The Microbial Taxonomist a Newsletter Published by Bergey’S Manual Trust

Total Page:16

File Type:pdf, Size:1020Kb

The Microbial Taxonomist a Newsletter Published by Bergey’S Manual Trust JUNE 2009 VOLUME 3, ISSUE 1 The Microbial Taxonomist A Newsletter Published by Bergey’s Manual Trust MIKE GOODFELLOW JUERGEN WIEGEL Volume 3 launch at FEMS AND PETER KÄMPFER RECEIVES 2007 BERGEY meeting in Gothenburg BECOME NEW CHAIR AWARD AND VICE CHAIR You are cordially invited to attend New officers were elected to fill a reception in celebration of the the Chair and Vice-Chair positions launch of Bergey's Volume 3 at the of Bergey’s Manual Trust at the Springer booth (#24A) on Monday, June 29th at 3:00pm. Salem, Massachusetts, meeting of Bergey’s Manual Trust on May 30 – You will be able to preview pre- June 1, 2008. The newly elected publication copies of the much- Chair is Michael Goodfellow. anticipated third volume and order Professor Goodfellow is currently Juergen Wiegel was presented the copies at a 20% discount! Chair of the Department of Bergey Award at the International Microbiology at the University of Union of Microbiological Societies conducted research on the Newcastle and previously served as meeting in Istanbul, Turkey on August microorganisms that are involved in Vice Chair of the Trust. Peter 18, 2008. Professor Wiegel received his important biochemical transformations, Kämpfer was elected to the Vice BS, MS and PhD degrees as well as his including the acetogenic bacteria, Chair position. Professor Kämpfer is Habilitation at the University of anaerobic and thermophilic cellulolytic located at the Universität Giessen in Göttingen, Germany. In 1977 he became bacteria, bacteria involved in ethanol Germany and currently Editor-in- a Research Associate and subsequently and butanol fermentations, Chief of the International Journal of an Associate Professor at the University thermoalkaliphilic anaerobes and Systematic and Evolutionary of Georgia where, in 1990, he was bacteria responsible for reductive Microbiology. promoted to full Professor in the dehalogenation. Other officers remain as is, Department of Microbiology. More recently Professor Wiegel and namely William Whitman as Professor Wiegel has served on his colleagues have described a group Director of the Editorial Office and numerous editorial boards and on of extremophiles able to grow under the Treasurer and Fred Rainey as national and international committees. combination of high salt, alkaline pH Secretary. Aidan Parte will continue He is a member of the American and high temperature; the halophilic as Managing Editor. Jim Staley, the Academy of Microbiology. alkalithermophiles. “To imagine this former Chair retired from the Trust Professor Wiegel has made habitat,” his colleague Dr Noha Mesbah at the time of the meeting but will considerable contributions to microbial says, “mix 250 ml of drain cleaner and 1 continue to serve the Trust as an taxonomy. He described the family kg of salt in 8 liters of water. Then heat Emeritus Trustee, Contributing Clostridiaceae and many genera for the to 60°C.” These bacteria constitute the Editor of the The Microbial first and second editions of Bergey’s novel order Natranaerobiales within the Taxonomist and Editor of Volume 4 Manual of Systematic Bacteriology as well phylum Firmicutes." of the second edition of Bergey’s as The Prokaryotes. He is an expert on One of his best known publications Manual of Systematic Bacteriology. Xanthobacter¸ Thermosyntropha, is one in which he distinguishes Gracilibacter, Desulfitobacterium, between the Gram stain and Gram type Thermoanaerobacterium, Anaerobranca, of an organism. The bacterial species Carboxydothermus and Thermo- Thermoanaerobacterium wiegelii has been anaerobacter. In addition, he has named in his honor. THE MICROBIAL TAXONOMIST PAGE 1 JUNE 2009 VOLUME 3, ISSUE 1 JAMES T. STALEY—AN thermophilic crenarchaeota. In contrast to hot, arid deserts, the INQUIRING MIND frigid environments of the Arctic led Jim to isolate Psychromonas On Jim Staley’s retirement from ingrahamii from a sea ice core from the Trust. Point Barrow, Alaska. This remarkable organism grows at −12 Microbes of desert varnish in to 10°C and has gas vesicles. In fact, Death Valley? Psychrophiles in gas vesicles have long fascinated polar sea ice? Tubulin homologs in Jim, beginning with Microcyclus bacteria? Microbial gas vesicles? diversity. After