<<

and the Terrestrial Revolution Graeme T. Lloyd*1, Katie E. Davis2, Davide Pisani3, James E. Tarver1, Marcello Ruta1, Manabu Sakamoto1, David W. E. Hone4,5, Rachel Jennings1 and Michael J. Benton1 1Department of Sciences, University of Bristol, Wills Memorial Building, Queens Road, Bristol BS8 1RJ, UK; 2DEEB, FBLS, Graham Kerr Building, University of Glasgow, Glasgow G12 8QP, UK; 3Laboratory of Evolutionary Biology, Department of Biology, The National University of Ireland, Maynooth, Co. Kildaire, Ireland; 4Bayerischen Staatssammlung für Paläontologie und Geologie, Richard Wagner-Strasse 10, München 80333, Germany; 5Institute of Vertebrate and Paleoanthropology, Xizhimenwai Daije 142,100044 Beijing, People’s Republic of China; Correspondence: [email protected]

Abstract Figure 2 (below). Majority-rule consensus tree of the reduced Baum Figure 4. A summary version of the supertree (figure 2) drawn against (3)* and Ragan MRP matrix. Abbreviated names are: Mam. = stratigraphy. The 11 statistically significant diversification shifts Basal (3)* taibaii The observed diversity of dinosaurs reached its highest peak during the mid- and Late , Br. = , Her. = present in both the entire tree (figure 2) and at least one (11) austraicus Cretaceous, the 50Myr that preceded their , and yet this explosion of diversity Herrerasauridae, Compsog. = time-sliced tree are marked with white arrows denoting (27) Stormbergia dangershoeki may be explained largely by sampling bias. It has long been debated whether dinosaurs were “Compsognathoidea”, Ornithomimo. = the branch leading to the more speciose clade. Heterodontosauridae (2) part of the Cretaceous Terrestrial Revolution (KTR), from 125–80Myr ago, when flowering plants, Ornithomimosauria, Therizino. = Taxa in bold represent the collapsing of a (16) Basal Ceratopsia (18)* herbivorous and social insects, squamates, and mammals all underwent a rapid expansion. Therizinosauroidea, Alvar. = ia larger clade or group, the size of which Avaceratops lammersi Although an apparent explosion of dinosaur diversity occurred in the mid-Cretaceous, and ch is indicated in parentheses. An ‘*’ (18) is Basal Euornithopoda (17)* coinciding with the emergence of new groups (e.g. neoceratopsians, ankylosaurid ankylosaurs, . = th ia indicates the collapsing of a Dryosauridae (2) ni tops dispar hadrosaurids and pachycephalosaurs), results from the first quantitative study of diversification . r era Eu paraphyletic group and a ‘†’ Basal Iguanodontoidea (16)* O C orn Euhadrosauria (24) applied to a new supertree of dinosaurs show that this apparent burst in dinosaurian diversity in ith that of an extant clade Basal (6)* the last 18 Myr of the Cretaceous is a sampling artefact. Indeed, major diversification shifts op (i.e. birds). Prosauropoda (14)* od Basal (18)* occurred largely in the first one-third of the group’s history. Despite the appearance of new a (60) Basal (5)* of medium to large and carnivores later in dinosaur history, these new Coelophysoidea (10) Chasmosaurus mariscalensis

Arrhinoceratops brachyops Arrhinoceratops Pachyrhinosaurus canadensis hongheensis Yandusaurus Neoceratosauria (15) originations do not correspond to significant diversification shifts. Instead, the overall geometry multidens Hexinlusaurus "Szechuanoraptor" zigongensis Pentaceratops sternbergii

