Vorticella: a Protozoan for Bio-Inspired Engineering

Total Page:16

File Type:pdf, Size:1020Kb

Vorticella: a Protozoan for Bio-Inspired Engineering micromachines Review Vorticella: A Protozoan for Bio-Inspired Engineering Sangjin Ryu 1,*, Rachel E. Pepper 2, Moeto Nagai 3 and Danielle C. France 4 1 Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA 2 Department of Physics, University of Puget Sound, Tacoma, WA 98416, USA; [email protected] 3 Department of Mechanical Engineering, Toyohashi University of Technology, Toyohashi 441-8580, Japan; [email protected] 4 National Institute of Standards and Technology, Boulder, CO 80305, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-402-472-4313 Academic Editors: Hyoung Jin Cho and Sung Kwon Cho Received: 28 October 2016; Accepted: 20 December 2016; Published: 26 December 2016 Abstract: In this review, we introduce Vorticella as a model biological micromachine for microscale engineering systems. Vorticella has two motile organelles: the oral cilia of the zooid and the contractile spasmoneme in the stalk. The oral cilia beat periodically, generating a water flow that translates food particles toward the animal at speeds in the order of 0.1–1 mm/s. The ciliary flow of Vorticella has been characterized by experimental measurement and theoretical modeling, and tested for flow control and mixing in microfluidic systems. The spasmoneme contracts in a few milliseconds, coiling the stalk and moving the zooid at 15–90 mm/s. Because the spasmoneme generates tension in the order of 10–100 nN, powered by calcium ion binding, it serves as a model system for biomimetic actuators in microscale engineering systems. The spasmonemal contraction of Vorticella has been characterized by experimental measurement of its dynamics and energetics, and both live and extracted Vorticellae have been tested for moving microscale objects. We describe past work to elucidate the contraction mechanism of the spasmoneme, recognizing that past and continuing efforts will increase the possibilities of using the spasmoneme as a microscale actuator as well as leading towards bioinspired actuators mimicking the spasmoneme. Keywords: Vorticella; oral cilia; feeding current; contractile stalk; spasmoneme; Ca2+-powered contraction; bioinspired engineering 1. Introduction 1.1. Overview of Vorticella Among various microorganisms, protozoa have been widely studied as model systems for biology, physics, engineering and biomimetics. They form a diverse group of unicellular eukaryotic organisms including ciliates, flagellates and amoeboids. Among such protists, Vorticella has drawn the attention of scientists since Anthony van Leeuwenhoek first described its unique motility in his letter dated 9 October 1676 [1,2]. In a recent study, Vorticella was discovered in a fossil that is more than 200 million year old, bolstering the fossil record of soft-bodied organisms [3]. While we primarily describe biomechanical and biomimetic aspects of Vorticella, uncovered since the 1950s, it is worth noting that Vorticella has played a long and ongoing role in many fields of biological, physical and engineering study. Vorticella is a suspension-feeding ciliate that lives in two forms: free swimming telotroch and sessile stalked trophont [4]. A sessile Vorticella consists of the zooid (inverted-bell-shaped cell body; usually about 30–40 µm in diameter when contracted) and the stalk (3–4 µm in diameter and about 100 µm in length) (Figure1A). The zooid has two bands of cilia around the peristome, the mouth-like Micromachines 2017, 8, 4; doi:10.3390/mi8010004 www.mdpi.com/journal/micromachines MicromachinesMicromachines 20172016,,8 8,, 44 22 ofof 2525 mouth-like part of the zooid, which are used for suspension feeding. The cilia of the inner band partgenerate of the