the eruption of (now Ancylobacter) in 1971. In regard Organisms that grow on Mount St. Helens in 1980, Jim was to other “tough” environments, Jim phenanthrene? These are just a few soon at the site taking samples from has investigated creosote- of Professor James T. Staley’s many the lakes that had been in the blast contaminated marine sediments, interests during his distinguished zone. He showed that these lakes which led to his discovery of Vibrio career in microbial diversity. quickly exhibited tremendous cyclotrophicus—an organism that can Jim Staley received his BA increases in heterotrophic bacterial actually use phenanthrene and degree at the University of numbers compared to their normal naphthalene as sole carbon and Minnesota, MSc from Ohio State oligotrophic state. The increases energy sources. Jim’s interest in University, and PhD from the were probably due to the extensive unusual bacteria that live in University of California, Davis. He leaching of organic materials in the oligotrophic environments is also is presently an emeritus faculty watersheds due to the devastation evident from his naming of several member of the University of and decomposition of the prosthecate genera, including Washington, Seattle. Jim has served indigenous flora and fauna. Prosthecobacter, Prosthecomicrobium, as Chairman of the Bergey's Manual Jim’s interest in other and Ancalomicrobium. Trust since 2000 and is a member of inhospitable environments on earth Jim’s experience with the the editorial boards of several led him to wonder about the nature diversity and taxonomy of journals, as well as a member of the of “desert varnish,” a type of a dark environmental bacteria was highly A m e r i c a n A c a d e m y o f coating on desert rocks that contains valued when he joined the Bergey’s Microbiology. In addition to over clay minerals. Jim’s recent use of 100 research articles, Jim is also the Trust in 1976. At the beginning of culture-independent methods to senior author of a major general the 1980s, Jim and the other Trust analyze the varnish on rocks in microbiology textbook, Microbial members were deeply involved in Death Valley, California showed that Life, now in its second edition. the transition of Bergey’s Manual a wide variety of prokaryotic Jim has been a wellspring for microorganisms occur in varnish from a merely determinative work exciting projects in microbial coatings, including non- to a much broader systematic work. DAVID BERGEY HONORED AT DEDICAT- ION OF MILESTONE IN MICROBIOLOGY The Laboratory of Hygiene at the University of Pennsylvania, where David Bergey studied, conducted research and taught from 1893-1931 was designated a Milestone in Microbiology by the American Society for Microbiology on May 15, 2009. On hand were the archivist from the Eastern Pennsylvania branch of the ASM, James Poupard, the president of the ASM, Alison O’Brien, Treasurer of BMT, Barny Whitman, and a host of interested microbiologists. Other Milestones include the Barny Whitman (l) and James Poupard standing in Hopkins Marine Station, where Cornelis B. van front of the plaque. Niel offered his famous summer course. THE MICROBIAL TAXONOMIST PAGE 2 JUNE 2009 VOLUME 3, ISSUE 1 Jim and the other editors decided to Like many other taxonomists, phylogenetically different hosts ask the most knowledgeable Jim has long been puzzled by the could greatly aid our understanding authorities on the various taxa to relatively low number of of prokaryotic speciation. For prepare the individual chapters, prokaryotic species (about 5,000), instance, his work on the taxonomy thus allowing the Manual to become seemingly in contradiction to the of Simonsiella bacteria—large a truly international project. In the great genetic diversity of microbial trichomes that glide along the 1970s and early 1980s, various life. After all, there are about 900,000 epithelial surfaces of the mouth and methods to determine phylogenetic known insect species; should not upper respiratory tract of humans relatedness using molecular prokaryotes also have a great and other mammals—has suggested phylogenetic approaches were being number of species? As Jim has that the divergence of the genus into done, but at differing levels of noted, the present definition of a host-specific ecospecies was forced resolution and interpretation, and bacterial species is far too broad, by speciation events in the