Agilisaurus louderbacki Agilisaurus ia Einiosaurus procurvicornis Chasmosaurus irvinensis Megalosauroidea (14) of the Cretaceous part of the dinosaur tree does not depart from the null hypothesis of an equal Anchiceratopsornatus r Pachyrhinosaurus n. sp. Chasmosaurusrusselli Bagaceratops rozhdestvenskyi u Graciliceratops mongoliensis Styracosaurus albertensis Centrosaurus brinkmani horridus Triceratops Carnosauria (12) Achelousaurus horneri a hatcheri Diceratops rates model of lineage branching. Furthermore, we conclude that dinosaurs did not experience Zuniceratops christopheri s Montanoceratops cerorhynchus Chasmosaurusbelli o Protoceratops hellenikorhinus Basal Neotetanura (3)* Centrosaurus apertus l latus Torosaurus Udanoceratops tschizhovi Siamotyrannus isanensis a progressive decline at the end of the Cretaceous, nor was their evolution driven directly by the a Prenoceratops pieganensis Protoceratops andrewsiAvaceratops lammersi Monoclonius crassus h Yamaceratops dorngobiensis Tyrannosauroidea (15) p ‘Compsognathoidea’ (8) KTR. e LiaoceratopsArchaeoceratops yanzigouensis oshimaiLeptoceratops gracilis yc Psittacosaurus mongoliensis Scipionyx samniticus h Basal (5)* c Psittacosaurus guyangensisPsittacosaurus sinensis Ornithomimosauria (11) a PachycephalosaurusPrenocephale wyomingensis edmontonensisChaoyangsaurus youngi P Xuanhuaceratops niei Basal (2) Sphaerotholus buchholtzae (22) 20 Alvarezsauridae (5)

Othnielia rex Orodromeus makelai Zephyrosaurus schaffi Jeholosaurus shangyuanensis Hypsilophodon foxii Gasparinisaura cincosaltensis Prenocephale brevis Parksosaurus warreni Thescelosaurus neglectus Prenocephale goodwini Tenontosaurus dossi Gugyedong maniraptoran Tenontosaurus tilletti Excluded Trees: Included Trees: Muttabarrasaurus langdoni Rhabdodon priscus Zalmoxes robustus Zalmoxes shqiperorum lettowvorbecki Dryosaurus altus robusta 18 Camptosaurus dispar Yinlong downsi Lurdusaurus arenatus Uncorroborated trees Independent trees Equijubus normani Stygimoloch spinifer Iguanodon bernissartensis Iguanodon atherfieldensis Eumaniraptora (26)† Ouranosaurus nigeriensis HomalocephaleDwarf calathocercos pachycephalosaur Fukuisaurus tetoriensis Redundant trees Dependent trees Tylocephale gilmorei Altirhinus kurzanovi Nanyangosaurus zhugeii Prenocephale prenes Jinzhousaurus yangi 16 Probactrosaurus gobiensis Eolambia caroljonesa Protohadros byrdi Bactrosaurus johnsoni 1 2 3 4 5 6 7 8 9 10 11 12 Gilmoreosaurus mongoliensis OrnatotholusStegoceras browni validum Telmatosaurus transsylvanicus 14 WannanosaurusGoyocephale yansiensis lattimorei Fontllonga euhadrosaur Lophorhothon atopus 225 200 175 150 125 100 75 Gryposaurus notabilis Brachylophosaurus canadensis Maiasaura peeblesorum Yaverlandia bitholus Edmontosaurus annectens P Time (Ma) 12 Edmontosaurus regalis Heterodontosaurus tucki Kerberosaurus manakini l StormbergiaAbrictosaurus Stenopelixdangershoeki consors valdensis Prosaurolophus maximus a e Naashoibitosaurus ostromi "Kritosaurus" australis t 10 a Nodocephalosaurus kirtlandensis osborni e Pararhabdodon isonensis d Tsintaosaurus spinorhinus o i PinacosaurusAnkylosaurus mephistocephalusSaichania magniventris chulsanensis Jaxartosaurus aralensis r Amurosaurus riabinini s 8 EuoplocephalusTarchia tutusgigantea Charonosaurus jiayinensis a u Parasaurolpohus walkeri u