water zooid, flow which to aredraw used food for particles suspension towa feeding.rd the zooid The cilia (Figure of the 1B), inner and band these generate particles water are flowfiltered to drawby the food cilia particles of the towardouter band. the zooid An (Figureexample1B), of and such these a feeding particles current are filtered observed by the in cilia the oflaboratory the outer band.shows Ana examplevortex (Figure of such a1B), feeding and currentit was observed observed in thethat laboratory this flow shows could a vortexmove (Figuremicro-diameter1B), and itparticles was observed at least that450 thisμm flowaway could from movethe peristome micro-diameter with the particles maximum at leastflow 450velocityµm awayof 360 from μm/s the [5,6]. peristome with the maximum flow velocity of 360 µm/s [5,6]. Figure 1. Sessile ciliate protozoan Vorticella. (A) Structure of Vorticella convallaria (reproduced from [7]); Figure 1. Sessile ciliate protozoan Vorticella.(A) Structure of Vorticella convallaria (reproduced (B) pathlines of water flow generated by cilia beating of V. convallaria (reproduced from [8]); from [7]); (B) pathlines of water flow generated by cilia beating of V. convallaria (reproduced from [8]); (C) sequential images of stalk contraction of V. convallaria (reproduced from [9]). The stalk begins to (C) sequential images of stalk contraction of V. convallaria (reproduced from [9]). The stalk begins to coilcoil atat 00 ms.ms. In the sessile form, the vertex or scopula of the zooid is connected to the proximal end of the stalkIn while the sessilethe distal form, end the is vertexrooted oron scopulaa habitat of su therface zooid (Figure is connected 1A). Therefore, to the proximalthe stalk endtethers of thethe stalkzooid while to the the habitat. distal endThe is stalk rooted also on coils a habitat very surfacequickly (Figure and moves1A). Therefore, the zooid the toward stalk tethersthe surface the zooidthrough to thethehabitat. action of The its stalk contractile also coils organelle, very quickly the spasmoneme and moves the (Figure zooid toward1C). Afterwards, the surface the through stalk theslowly action relaxes of its and contractile moves the organelle, zooid away the from spasmoneme the surface (Figure over a1 fewC). Afterwards,seconds [10–12]. the stalkAlthough slowly the relaxesstalk contraction-relaxation and moves the zooid cycle away fromof Vorticella the surface has overbeena hypothesized few seconds [10as– 12a ].way Although either theto avoid stalk contraction-relaxationdangers, or to mix the cyclesurrounding of Vorticella fluid,has no been explanation hypothesized is completely as a way satisfactory. either to avoid dangers, or to mix theDuring surrounding stalk contraction, fluid, no explanation Vorticella stops is completely ciliary beating satisfactory. and contracts the zooid to a nearly sphericalDuring shape, stalk and contraction, the stalkVorticella shortensstops to 20%–40% ciliary beating of its andextended contracts length the zooidin less to than a nearly 10 ms spherical (Figure shape,1C). Therefore, and the stalk Vorticella shortens contracts to 20%–40% at the of its average extended rate length of in10–20 less thanmm/s, 10 msand (Figure its zooid1C). Therefore,reaches a Vorticellamaximumcontracts speed atof the60–90 average mm/s rate [9,12–14]. of 10–20 In mm/s, terms and of itsspecific zooid velocity reaches a(body maximum length/s), speed this of 60–90maximum mm/s speed [9,12– corresponds14]. In terms ofto specific~1200 body velocity length/s, (body length/s),making Vorticella this maximum among speed the fastest corresponds living tocreatures ~1200 body using length/s, this metric making [12].Vorticella It has alsoamong been the estimated fastest living that creatures in terms using of specific this metric power [12 ].