many of the studies were although it has served microbiology mammalian hosts. Similarly, fragmentary. For these reasons, the fairly well in the past. Conceptually, environmental factors associated Trust decided not to attempt a the bacterial species is in fact in a with different geographical general phylogenetic classification; state of dynamic genetic flux, and locations may force speciation by instead, they opted for an interim Jim recently proposed the genomic– selecting for certain genes, such as classification in which the higher phylogenetic species concept those acquired by lateral gene taxa were arranged mainly (GPSC) [Phil. Trans. R. Soc. B (2006) transfer. according to traditional phenotypic 361, 1899–1909], in which species are With his love of microbial features. Jim’s excellent choice of considered to be an irreducible diversity and his sense of authors and his fine editing allowed cluster of organisms that can
Recommended publications
  • Microbial Processes in Oil Fields: Culprits, Problems, and Opportunities
    Provided for non-commercial research and educational use only. Not for reproduction, distribution or commercial use. This chapter was originally published in the book Advances in Applied Microbiology, Vol 66, published by Elsevier, and the attached copy is provided by Elsevier for the author's benefit and for the benefit of the author's institution, for non-commercial research and educational use including without limitation use in instruction at your institution, sending it to specific colleagues who know you, and providing a copy to your institution’s administrator. All other uses, reproduction and distribution, including without limitation commercial reprints, selling or licensing copies or access, or posting on open internet sites, your personal or institution’s website or repository, are prohibited. For exceptions, permission may be sought for such use through Elsevier's permissions site at: http://www.elsevier.com/locate/permissionusematerial From: Noha Youssef, Mostafa S. Elshahed, and Michael J. McInerney, Microbial Processes in Oil Fields: Culprits, Problems, and Opportunities. In Allen I. Laskin, Sima Sariaslani, and Geoffrey M. Gadd, editors: Advances in Applied Microbiology, Vol 66, Burlington: Academic Press, 2009, pp. 141-251. ISBN: 978-0-12-374788-4 © Copyright 2009 Elsevier Inc. Academic Press. Author's personal copy CHAPTER 6 Microbial Processes in Oil Fields: Culprits, Problems, and Opportunities Noha Youssef, Mostafa S. Elshahed, and Michael J. McInerney1 Contents I. Introduction 142 II. Factors Governing Oil Recovery 144 III. Microbial Ecology of Oil Reservoirs 147 A. Origins of microorganisms recovered from oil reservoirs 147 B. Microorganisms isolated from oil reservoirs 148 C. Culture-independent analysis of microbial communities in oil reservoirs 155 IV.
    [Show full text]
  • Thermophiles and Thermozymes
    Thermophiles and Thermozymes Edited by María-Isabel González-Siso Printed Edition of the Special Issue Published in Microorganisms www.mdpi.com/journal/microorganisms Thermophiles and Thermozymes Thermophiles and Thermozymes Special Issue Editor Mar´ıa-Isabel Gonz´alez-Siso MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade Special Issue Editor Mar´ıa-Isabel Gonzalez-Siso´ Universidade da Coruna˜ Spain Editorial Office MDPI St. Alban-Anlage 66 4052 Basel, Switzerland This is a reprint of articles from the Special Issue published online in the open access journal Microorganisms (ISSN 2076-2607) from 2018 to 2019 (available at: https://www.mdpi.com/journal/ microorganisms/special issues/thermophiles) For citation purposes, cite each article independently as indicated on the article page online and as indicated below: LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Article Number, Page Range. ISBN 978-3-03897-816-9 (Pbk) ISBN 978-3-03897-817-6 (PDF) c 2019 by the authors. Articles in this book are Open Access and distributed under the Creative Commons Attribution (CC BY) license, which allows users to download, copy and build upon published articles, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons license CC BY-NC-ND. Contents About the Special Issue Editor ...................................... vii Mar´ıa-Isabel Gonz´alez-Siso Editorial for the Special Issue: Thermophiles and Thermozymes Reprinted from: Microorganisms 2019, 7, 62, doi:10.3390/microorganisms7030062 ........
