Manfred Eigen (1927–2019) Observer of Fast Reactions in the Laboratory and in Life

Total Page:16

File Type:pdf, Size:1020Kb

Manfred Eigen (1927–2019) Observer of Fast Reactions in the Laboratory and in Life COMMENT OBITUARY Manfred Eigen (1927–2019) Observer of fast reactions in the laboratory and in life. hemist Manfred Eigen challenges theoretical biologists. regarded received wisdom as From the early 1980s, he developed a challenge rather than a con- these concepts into evolutionary bio- Cstraint. His techniques for investigat- technology at the MPI. His colleagues ing ‘immeasurably fast’ reactions and built ‘evolution reactors’ that drove the their application to biological systems evolution of viruses and other replicat- opened up new avenues, in fields from ing molecules under controlled con- fundamental kinetics to the forma- ditions to investigate how pathogens PLANCK SOCIETY BLACHIAN/MAX tion of protein complexes. This work, evade the immune system, or to search conducted in the 1950s at the Max for new drugs. Eigen helped to found Planck Institute (MPI) for Physical two companies to exploit this technol- Chemistry in Göttingen, won him ogy, Evotec Biosystems (now Evotec a share (with Ronald Norrish and AG) and DIREVO Biotech (bought George Porter) of the 1967 Nobel by Bayer Healthcare in 2008). Prize in Chemistry. He went on to Although he oversaw the design and develop theories to account for the location of the MPI for Biophysical self-organization of biological mole- Chemistry, Eigen declined the post of cules, and he was a creator of the new permanent director, instead heading field of evolutionary biotechnology. its Department of Biochemical Kinet- At a time when most institutes and ics until he retired in 1995. “His way of departments were split along discipli- solving problems with the best factual nary lines, Eigen argued that under- and transparent solution instead of standing organisms at the level of imposing his unquestioned author- their chemical interactions demanded ity shaped the spirit of the institute,” an interdisciplinary approach. After wrote MPI colleagues in an article cel- years of lobbying, he got his wish in 1971, leading physicists, including Nobel prizewin- ebrating Eigen in his 90th year (H. Jäckle et when the Max Planck Society (MPS) cre- ners Werner Heisenberg and Wolfgang Paul. al. Eur. Biophys. J. 47, 319–323; 2018). Eigen ated the MPI for Biophysical Chemistry in In 1953, after a doctorate on the specific remained active after retirement, dividing Göttingen. ‘It is not the research area that heat of heavy water, Eigen moved to the his time between Göttingen and the Scripps counts,’ ran the founding principle of the lab- recently founded MPI for Physical Chemistry Research Institute in La Jolla, California. oratory: ‘it is the excellence of the individuals’. to work with its director, Karl Friedrich Bon- Communication with the wider public was He was less successful at persuading the MPS hoeffer. In a standard textbook co-authored important to him. He published three books to found a institute for science and music. by his former supervisor, Arnold Eucken, aimed at the general reader: Laws of the Game Eigen was born in Bochum, Germany, Eigen found reactions described as “immeas- (1983), Steps Towards Life (1992) and From where his father was a cellist. By 15, he urably fast”. Refusing to accept such uncer- Strange Simplicity to Complex Familarity was himself a proficient pianist with the tainty, by 1954, he had developed a way of (2013). All were written jointly with his long- potential for a future solo career. He’d also disturbing the equilibria in chemical solutions standing scientific partner, Ruthild Winkler- developed an interest in chemistry, doing with pulses of intense electrical or ultrasonic Oswatitsch, who became his second wife. experiments in a lab at home. But, in 1942, energy, and using spectroscopy to time how He chaired the council of Europe’s life-sci- as allied bombers began to shift the balance long it took for equilibrium to be restored. ences organization EMBO through delicate against Germany in the Second World War, Such ‘relaxation techniques’ could determine negotiations to establish a base in Heidelberg his class was drafted to the anti-aircraft bat- the rate of a neutralization reaction that took in the early 1970s. And in his 12 years presid- teries defending the city; two years later, he place in nanoseconds — orders of magnitude ing over the German Academic Fellowship was conscripted into the German air force. faster than any previously measured. Foundation, he pushed for the advancement When Germany surrendered in May 1945, His success made it possible for scientists of young scientists through doctoral grants. 2 days before his 18th birthday, Eigen was sta- to study reactions catalysed by enzymes that He remained an impressive amateur pianist, tioned at Salzburg airport in Austria, which drive all processes of life. Eigen developed sometimes playing Mozart’s concertos after was occupied by US troops. Captured as pris- concepts to explain how replicating macro- scientific meetings. A man of great personal oners of war, Eigen and a friend managed to molecules on the prebiotic Earth might have elegance, with a taste for striking ties, his quest escape, and walked roughly 1,000 kilometres evolved into replicating organisms. In 1971, for elegant solutions widened the field of view back to Bochum over the next month. Hav- for example, he posed the paradox that with- for generations of researchers that followed. ■ ing not touched a piano for three years, he out error-correction enzymes, the length of decided to make his career in science. The a nucleic acid would be limited because, in Georgina Ferry is a science writer from University of Göttingen accepted him as a larger molecules, mutations would destroy Oxford, UK, specializing in the history of the student of geophysics — the only branch of the information content of subsequent gen- life sciences. Her books include biographies physics with room for him, when so many erations. But this maximum size (or error of the crystallographers Dorothy Crowfoot older students were returning from military threshold) was too small to encode an error- Hodgkin and Max Perutz. service. He studied with some of the country’s correcting enzyme. Eigen’s paradox still e-mail: [email protected] 32 | NATURE | VOL 567 | 7 MARCH 2019 ©2019 Spri nger Nature Li mited. All ri ghts reserved. .