(power It has alsodissipation been estimated per mass) that the in termsstalk ofof specific Vorticella power performs (power better dissipation than both per mass) automotive the stalk engines of Vorticella and performsstriated muscle better than[15]. both Recent automotive measurements engines showed and striated that musclelive spasmonemes [15]. Recent measurementscould generate showed a peak thatcontractile live spasmonemes force of ~30 could nN with generate maximum a peak contractilepower of ~1.6 force nW of ~30during nN withnormal maximum contraction, power and of ~1.6isometric nW during tension normal of 150–350 contraction, nN [9,16]. and isometric tension of 150–350 nN [9,16]. InIn additionaddition to to its its remarkable remarkable motility, motility, the energythe energy source source for the for stalk the contraction stalk contraction makes Vorticella makes unique.Vorticella While unique. most biologicalWhile most contractile biological systems contract dependile onsystems ATP (adenosine depend triphosphate)on ATP (adenosine for their biochemicaltriphosphate) fuel, for thetheirVorticella biochemicalspasmoneme fuel, the Vorticella is powered spasmoneme by calcium is ions powered [17]. In by the calcium absence ions of ATP,[17]. extractedIn the absenceVorticella of ATP,stalks extracted can repeat Vorticella the contraction–relaxation stalks can repeat the cycle cont andraction–relaxation generate contractile cycle force, and generate contractile force, driven only by external calcium ions diffusing into the spasmoneme [17– Micromachines 2017, 8, 4 3 of 25 Micromachines 2016, 8, 4 3 of 25 23].driven Because only byof externalits surpassing calcium contractilit ions diffusingy and into unique the spasmonemeenergy source, [17 therefore,–23]. Because the Vorticella of its surpassing stalk is regardedcontractility as a and candidate unique for energy Ca2+-powered source, therefore, cell motility the andVorticella biomimeticstalk is actuating regarded materials as a candidate [24–29].
Recommended publications
  • Novel Contributions to the Peritrich Family Vaginicolidae
    applyparastyle “fig//caption/p[1]” parastyle “FigCapt” Zoological Journal of the Linnean Society, 2019, 187, 1–30. With 13 figures. Novel contributions to the peritrich family Vaginicolidae (Protista: Ciliophora), with morphological and Downloaded from https://academic.oup.com/zoolinnean/article-abstract/187/1/1/5434147/ by Ocean University of China user on 08 October 2019 phylogenetic analyses of poorly known species of Pyxicola, Cothurnia and Vaginicola BORONG LU1, LIFANG LI2, XIAOZHONG HU1,5,*, DAODE JI3,*, KHALED A. S. AL-RASHEID4 and WEIBO SONG1,5 1Institute of Evolution and Marine Biodiversity, & Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China 2Marine College, Shandong University, Weihai 264209, China 3School of Ocean, Yantai University, Yantai 264005, China 4Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia 5Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China Received 29 September 2018; revised 26 December 2018; accepted for publication 13 February 2019 The classification of loricate peritrich ciliates is difficult because of an accumulation of several taxonomic problems. In the present work, three poorly described vaginicolids, Pyxicola pusilla, Cothurnia ceramicola and Vaginicola tincta, were isolated from the surface of two freshwater/marine algae in China. In our study, the ciliature of Pyxicola and Vaginicola is revealed for the first time, demonstrating the taxonomic value of infundibular polykineties. The small subunit rDNA, ITS1-5.8S rDNA-ITS2 region and large subunit rDNA of the above species were sequenced for the first time. Phylogenetic analyses based on these genes indicated that Pyxicola and Cothurnia are closely related.