    [Show full text]
  • Enrichment and Diversity Analysis of the Thermophilic Microbes in a High Temperature Petroleum Reservoir
    African Journal of Microbiology Research Vol. 5(14), pp. 1850-1857, 18 July, 2011 Available online http://www.academicjournals.org/ajmr DOI: 10.5897/AJMR11.354 ISSN 1996-0808 ©2011 Academic Journals Full Length Research Paper Enrichment and diversity analysis of the thermophilic microbes in a high temperature petroleum reservoir Guihong Lan1,2, Zengting Li1, Hui zhang3, Changjun Zou2, Dairong Qiao1 and Yi Cao1* 1School of Life Science, Sichuan University, Chengdu 610065, China. 2School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China. 3Biogas Institute of Ministry of Agriculture P. R. China, Chengdu 610041, China. Accepted 1 June, 2011 Thermophilic microbial diversity in production water from a high temperature, water-flooded petroleum reservoir of an offshore oilfield in China was characterized by enrichment and polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) analysis. Six different function enrichment cultures were cultivated one year, at 75°C DGGE and sequence analyses of 16S rRNA gene fragments were used to assess the thermophilic microbial diversity. A total of 27 bacterial and 9 archaeal DGGE bands were excised and sequenced. Phylogenetic analysis of these sequences indicated that 21 bacterial and 7 archaeal phylotypes were affiliated with thermophilic microbe. The bacterial sequences were mainly bonged to the genera Fervidobacterium, Thermotoga, Dictyoglomus, Symbiobacterium, Moorella, Thermoanaerobacter, Desulfotomaculum, Thermosyntropha, Coprothermobacter, Caloramator, Thermacetogenium, and the archaeal phylogypes were represented in the genera Geoglobus and Thermococcus, Methanomethylovorans, Methanothermobacter Methanoculleus and Methanosaeta. So many thermophiles were detected suggesting that they might be common habitants in high-temperature petroleum reservoirs. The results of this work provide further insight into the thermophilic composition of microbial communities in high temperature petroleum reservoirs.
    [Show full text]
  • Elucidating Syntrophic Butyrate-Degrading Populations in Anaerobic Digesters
    bioRxiv preprint doi: https://doi.org/10.1101/563387; this version posted February 28, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Elucidating syntrophic butyrate-degrading populations in anaerobic digesters 2 using stable isotope-informed genome-resolved metagenomics 3 4 Ryan M. Ziels1,2,#, Masaru K. Nobu3, Diana Z. Sousa4 5 6 7 1 Department of Civil Engineering, University of British Columbia, Vancouver, Canada 8 2 Department of Civil and Environmental Engineering, University Washington, Seattle, USA 9 3 Bioproduction Research Institute, National Institute of Advanced Industrial Science and 10 Technology, Tsukuba, Japan 11 4 Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands 12 13 #Corresponding Author: 14 Email: [email protected] 15 16 Running Title: DNA-SIP Metagenomics of Anaerobic Butyrate-Degraders 17 1 bioRxiv preprint doi: https://doi.org/10.1101/563387; this version posted February 28, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 18 Abstract: 19 Linking the genomic content of uncultivated microbes to their metabolic functions remains a 20 critical challenge in microbial ecology. Resolving this challenge has implications for improving 21 our management of key microbial interactions in biotechnologies such as anaerobic digestion, 22 which relies on slow-growing syntrophic and methanogenic communities to produce renewable 23 methane from organic waste.