N Source Trees a Lambeosaurus lambei Lambeosaurus magnicristatus r 6 s Corythosaurus casuarius i o TalarurusPinacosaurus plicatospineus grangeri Olorotitan arharensis a Dinosaur diversification: diversification shifts l Tsagantegia longicranialis Hypacrosaurus stebingeri Hypacrosaurus altispinus 4 y Tianzhenosaurus youngi Nipponosaurus sachalinensis k antiquus n Shamosaurus scutatus caducus An alternative approach to analysing diversification is to compare 2 Gobisaurus domoculus patagonicus A xinwaensis minor observed tree shape with a null model. The simplest null model is Ammosaurus major 0 foxii incertus equal-rates Markov (ERM), where all branches have the same GargoyleosaurusMymoorapelta parkpinorum maysi huenei 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 Animantarx ramaljonesiGastonia burgei "" sinensis Minmi paravertebra carinatus probability of splitting resulting in a fully balanced tree. Significant 1985 1987 1989 1991 1993 1995 1997 1999 2001 2003 2005 huangi rugosidens gracilis Publication Plateosaurus cullingworthi excursions from stochastic variation around this model indicates a Edmontonia longiceps brevis mirus Plateosaurus engelhardti more complex two-parameter model, where, following a split, one Figure 1. Filtering of source trees results in decreased redundancy tolentinoi SauropeltaSilvisaurus edwardsorum condrayi polyzelus and a strong skew towards more recent analyses. Uncorroborated Pawpawsaurus campbelli readi branch shows a greater probability of splitting than the other. This Cedarpelta bilbeyhallorum borealis sauropoides M is a diversification shift (Chan and Moore 2005). Here 11 trees lack a numerical cladistic analysis and redundant trees have e armatus cromptoni a a ingenipes m significant shifts (which were also found on time-sliced trees, a been superceded by more recent work. Independent trees StruthiosaurusHungarosaurus austriacus tormai shibeiensis d attavipachi . i way of testing a potential bias in the assumptions of the ERM r naimi represent a unique combination of taxa and characters, whereas stenops yamanpalliensis u LexovisaurusStegosaurus durobrivensis armatus karibaensis model) were discovered. These are shown in figure 4 as arrows dependent trees have equal claim to novelty with at least one a aethiopicus lii s multispinus tagorei indicating the more speciose branch following the shift. These other analysis. o constructus junghsiensis S g mjosi Omeisaurus yianfuensis are concentrated early in dinosaur evolution. An alternative e armatus fariasi t Wuerhosaurus homheni oxoniensis a way of showing this is to plot the mean likelihood of the S ChungkingosaurusChialingosaurus jiangbeiensis kuani Losillasaurus giganteus bonapartei u two-parameter model through time (figure 5). This shows that tiguidensis Supertree Construction Paranthodon africanus priscus diversification was furthest from the ERM model in the Early Huayangosaurus taibaii altus r harrisonii tessonei D

o and closest during the Cretaceous. ernsti taqueti i A novel formal supertree was produced and used as a lawleri agrioensis p

Rebbachisaurus garasbae l Lesothosaurus diagnosticus p emilieae o framework to investigate different metrics of diversification in cazaui Eocursor parvus d

Pisanosaurus mertii mesai o non-avian dinosaurs. Here, new source tree filtering methods hansemanni o

Dinheirosaurus lourinhanensis c

D marshalli d were used to reduce redundancy and ensure that source trees africana o

Barosaurus lentus Dinosaur diversification: the Cretaceous Terrestrial r antirrhopus

i o longus d represented current consensus as far as possible (figure 1). feinbergorum louisae o Revolution

m mongoliensis e mangas Apatosaurus sp.