    [Show full text]
  • Basal Body Structure and Composition in the Apicomplexans Toxoplasma and Plasmodium Maria E
    Francia et al. Cilia (2016) 5:3 DOI 10.1186/s13630-016-0025-5 Cilia REVIEW Open Access Basal body structure and composition in the apicomplexans Toxoplasma and Plasmodium Maria E. Francia1* , Jean‑Francois Dubremetz2 and Naomi S. Morrissette3 Abstract The phylum Apicomplexa encompasses numerous important human and animal disease-causing parasites, includ‑ ing the Plasmodium species, and Toxoplasma gondii, causative agents of malaria and toxoplasmosis, respectively. Apicomplexans proliferate by asexual replication and can also undergo sexual recombination. Most life cycle stages of the parasite lack flagella; these structures only appear on male gametes. Although male gametes (microgametes) assemble a typical 9 2 axoneme, the structure of the templating basal body is poorly defined. Moreover, the rela‑ tionship between asexual+ stage centrioles and microgamete basal bodies remains unclear. While asexual stages of Plasmodium lack defined centriole structures, the asexual stages of Toxoplasma and closely related coccidian api‑ complexans contain centrioles that consist of nine singlet microtubules and a central tubule. There are relatively few ultra-structural images of Toxoplasma microgametes, which only develop in cat intestinal epithelium. Only a subset of these include sections through the basal body: to date, none have unambiguously captured organization of the basal body structure. Moreover, it is unclear whether this basal body is derived from pre-existing asexual stage centrioles or is synthesized de novo. Basal bodies in Plasmodium microgametes are thought to be synthesized de novo, and their assembly remains ill-defined. Apicomplexan genomes harbor genes encoding δ- and ε-tubulin homologs, potentially enabling these parasites to assemble a typical triplet basal body structure.
    [Show full text]
  • Molecular Data and the Evolutionary History of Dinoflagellates by Juan Fernando Saldarriaga Echavarria Diplom, Ruprecht-Karls-Un
    Molecular data and the evolutionary history of dinoflagellates by Juan Fernando Saldarriaga Echavarria Diplom, Ruprecht-Karls-Universitat Heidelberg, 1993 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in THE FACULTY OF GRADUATE STUDIES Department of Botany We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA November 2003 © Juan Fernando Saldarriaga Echavarria, 2003 ABSTRACT New sequences of ribosomal and protein genes were combined with available morphological and paleontological data to produce a phylogenetic framework for dinoflagellates. The evolutionary history of some of the major morphological features of the group was then investigated in the light of that framework. Phylogenetic trees of dinoflagellates based on the small subunit ribosomal RNA gene (SSU) are generally poorly resolved but include many well- supported clades, and while combined analyses of SSU and LSU (large subunit ribosomal RNA) improve the support for several nodes, they are still generally unsatisfactory. Protein-gene based trees lack the degree of species representation necessary for meaningful in-group phylogenetic analyses, but do provide important insights to the phylogenetic position of dinoflagellates as a whole and on the identity of their close relatives. Molecular data agree with paleontology in suggesting an early evolutionary radiation of the group, but whereas paleontological data include only taxa with fossilizable cysts, the new data examined here establish that this radiation event included all dinokaryotic lineages, including athecate forms. Plastids were lost and replaced many times in dinoflagellates, a situation entirely unique for this group. Histones could well have been lost earlier in the lineage than previously assumed.
    [Show full text]
  • 28-Protistsf20r.Ppt [Compatibility Mode]
    9/3/20 Ch 28: The Protists (a.k.a. Protoctists) (meet these in more detail in your book and lab) 1 Protists invent: eukaryotic cells size complexity Remember: 1°(primary) endosymbiosis? -> mitochondrion -> chloroplast genome unicellular -> multicellular 2 1 9/3/20 For chloroplasts 2° (secondary) happened (more complicated) {3°(tertiary) happened too} 3 4 Eukaryotic “supergroups” (SG; between K and P) 4 2 9/3/20 Protists invent sex: meiosis and fertilization -> 3 Life Cycles/Histories (Fig 13.6) Spores and some protists (Humans do this one) 5 “Algae” Group PS Pigments Euglenoids chl a & b (& carotenoids) Dinoflagellates chl a & c (usually) (& carotenoids) Diatoms chl a & c (& carotenoids) Xanthophytes chl a & c (& carotenoids) Chrysophytes chl a & c (& carotenoids) Coccolithophorids