    [Show full text]
  • Community Analysis of Plant Biomass-Degrading Microorganisms from Obsidian Pool, Yellowstone National Park
    Microb Ecol DOI 10.1007/s00248-014-0500-8 ENVIRONMENTAL MICROBIOLOGY Community Analysis of Plant Biomass-Degrading Microorganisms from Obsidian Pool, Yellowstone National Park Tatiana A. Vishnivetskaya & Scott D. Hamilton-Brehm & Mircea Podar & Jennifer J. Mosher & Anthony V. Palumbo & Tommy J. Phelps & Martin Keller & James G. Elkins Received: 12 May 2014 /Accepted: 16 September 2014 # Springer Science+Business Media New York (outside the USA) 2014 Abstract The conversion of lignocellulosic biomass into (OBP), was examined for potential biomass-active microorgan- biofuels can potentially be improved by employing robust mi- isms using cultivation-independent and enrichment techniques. croorganisms and enzymes that efficiently deconstruct plant Analysis of 33,684 archaeal and 43,784 bacterial quality-filtered polysaccharides at elevated temperatures. Many of the geother- 16S rRNA gene pyrosequences revealed that archaeal diversity mal features of Yellowstone National Park (YNP) are surrounded in the main pool was higher than bacterial; however, in the by vegetation providing a source of allochthonic material to vegetated area, overall bacterial diversity was significantly support heterotrophic microbial communities adapted to utilize higher. Of notable interest was a flooded depression adjacent to plant biomass as a primary carbon and energy source. In this OBP supporting a stand of Juncus tweedyi, a heat-tolerant rush study, a well-known hot spring environment, Obsidian Pool commonly found growing near geothermal features in YNP. The microbial community from heated sediments surrounding the The submitted manuscript has been authored by a contractor of the U.S. plants was enriched in members of the Firmicutes including Government under contract DE-AC05-00OR22725. Accordingly, the potentially (hemi)cellulolytic bacteria from the genera U.S.
    [Show full text]
  • Ecophysiology of Sulfate-Reducing Bacteria and Syntrophic Communities in Marine Anoxic Sediments” Derya Özüölmez Wageningen, 12 September 2017
    Propositions 1. Prolonged incubation is a key strategy toward the enrichment of marine syntrophs. (this thesis) 2. Hydrogen-consuming methanogens can effectively compete with hydrogen- consuming sulfate reducers even at high sulfate concentration. (this thesis) 3. The plastic-eating wax worm, Galleria mellonella, can help cleaning up existing plastic mass (Bombelli et al. 2017, Current Biology 27(8): 292-293), but the real solution to environmental pollution still relies on shifting from disposable plastics to reusable and biodegradable materials. 4. With the discovery of abundant molecular hydrogen in Enceladus’ salty ocean (Waite et al. (2017) Science 356:6334, 155-159) extraterrestrial life in our solar system has become highly probable, and should shift our life-hunting focus from distant stars to our nearby neighbors. 5. With the "Help me to do it myself" motto, the Montessori education leads children to grow into mature, creative and self-confident adults. 6. Nothing is impossible as long as the dream is held close to the heart and patience and persistence are applied for the accomplishment. Propositions belonging to the PhD thesis entitled: “Ecophysiology of sulfate-reducing bacteria and syntrophic communities in marine anoxic sediments” Derya Özüölmez Wageningen, 12 September 2017 Ecophysiology of sulfate-reducing bacteria and syntrophic communities in marine anoxic sediments Derya Özüölmez Thesis committee Promotor Prof. Dr Alfons J.M. Stams Personal chair at the Laboratory of Microbiology Wageningen University & Research Co-promotor Dr Caroline M. Plugge Associate professor, Laboratory of Microbiology Wageningen University & Research Other members Prof. Dr Tinka Murk, Wageningen University & Research Prof. Dr Gerard Muyzer, University of Amsterdam, The Netherlands Prof.