Recommended publications
  • Edward M. Eyring
    The Chemistry Department 1946-2000 Written by: Edward M. Eyring Assisted by: April K. Heiselt & Kelly Erickson Henry Eyring and the Birth of a Graduate Program In January 1946, Dr. A. Ray Olpin, a physicist, took command of the University of Utah. He recruited a number of senior people to his administration who also became faculty members in various academic departments. Two of these administrators were chemists: Henry Eyring, a professor at Princeton University, and Carl J. Christensen, a research scientist at Bell Laboratories. In the year 2000, the Chemistry Department attempts to hire a distinguished senior faculty member by inviting him or her to teach a short course for several weeks as a visiting professor. The distinguished visitor gets the opportunity to become acquainted with the department and some of the aspects of Utah (skiing, national parks, geodes, etc.) and the faculty discover whether the visitor is someone they can live with. The hiring of Henry Eyring did not fit this mold because he was sought first and foremost to beef up the graduate program for the entire University rather than just to be a faculty member in the Chemistry Department. Had the Chemistry Department refused to accept Henry Eyring as a full professor, he probably would have been accepted by the Metallurgy Department, where he had a courtesy faculty appointment for many years. Sometime in early 1946, President Olpin visited Princeton, NJ, and offered Henry a position as the Dean of the Graduate School at the University of Utah. Henry was in his scientific heyday having published two influential textbooks (Samuel Glasstone, Keith J.
    [Show full text]
  • Cambridge's 92 Nobel Prize Winners Part 2 - 1951 to 1974: from Crick and Watson to Dorothy Hodgkin
    Cambridge's 92 Nobel Prize winners part 2 - 1951 to 1974: from Crick and Watson to Dorothy Hodgkin By Cambridge News | Posted: January 18, 2016 By Adam Care The News has been rounding up all of Cambridge's 92 Nobel Laureates, celebrating over 100 years of scientific and social innovation. ADVERTISING In this installment we move from 1951 to 1974, a period which saw a host of dramatic breakthroughs, in biology, atomic science, the discovery of pulsars and theories of global trade. It's also a period which saw The Eagle pub come to national prominence and the appearance of the first female name in Cambridge University's long Nobel history. The Gender Pay Gap Sale! Shop Online to get 13.9% off From 8 - 11 March, get 13.9% off 1,000s of items, it highlights the pay gap between men & women in the UK. Shop the Gender Pay Gap Sale – now. Promoted by Oxfam 1. 1951 Ernest Walton, Trinity College: Nobel Prize in Physics, for using accelerated particles to study atomic nuclei 2. 1951 John Cockcroft, St John's / Churchill Colleges: Nobel Prize in Physics, for using accelerated particles to study atomic nuclei Walton and Cockcroft shared the 1951 physics prize after they famously 'split the atom' in Cambridge 1932, ushering in the nuclear age with their particle accelerator, the Cockcroft-Walton generator. In later years Walton returned to his native Ireland, as a fellow of Trinity College Dublin, while in 1951 Cockcroft became the first master of Churchill College, where he died 16 years later. 3. 1952 Archer Martin, Peterhouse: Nobel Prize in Chemistry, for developing partition chromatography 4.
    [Show full text]
  • Ion Trap Nobel
    The Nobel Prize in Physics 2012 Serge Haroche, David J. Wineland The Nobel Prize in Physics 2012 was awarded jointly to Serge Haroche and David J. Wineland "for ground-breaking experimental methods that enable measuring and manipulation of individual quantum systems" David J. Wineland, U.S. citizen. Born 1944 in Milwaukee, WI, USA. Ph.D. 1970 Serge Haroche, French citizen. Born 1944 in Casablanca, Morocco. Ph.D. from Harvard University, Cambridge, MA, USA. Group Leader and NIST Fellow at 1971 from Université Pierre et Marie Curie, Paris, France. Professor at National Institute of Standards and Technology (NIST) and University of Colorado Collège de France and Ecole Normale Supérieure, Paris, France. Boulder, CO, USA www.college-de-france.fr/site/en-serge-haroche/biography.htm www.nist.gov/pml/div688/grp10/index.cfm A laser is used to suppress the ion’s thermal motion in the trap, and to electrode control and measure the trapped ion. lasers ions Electrodes keep the beryllium ions inside a trap. electrode electrode Figure 2. In David Wineland’s laboratory in Boulder, Colorado, electrically charged atoms or ions are kept inside a trap by surrounding electric fields. One of the secrets behind Wineland’s breakthrough is mastery of the art of using laser beams and creating laser pulses. A laser is used to put the ion in its lowest energy state and thus enabling the study of quantum phenomena with the trapped ion. Controlling single photons in a trap Serge Haroche and his research group employ a diferent method to reveal the mysteries of the quantum world.