chl a & c (& carotenoids) Browns chl a & c (& carotenoids) Reds chl a, phycobilins (& carotenoids) Greens chl a & b (& carotenoids) (more groups exist) 6 3 9/3/20 Name word roots (indicate nutrition) “algae” (-phyt-) protozoa (no consistent word ending) “fungal-like” (-myc-) Ecological terms plankton phytoplankton zooplankton 7 SG: Excavata/Excavates “excavated” feeding groove some have reduced mitochondria (e.g.: mitosomes, hydrogenosomes) 8 4 9/3/20 SG: Excavata O: Diplomonads: †Giardia Cl: Parabasalids: Trichonympha (bk only) †Trichomonas P: Euglenophyta/zoa C: Kinetoplastids = trypanosomes/hemoflagellates: †Trypanosoma C: Euglenids: Euglena 9 SG: “SAR” clade: Clade Alveolates cell membrane 10 5 9/3/20 SG: “SAR” clade: Clade Alveolates P: Dinoflagellata/Pyrrophyta:
    [Show full text]
  • The Macronuclear Genome of Stentor Coeruleus Reveals Tiny Introns in a Giant Cell
    University of Pennsylvania ScholarlyCommons Departmental Papers (Biology) Department of Biology 2-20-2017 The Macronuclear Genome of Stentor coeruleus Reveals Tiny Introns in a Giant Cell Mark M. Slabodnick University of California, San Francisco J. G. Ruby University of California, San Francisco Sarah B. Reiff University of California, San Francisco Estienne C. Swart University of Bern Sager J. Gosai University of Pennsylvania See next page for additional authors Follow this and additional works at: https://repository.upenn.edu/biology_papers Recommended Citation Slabodnick, M. M., Ruby, J. G., Reiff, S. B., Swart, E. C., Gosai, S. J., Prabakaran, S., Witkowska, E., Larue, G. E., Gregory, B. D., Nowacki, M., Derisi, J., Roy, S. W., Marshall, W. F., & Sood, P. (2017). The Macronuclear Genome of Stentor coeruleus Reveals Tiny Introns in a Giant Cell. Current Biology, 27 (4), 569-575. http://dx.doi.org/10.1016/j.cub.2016.12.057 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/biology_papers/49 For more information, please contact [email protected]. The Macronuclear Genome of Stentor coeruleus Reveals Tiny Introns in a Giant Cell Abstract The giant, single-celled organism Stentor coeruleus has a long history as a model system for studying pattern formation and regeneration in single cells. Stentor [1, 2] is a heterotrichous ciliate distantly related to familiar ciliate models, such as Tetrahymena or Paramecium. The primary distinguishing feature of Stentor is its incredible size: a single cell is 1 mm long. Early developmental biologists, including T.H. Morgan [3], were attracted to the system because of its regenerative abilities—if large portions of a cell are surgically removed, the remnant reorganizes into a normal-looking but smaller cell with correct proportionality [2, 3].
    [Show full text]
  • There Is Not a Latin Root Word Clear Your Desk Protist Quiz Grade Quiz
    There is not a Latin Root Word Clear your desk Protist Quiz Grade Quiz Malaria Fever Wars Classification Kingdom Protista contains THREE main groups of organisms: 1. Protozoa: “animal-like protists” 2. Algae: “plant-like protists” 3. Slime & Water Molds: “fungus-like protists” Basics of Protozoa Unicellular Eukaryotic unlike bacteria 65, 000 different species Heterotrophic Free-living (move in aquatic environments) or Parasitic Habitats include oceans, rivers, ponds, soil, and other organisms. Protozoa Reproduction ALL protozoa can use asexual reproduction through binary fission or multiple fission FEW protozoa reproduce sexually through conjugation. Adaptation Special Protozoa Adaptations Eyespot: detects changes in the quantity/ quality of light, and physical/chemical changes in their environment Cyst: hardened external covering that protects protozoa in extreme environments. Basics of Algae: “Plant-like” protists. MOST unicellular; SOME multicellular. Make food by photosynthesis (“autotrophic prostists”). Were classified as plants, BUT… – Lack tissue differentiation- NO roots, stems, leaves, etc. – Reproduce differently Most algal cells have pyrenoids (organelles that make and store starch) Can use asexual or sexual reproduction. Algae Structure: Thallus: body portion; usually haploid Body Structure: 1) unicellular: single-celled; aquatic (Ex.phytoplankton, Chlamydomonas) 2) colonial: groups of coordinated cells; “division of labor” (Ex. Volvox) 3) filamentous: rod-shaped thallus; some anchor to ocean bottom (Ex. Spyrogyra) 4) multicellular: large, complex, leaflike thallus (Ex. Macrocystis- giant kelp) Basics of Fungus-like Protists: Slime Molds: Water Molds: Once classified as fungi Fungus-like; composed of Found in damp soil, branching filaments rotting logs, and other Commonly freshwater; decaying matter. some in soil; some Some white, most yellow parasites.