    [Show full text]
  • Pelospora Glutarica Gen. Nov., Sp. Nov., a Glutarate-Fermenting, Strictly Anaerobic, Spore-Forming Bacterium
    Pelospora glutarica gen. nov., sp. nov., a glutarate-fermenting, strictly anaerobic, spore-forming bacterium Carola Matthies,1 Nina Springer,2 Wolfgang Ludwig2 and Bernhard Schink3 Author for correspondence: Bernhard Schink. Tel: j49 7531 882140. Fax: j49 7531 882966. e-mail: bernhard.schink!uni-konstanz.de 1 Lehrstuhl fu$ rO$ kologische The strictly anaerobic, Gram-negative, spore-forming bacterium strain WoGl3T $ Mikrobiologie, BITOK, had been enriched and isolated in mineral medium with glutarate as the sole Universita$ t Bayreuth, 95440 Bayreuth, Germany source of energy and organic carbon. Glutarate was fermented to a mixture of butyrate, isobutyrate, CO and small amounts of acetate. Strain WoGl3T grew 2 Lehrstuhl fu$ r 2 Mikrobiologie, Technische only with the dicarboxylates glutarate, methylsuccinate and succinate. 16S Universita$ tMu$ nchen, rDNA sequence analysis revealed an affiliation of strain WoGl3T to the family Arcisstr. 16, 80290 Syntrophomonadaceae. This monophyletic group is comprised of strain WoGl3T Mu$ nchen, Germany and the genera Syntrophomonas, Syntrophospora and Thermosyntropha, 3 Lehrstuhl fu$ r Mikrobielle within the phylum of Gram-positive bacteria with a low DNA GMC content. O$ kologie, Fakulta$ tfu$ r Biologie, Universita$ t Overall intra-group 16S rRNA sequence similarities of 892–939% document a Konstanz, Fach M 654, separate phylogenetic status for strain WoGl3T. Strain WoGl3T (l DSM 6652T)is 78457 Konstanz, Germany described as the type strain of a new species within a new genus, Pelospora glutarica gen. nov., sp. nov. Keywords: Pelospora glutarica sp. nov., anaerobic degradation, dicarboxylic acids, glutarate INTRODUCTION and nitrate-reducing pseudomonads (Anders et al., 1995). In a study on the degradation of higher Fermentative degradation of short-chain dicarboxylic dicarboxylic acids, we isolated a strictly anaerobic acids such as oxalate, malonate and succinate has been bacterium, strain WoGl3T, that grew only with gluta- documented.
    [Show full text]
  • Clostridium Manihotivorum Sp. Nov., a Novel Mesophilic Anaerobic Bacterium That Produces Cassava Pulp-Degrading Enzymes
    Clostridium manihotivorum sp. nov., a novel mesophilic anaerobic bacterium that produces cassava pulp-degrading enzymes Pattsarun Cheawchanlertfa1, Sawannee Sutheeworapong2, Piroon Jenjaroenpun3,4, Thidathip Wongsurawat3,4, Intawat Nookaew4,5, Supapon Cheevadhanarak1,2, Akihiko Kosugi6, Patthra Pason1,2, Rattiya Waeonukul1,2, Khanok Ratanakhanokchai1 and Chakrit Tachaapaikoon1,2 1 School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, Thailand 2 Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok, Thailand 3 Division of Bioinformatics and Data Management for Research, Department of Research and Development, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand 4 Department of Biomedical Informatics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA 5 Department of Physiology and Biophysics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA 6 Biological Resources and Post-harvest Division, Japan International Research Center for Agricultural Sciences, Ibaraki, Japan ABSTRACT Background. Cassava pulp is a promising starch-based biomasses, which consists of residual starch granules entrapped in plant cell wall containing non-starch polysaccha- rides, cellulose and hemicellulose. Strain CT4T, a novel mesophilic anaerobic bacterium isolated from soil collected from a cassava pulp landfill, has a strong ability to degrade polysaccharides in cassava pulp.
