydrogenase 1.1.1.6 glycerol dehydrogenase 1.1.1.7 propanediol-phosphate dehydrogenase 1.1.1.8 glycerol-3-phosphate dehydrogenase (NAD+) 1.1.1.9 D-xylulose reductase 1.1.1.10 L-xylulose reductase 1.1.1.11 D-arabinitol 4-dehydrogenase 1.1.1.12 L-arabinitol 4-dehydrogenase 1.1.1.13 L-arabinitol 2-dehydrogenase 1.1.1.14 L-iditol 2-dehydrogenase 1.1.1.15 D-iditol 2-dehydrogenase 1.1.1.16 galactitol 2-dehydrogenase 1.1.1.17 mannitol-1-phosphate 5-dehydrogenase 1.1.1.18 inositol 2-dehydrogenase 1.1.1.19 glucuronate reductase 1.1.1.20 glucuronolactone reductase 1.1.1.21 aldehyde reductase 1.1.1.22 UDP-glucose 6-dehydrogenase 1.1.1.23 histidinol dehydrogenase 1.1.1.24 quinate dehydrogenase 1.1.1.25 shikimate dehydrogenase 1.1.1.26 glyoxylate reductase 1.1.1.27 L-lactate dehydrogenase 1.1.1.28 D-lactate dehydrogenase 1.1.1.29 glycerate dehydrogenase 1.1.1.30 3-hydroxybutyrate dehydrogenase 1.1.1.31 3-hydroxyisobutyrate dehydrogenase 1.1.1.32 mevaldate reductase 1.1.1.33 mevaldate reductase (NADPH) 1.1.1.34 hydroxymethylglutaryl-CoA reductase (NADPH) 1.1.1.35 3-hydroxyacyl-CoA
    [Show full text]