    [Show full text]
  • Gaits in Paramecium Escape
    Transitions between three swimming gaits in Paramecium escape Amandine Hamela, Cathy Fischb, Laurent Combettesc,d, Pascale Dupuis-Williamsb,e, and Charles N. Barouda,1 aLadHyX and Department of Mechanics, Ecole Polytechnique, Centre National de la Recherche Scientifique, 91128 Palaiseau cedex, France; bActions Thématiques Incitatives de Genopole® Centriole and Associated Pathologies, Institut National de la Santé et de la Recherche Médicale Unité-Université d’Evry-Val-d’Essonne Unité U829, Université Evry-Val d'Essonne, Bâtiment Maupertuis, Rue du Père André Jarlan, 91025 Evry, France; cInstitut National de la Santé et de la Recherche Médicale Unité UMRS-757, Bâtiment 443, 91405 Orsay, France; dSignalisation Calcique et Interactions Cellulaires dans le Foie, Université de Paris-Sud, Bâtiment 443, 91405 Orsay, France; and eEcole Supérieure de Physique et de Chimie Industrielles ParisTech, 10 rue Vauquelin, 75005 Paris, France Edited* by Harry L. Swinney, University of Texas at Austin, Austin, TX, and approved March 8, 2011 (received for review November 10, 2010) Paramecium and other protists are able to swim at velocities reach- or in the switching between the different swimming behaviors ing several times their body size per second by beating their cilia (11, 13–17). in an organized fashion. The cilia beat in an asymmetric stroke, Below we show that Paramecium may also use an alternative to which breaks the time reversal symmetry of small scale flows. Here cilia to propel itself away from danger, which is based on tricho- we show that Paramecium uses three different swimming gaits to cyst extrusion. Trichocysts are exocytotic organelles, which are escape from an aggression, applied in the form of a focused laser regularly distributed along the plasma membrane in Paramecium heating.
    [Show full text]
  • Wrc Research Report No. 131 Effects of Feedlot Runoff
    WRC RESEARCH REPORT NO. 131 EFFECTS OF FEEDLOT RUNOFF ON FREE-LIVING AQUATIC CILIATED PROTOZOA BY Kenneth S. Todd, Jr. College of Veterinary Medicine Department of Veterinary Pathology and Hygiene University of Illinois Urbana, Illinois 61801 FINAL REPORT PROJECT NO. A-074-ILL This project was partially supported by the U. S. ~epartmentof the Interior in accordance with the Water Resources Research Act of 1964, P .L. 88-379, Agreement No. 14-31-0001-7030. UNIVERSITY OF ILLINOIS WATER RESOURCES CENTER 2535 Hydrosystems Laboratory Urbana, Illinois 61801 AUGUST 1977 ABSTRACT Water samples and free-living and sessite ciliated protozoa were col- lected at various distances above and below a stream that received runoff from a feedlot. No correlation was found between the species of protozoa recovered, water chemistry, location in the stream, or time of collection. Kenneth S. Todd, Jr'. EFFECTS OF FEEDLOT RUNOFF ON FREE-LIVING AQUATIC CILIATED PROTOZOA Final Report Project A-074-ILL, Office of Water Resources Research, Department of the Interior, August 1977, Washington, D.C., 13 p. KEYWORDS--*ciliated protozoa/feed lots runoff/*water pollution/water chemistry/Illinois/surface water INTRODUCTION The current trend for feeding livestock in the United States is toward large confinement types of operation. Most of these large commercial feedlots have some means of manure disposal and programs to prevent runoff from feed- lots from reaching streams. However, there are still large numbers of smaller feedlots, many of which do not have adequate facilities for disposal of manure or preventing runoff from reaching waterways. The production of wastes by domestic animals was often not considered in the past, but management of wastes is currently one of the largest problems facing the livestock industry.