    [Show full text]
  • Degradation of Biological Macromolecules Supports Uncultured Microbial Populations in Guaymas Basin Hydrothermal Sediments
    The ISME Journal https://doi.org/10.1038/s41396-021-01026-5 ARTICLE Degradation of biological macromolecules supports uncultured microbial populations in Guaymas Basin hydrothermal sediments 1 2 1,5 3,6 Sherlynette Pérez Castro ● Mikayla A. Borton ● Kathleen Regan ● Isabella Hrabe de Angelis ● 2 4 3 1 Kelly C. Wrighton ● Andreas P. Teske ● Marc Strous ● S. Emil Ruff Received: 8 December 2020 / Revised: 26 May 2021 / Accepted: 27 May 2021 © The Author(s) 2021. This article is published with open access Abstract Hydrothermal sediments contain large numbers of uncultured heterotrophic microbial lineages. Here, we amended Guaymas Basin sediments with proteins, polysaccharides, nucleic acids or lipids under different redox conditions and cultivated heterotrophic thermophiles with the genomic potential for macromolecule degradation. We reconstructed 20 metagenome- assembled genomes (MAGs) of uncultured lineages affiliating with known archaeal and bacterial phyla, including endospore- forming Bacilli and candidate phylum Marinisomatota.OneMarinisomatota MAG had 35 different glycoside hydrolases often in multiple copies, seven extracellular CAZymes, six polysaccharide lyases, and multiple sugar transporters. This population has 1234567890();,: 1234567890();,: the potential to degrade a broad spectrum of polysaccharides including chitin, cellulose, pectin, alginate, chondroitin, and carrageenan. We also describe thermophiles affiliating with the genera Thermosyntropha, Thermovirga,andKosmotoga with the capability to make a living on nucleic acids, lipids, or multiple macromolecule classes, respectively. Several populations seemed to lack extracellular enzyme machinery and thus likely scavenged oligo- or monomers (e.g., MAGs affiliating with Archaeoglobus) or metabolic products like hydrogen (e.g., MAGs affiliating with Thermodesulfobacterium or Desulforudaceae). The growth of methanogens or the production of methane was not observed in any condition, indicating that the tested macromolecules are not degraded into substrates for methanogenesis in hydrothermal sediments.
    [Show full text]
  • DNA-SIP Based Genome-Centric Metagenomics Identifies Key Long-Chain Fatty Acid-Degrading Populations in Anaerobic Digesters with Different Feeding Frequencies
    OPEN The ISME Journal (2018) 12, 112–123 www.nature.com/ismej ORIGINAL ARTICLE DNA-SIP based genome-centric metagenomics identifies key long-chain fatty acid-degrading populations in anaerobic digesters with different feeding frequencies Ryan M Ziels1,2, Diana Z Sousa3, H David Stensel2 and David AC Beck4,5 1Department of Civil Engineering, University of British Columbia, Vancouver, British Columbia, Canada; 2Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, USA; 3Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands; 4eScience Institute, University of Washington, Seattle, WA, USA and 5Department of Chemical Engineering, University of Washington, Seattle, WA, USA Fats, oils and greases (FOG) are energy-dense wastes that can be added to anaerobic digesters to substantially increase biomethane recovery via their conversion through long-chain fatty acids (LCFAs). However, a better understanding of the ecophysiology of syntrophic LCFA-degrading microbial communities in anaerobic digesters is needed to develop operating strategies that mitigate inhibitory LCFA accumulation from FOG. In this research, DNA stable isotope probing (SIP) was coupled with metagenomic sequencing for a genome-centric comparison of oleate (C18:1)-degrading populations in two anaerobic codigesters operated with either a pulse feeding or continuous-feeding strategy. The pulse-fed codigester microcosms converted oleate into methane at over 20% higher rates than the continuous-fed codigester microcosms. Differential coverage binning was demon- strated for the first time to recover population genome bins (GBs) from DNA-SIP metagenomes. About 70% of the 13C-enriched GBs were taxonomically assigned to the Syntrophomonas genus, thus substantiating the importance of Syntrophomonas species to LCFA degradation in anaerobic digesters.