Multiple supertree algorithms were then employed to combine Apatosaurus ajax a a langstoni Apatosaurus excelsus m source trees in different ways, but we found that the Baum and e ostrommaysi Apatosaurus parvus The removal of a diversification peak by o imelakei

Dromaeosaurus albertensis Haplocanthosaurus delfsi Ragan MRP method produced the best representation of the o s Achillobator giganticus supremus subsampling and the better fit of an ERM model during the original source trees (by the V1 index of Wilkinson et al. 2005). a mongoliensis maranhensis u Cretaceous indicate relatively quiescent speciation during this

Buitreraptor gonzalezorum brancai r r holgeri

A manual reduced consensus approach was then used to remove millenii i madagascarensis p interval. This contrasts strongly with the pattern from other d zhaoianus Brachiosaurus altithorax taxa that were phylogenetically unstable in to obtain a tree weiskopfae

a argentinus terrestrial clades (e.g. herbivorous and social insects, squamates, bashanensis h e zdanskyi

that more closely represented complete bifurcation. The resulting SaurornithoidesSaurornithoidesTroodon mongoliensis formosus junior Tehuelchesaurus benitezii birds and mammals) that show major diversifications at this time wichmannianus a tree of 420 is shown in figure 2. jaffei orientalis following the origin and radiation of angiosperms, an event we T youngi krausei . r Dornogov troodontidMei long mongoliensis r o term the Cretaceous Terrestrial Revolution (KTR). Direct evidence changii sui B sirindhornae o delgadoi of dinosaurian diet (gut contents, coprolites) already suggests that d Pleurocoelus nanus elegans atacis o ostromi ligabuei dinosaurs did not adapt to feed exclusively on angiosperms and we Dinosaur diversification: counting methods n lithographica stromeri . sciuttoi conclude that dinosaurs did not participate in the KTR. comahuensis mckillopi dixeyi A Protarchaeopteryx robusta faustoi GugyedongParvicursor maniraptoran remotus colberti Three taxon-counting methods were used to look at a simple metric of v deserti indicus e olecranus sanjuanensis s powelli diversification (% change in species richness per million ). The first puertai superbus AlvarezsaurusIngenia yanshini calvoi muniozi References cited involved counts of raw data taken from The Dinosauria II (Weishampel et Japalpur titanosaur indet. Malagasy Taxon B ConchoraptorKhaan mckennaigracilis loricatus al. 2004), the second used the supertree to add ghost ranges to this data rionegrinus A philoceratops Toba titanosaur a Chan, K. M. and Moore, B. R., 2005. Bioinformatics, 21, 1709-1710. osmolskae huinculensis i and the third used a subsampling approach whereby the data were l Opisthocelocaudia skarzynskii v Peiropolis titanosaur r Weishampel, D. B. et al., 2004. The Dinosauria (Second Edition). a astibiae u resampled 1,000 times and the number of species present in 36 occurrences celer Staurikosaurus pricei r mongoliensis Herrerasaurus ischigualastensis a University of California Press, Berkeley. . Kamyn KhondtNomingia oviraptorine gobiensis Chindesaurus bryansmalli s tallied. This last count represents a way of artifically setting the global quality lunensis El Brete oviraptor Guabiasaurus candelariensis o O Sarcosaurus woodi Wilkinson, M. et al., 2005. Systematic Biology, 54, 823-831. zoui Zupaysaurus rougieri n of the record as equal to the worst part. The results are shown in figure 3, with ChirostenotesAvimimus portentosuspergracilis Dilophosaurus wetherilli a v Gojirasaurus quayi t i Lophostropheus airelensis i the raw and ghost-range corrected data showing increased diversification in the r Liliensternus lilliensterni Procompsognathus triassicus T a gauthieri Syntarsus rhodesiensis Full publication Coelophysis bauri Late , and Late Cretaceous and decreased diversification in p andrewsi Segisaurus halli galbinensis bambergi t nasicornis o Spinostropheus gautieri Velocisaurus unicus the and . However, all peaks and troughs are r bonapartei utahensis Rugops primus o knopfleri Lloyd, G. T. et al., 2008. Proceedings of the Royal Society B, 275, 2483-2490. deguchiianus Noasaurus leali inexpectus Ilokelesia aguadagrandensis removed by subsampling, suggesting minimally that the dinosaur record is seriously s EnigmosaurusNothronychus mongoliensis mckinleyi Abelisaurus comahuensis a Aucasaurus garridoi Quarry 9 coelurosaur Carnotaurus sastrei Bajo Barreal abelisaur u Bagaraatan ostromi Lameta abelisaur biased by sampling and maximally that the true picture is one of near constant diversity crenatissimus "Szechuanoraptor" zigongensis r Afrovenator abakensis Ornithomimus velox Piatnitzkysaurus floresi i Xinjiangovenator parvus Megalosaurus bucklandi Poekilopleuron bucklandii a tanneri implying a logistic model of species richness. Struthiomimus altus Dubreuillosaurus valesdunensis Eustreptospondylus oxoniensis "Megalosaurus" hesperis bullatus Chilantaisaurus tashuikouensis Cristatusaurus lapparenti Baryonyx walkeri Suchomimus tenerensis Irritatorchallengeri aegypticus Nanshinungosaurus brevispinus Lourinhanosaurusantunesi Monolophosaurusjiangi Cryolophosaurus ellioti Cryolophosaurus Sinraptor dongi Sinraptor Yangchuanosaurusshangyouensis fragilis Allosaurus Acrocanthosaurus atokensis Acrocanthosaurus salerii Neovenator T chubutensis Tyrannotitan h fragilis 0.7 e Ornithomimus Sinornithomimusedmontonicus dongi . r AnserimimusGarudimimus planinychus brevipes r iz e in Harpymimus okladnikoviDeltadromeus agilis H Pelecanimimus polyodon 0.6 12.0% o ArchaeornithomimusShenzhousaurus asiaticusOrnitholestes orientalis hermanni . Scipionyx samniticus ProceratosaurusMirischia bradleyi asymmetrica . Aristosuchus pussilus s bataar y 0.5 Sinosauropteryx prima Tyrannosaurus rex Compsognathus longipes Eotyrannus lengi h O Xuanhanosaurus qilixiaensis Nqwebasaurus thwazi Guanlong wucaii p Huaxiagnathus orientalis Alioramus remotus 8.0% r constructus Dilong paradoxus o Gorgosaurus libratus l n Nanotyrannus lancensis Alectrosaurus olseni