    [Show full text]
  • Ciliate Diversity, Community Structure, and Novel Taxa in Lakes of the Mcmurdo Dry Valleys, Antarctica
    Reference: Biol. Bull. 227: 175–190. (October 2014) © 2014 Marine Biological Laboratory Ciliate Diversity, Community Structure, and Novel Taxa in Lakes of the McMurdo Dry Valleys, Antarctica YUAN XU1,*†, TRISTA VICK-MAJORS2, RACHAEL MORGAN-KISS3, JOHN C. PRISCU2, AND LINDA AMARAL-ZETTLER4,5,*࿣ 1Laboratory of Protozoology, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; 2Montana State University, Department of Land Resources and Environmental Sciences, 334 Leon Johnson Hall, Bozeman, Montana 59717; 3Department of Microbiology, Miami University, Oxford, Ohio 45056; 4The Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, Massachusetts 02543; and 5Department of Earth, Environmental and Planetary Sciences, Brown University, Providence, Rhode Island 02912 Abstract. We report an in-depth survey of next-genera- trends in dissolved oxygen concentration and salinity may tion DNA sequencing of ciliate diversity and community play a critical role in structuring ciliate communities. A structure in two permanently ice-covered McMurdo Dry PCR-based strategy capitalizing on divergent eukaryotic V9 Valley lakes during the austral summer and autumn (No- hypervariable region ribosomal RNA gene targets unveiled vember 2007 and March 2008). We tested hypotheses on the two new genera in these lakes. A novel taxon belonging to relationship between species richness and environmental an unknown class most closely related to Cryptocaryon conditions
    [Show full text]
  • ABSTRACT Title of Dissertation: IDENTIFICATION, LIFE HISTORY
    ABSTRACT Title of Dissertation: IDENTIFICATION, LIFE HISTORY, AND ECOLOGY OF PERITRICH CILIATES AS EPIBIONTS ON CALANOID COPEPODS IN THE CHESAPEAKE BAY Laura Roberta Pinto Utz, Doctor of Philosophy, 2003 Dissertation Directed by: Professor Eugene B. Small Department of Biology Adjunct Professor D. Wayne Coats Department of Biology and Smithsonian Environmental Research Center Epibiotic relationships are a widespread phenomenon in marine, estuarine and freshwater environments, and include diverse epibiont organisms such as bacteria, protists, rotifers, and barnacles. Despite its wide occurrence, epibiosis is still poorly known regarding its consequences, advantages, and disadvantages for host and epibiont. Most studies performed about epibiotic communities have focused on the epibionts’ effects on host fitness, with few studies emphasizing on the epibiont itself. The present work investigates species composition, spatial and temporal fluctuations, and aspects of the life cycle and attachment preferences of Peritrich epibionts on calanoid copepods in Chesapeake Bay, USA. Two species of Peritrich ciliates (Zoothamnium intermedium Precht, 1935, and Epistylis sp.) were identified to live as epibionts on the two most abundant copepod species (Acartia tonsa and Eurytemora affinis) during spring and summer months in Chesapeake Bay. Infestation prevalence was not significantly correlated with environmental variables or phytoplankton abundance, but displayed a trend following host abundance. Investigation of the life cycle of Z. intermedium suggested that it is an obligate epibiont, being unable to attach to non-living substrates in the laboratory or in the field. Formation of free-swimming stages (telotrochs) occurs as a result of binary fission, as observed for other peritrichs, and is also triggered by death or molt of the crustacean host.