    [Show full text]
  • Title Domain-Centric Dissection and Classification of Prokaryotic Poly(3
    bioRxiv preprint doi: https://doi.org/10.1101/693432; this version posted July 5, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Title 2 3 Domain-centric dissection and classification of prokaryotic poly(3-hydroxyalkanoate) 4 synthases 5 6 Running Title 7 8 Domain organizations and interactions in prokaryotic PHA synthases 9 10 Authorship 11 12 Zhanzhong Liu1#, Zuobin Zhu2#, Jianye Yang3, Sheng Wu3, Qinghua Liu4,5, Mengmeng 13 Wang4,5, Huiling Cheng3, Jiawei Yan1, Liang Wang3,4* 14 15 Affiliation 16 17 1Xuzhou Infectious Diseases Hospital, Xuzhou Jiangsu, 221000, China 18 2Department of Genetics, School of Biological Sciences and Technology, Xuzhou Medical 19 University, Xuzhou Jiangsu, 221000, China 20 3Department of Bioinformatics, School of Medical Informatics, Xuzhou Medical University, 21 Xuzhou Jiangsu, 221000, China 22 4Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, 23 Xuzhou Medical University, Xuzhou Jiangsu, 221000, China 24 5Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical University, 25 Xuzhou Jiangsu, 221000, China 26 27 #These authors contribute equally to the study. 28 29 *Correspondence author: for all correspondence, please refer to Dr. Liang Wang 30 [email protected] 31 32 33 34 bioRxiv preprint doi: https://doi.org/10.1101/693432; this version posted July 5, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • This Is a Pre-Copyedited, Author-Produced Version of an Article Accepted for Publication, Following Peer Review
    This is a pre-copyedited, author-produced version of an article accepted for publication, following peer review. Spang, A.; Stairs, C.W.; Dombrowski, N.; Eme, E.; Lombard, J.; Caceres, E.F.; Greening, C.; Baker, B.J. & Ettema, T.J.G. (2019). Proposal of the reverse flow model for the origin of the eukaryotic cell based on comparative analyses of Asgard archaeal metabolism. Nature Microbiology, 4, 1138–1148 Published version: https://dx.doi.org/10.1038/s41564-019-0406-9 Link NIOZ Repository: http://www.vliz.be/nl/imis?module=ref&refid=310089 [Article begins on next page] The NIOZ Repository gives free access to the digital collection of the work of the Royal Netherlands Institute for Sea Research. This archive is managed according to the principles of the Open Access Movement, and the Open Archive Initiative. Each publication should be cited to its original source - please use the reference as presented. When using parts of, or whole publications in your own work, permission from the author(s) or copyright holder(s) is always needed. 1 Article to Nature Microbiology 2 3 Proposal of the reverse flow model for the origin of the eukaryotic cell based on 4 comparative analysis of Asgard archaeal metabolism 5 6 Anja Spang1,2,*, Courtney W. Stairs1, Nina Dombrowski2,3, Laura Eme1, Jonathan Lombard1, Eva Fernández 7 Cáceres1, Chris Greening4, Brett J. Baker3 and Thijs J.G. Ettema1,5* 8 9 1 Department of Cell- and Molecular Biology, Science for Life Laboratory, Uppsala University, SE-75123, 10 Uppsala, Sweden 11 2 NIOZ, Royal Netherlands Institute for Sea Research, Department of Marine Microbiology and 12 Biogeochemistry, and Utrecht University, P.O.
    [Show full text]