Mapusaurus roseae e i Nedcolberti justinhofmanniDaspletosaurus torosus Figure 3. th Tugulusaurus faciles Co 0.4 om Stokesosaurus clevelandi Siamotyrannus isanensis

Giganotosaurus carolinii Figure 5. Diversification i Albertosaurus sarcophagus Dryptosaurus aquilunguis m Fukuiraptor kitadaniensis o Two Medicine tyrannosaurine ria 0.3 4.0% rates based on the . au M e a n os values of the raw record (blue Magnosaurus nethercombensis t saharicus ra Appalachiosaurus montgomeriensis ce Delta-2 shift 0.2 line), the raw record Co eo 0.0% plus additional ghost ranges m N statistic through time. ps Mean Delta-2 shift statistic og a Higher values indicate a 0.1 % change in diversity/m.y. % change e (green line) and subsampled . Ty oid ran saur better fit of the two-parameter data (red line, including 95% C.I.). Th nosau egalo -4.0% e roidea ria M model, i.e. a higher likelihood of a 0 3 4 5 6 7 8 9 10 11 12 Boxes 1-12 are approximately r Carnosau 1 2 3 4 5 6 7 8 9 10 11 12 o diversification shift. Lower values equal-length time bins made by clumping po 225 200 175 150 125 100 75 200 175 150 125 100 75 geologic stages together. da indicate preference of the one-parameter Time (Ma) (equal-rates Markov) model. Time (Ma)