    [Show full text]
  • Screening Snake Venoms for Toxicity to Tetrahymena Pyriformis Revealed Anti-Protozoan Activity of Cobra Cytotoxins
    toxins Article Screening Snake Venoms for Toxicity to Tetrahymena Pyriformis Revealed Anti-Protozoan Activity of Cobra Cytotoxins 1 2 3 1, Olga N. Kuleshina , Elena V. Kruykova , Elena G. Cheremnykh , Leonid V. Kozlov y, Tatyana V. Andreeva 2, Vladislav G. Starkov 2, Alexey V. Osipov 2, Rustam H. Ziganshin 2, Victor I. Tsetlin 2 and Yuri N. Utkin 2,* 1 Gabrichevsky Research Institute of Epidemiology and Microbiology, ul. Admirala Makarova 10, Moscow 125212, Russia; fi[email protected] 2 Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, ul. Miklukho-Maklaya 16/10, Moscow 117997, Russia; [email protected] (E.V.K.); damla-sofi[email protected] (T.V.A.); [email protected] (V.G.S.); [email protected] (A.V.O.); [email protected] (R.H.Z.); [email protected] (V.I.T.) 3 Mental Health Research Centre, Kashirskoye shosse, 34, Moscow 115522, Russia; [email protected] * Correspondence: [email protected] or [email protected]; Tel.: +7-495-3366522 Deceased. y Received: 10 April 2020; Accepted: 13 May 2020; Published: 15 May 2020 Abstract: Snake venoms possess lethal activities against different organisms, ranging from bacteria to higher vertebrates. Several venoms were shown to be active against protozoa, however, data about the anti-protozoan activity of cobra and viper venoms are very scarce. We tested the effects of venoms from several snake species on the ciliate Tetrahymena pyriformis. The venoms tested induced T. pyriformis immobilization, followed by death, the most pronounced effect being observed for cobra Naja sumatrana venom. The active polypeptides were isolated from this venom by a combination of gel-filtration, ion exchange and reversed-phase HPLC and analyzed by mass spectrometry.
    [Show full text]
  • Micronuclear Rna Synthesis in Paramecium Caudatum
    MICRONUCLEAR RNA SYNTHESIS IN PARAMECIUM CAUDATUM M. V. NARASIMHA RAO and DAVID M. PRESCOTT From the Department of Anatomy, the University of Colorado Medical Center, Denver. The authors' present address is the Institute for Developmental Biology, the University of Colorado, Boulder. Dr. Rao's permanent address is the Department of Zoology, Andhra University, Waltair, India ABSTRACT In a gcncration time of 8 hr in Paramecium caudatum, the bulk of DNA synthesis detected by thymidine-3H incorporation takes place in the latter part of the cell cycle. The micronu- clear cycle includes a G1 of 3 hr followed by an S period of 3-3~ hr. G2 and division oc- cupies the remaining period of the cycle. Macronuclear RNA synthesis detected by 5'-uri- dine-3H incorporation is continuous throughout the cell cycle. Micronuclear RNA synthesis is restricted to the S period. Ribonuclcase removes 80-90 % of the incorporated label. Pulsc-chasc experiments showed that part of the RNA is conserved and releascd to the cytoplasm during the succecding G1 period. INTRODUCTION On the basis of genetic experiments on Para- dence of such synthesis in P. aurelia and Tetra- mecium aurelia, Sonneborn (11) proposed that the hymena, although Moses (8), using cytochemical macronucleus in ciliated protozoa is exclusively methods, has detected the presence of RNA in the somatic and that the micronucleus is primarily micronucleus of P. caudatum. We have taken up germinal in function. This idea is supported by the question of synthesis, by increasing the resolu- the observations that the reproduction of kappa in tion and sensitivity of the radioautographic the cytoplasm of P.
    [Show full text]