    [Show full text]
  • George Porter
    G EORGE P O R T E R Flash photolysis and some of its applications Nobel Lecture, December 11, 1967 One of the principal activities of man as scientist and technologist has been the extension of the very limited senses with which he is endowed so as to enable him to observe phenomena with dimensions very different from those he can normally experience. In the realm of the very small, microscopes and micro- balances have permitted him to observe things which have smaller extension or mass than he can see or feel. In the dimension of time, without the aid of special techniques, he is limited in his perception to times between about one twentieth of a second ( the response time of the eye) and about 2·10 9 seconds (his lifetime). Y et most of the fundamental processes and events, particularly those in the molecular world which we call chemistry, occur in milliseconds or less and it is therefore natural that the chemist should seek methods for the study of events in microtime. My own work on "the study of extremely fast chemical reactions effected by disturbing the equilibrium by means of very short pulses of energy" was begun in Cambridge twenty years ago. In 1947 I attended a discussion of the Faraday Society on "The Labile Molecule". Although this meeting was en- tirely concerned with studies of short lived chemical substances, the four hundred pages of printed discussion contain little or no indication of the im- pending change in experimental approach which was to result from the intro- .
    [Show full text]
  • RSC Branding
    Royal Society of Chemistry National Chemical Landmarks Award Honouree Location Inscription Date The Institute of Cancer Research, Chester ICR scientists on this site and elsewhere pioneered numerous new cancer drugs from 10 Institute of Cancer Beatty Laboratories, 237 the 1950s until the present day – including the discovery of chemotherapy drug December Research Fulham Road, Chelsea carboplatin, prostate cancer drug abiraterone and the genetic targeting of olaparib for 2018 Road, London, SW3 ovarian and breast cancer. 6JB, UK The Institute of Cancer ICR scientists on this site and elsewhere pioneered numerous new cancer drugs from 10 Research, Royal Institute of Cancer the 1950s until the present day – including the discovery of chemotherapy drug December Marsden Hospital, 15 Research carboplatin, prostate cancer drug abiraterone and the genetic targeting of olaparib for 2018 Cotswold Road, Sutton, ovarian and breast cancer. London, SM2 5NG, UK Ape and Apple, 28-30 John Dalton Street was opened in 1846 by Manchester Corporation in honour of 26 October John Dalton Street, famous chemist, John Dalton, who in Manchester in 1803 developed the Atomic John Dalton 2016 Manchester, M2 6HQ, Theory which became the foundation of modern chemistry. President of Manchester UK Literary and Philosophical Society 1816-1844. Chemical structure of Near this site in 1903, James Colquhoun Irvine, Thomas Purdie and their team found 30 College Gate, North simple sugars, James a way to understand the chemical structure of simple sugars like glucose and lactose. September Street, St Andrews, Fife, Colquhoun Irvine and Over the next 18 years this allowed them to lay the foundations of modern 2016 KY16 9AJ, UK Thomas Purdie carbohydrate chemistry, with implications for medicine, nutrition and biochemistry.
    [Show full text]
  • Nobel Lectures™ 2001-2005
    World Scientific Connecting Great Minds 逾10 0 种 诺贝尔奖得主著作 及 诺贝尔奖相关图书 我们非常荣幸得以出版超过100种诺贝尔奖得主著作 以及诺贝尔奖相关图书。 我们自1980年代开始与诺贝尔奖得主合作出版高品质 畅销书。一些得主担任我们的编辑顾问、丛书编辑, 并于我们期刊发表综述文章与学术论文。 世界科技与帝国理工学院出版社还邀得其中多位作了公 开演讲。 Philip W Anderson Sir Derek H R Barton Aage Niels Bohr Subrahmanyan Chandrasekhar Murray Gell-Mann Georges Charpak Nicolaas Bloembergen Baruch S Blumberg Hans A Bethe Aaron J Ciechanover Claude Steven Chu Cohen-Tannoudji Leon N Cooper Pierre-Gilles de Gennes Niels K Jerne Richard Feynman Kenichi Fukui Lawrence R Klein Herbert Kroemer Vitaly L Ginzburg David Gross H Gobind Khorana Rita Levi-Montalcini Harry M Markowitz Karl Alex Müller Sir Nevill F Mott Ben Roy Mottelson 诺贝尔奖相关图书 THE PERIODIC TABLE AND A MISSED NOBEL PRIZES THAT CHANGED MEDICINE NOBEL PRIZE edited by Gilbert Thompson (Imperial College London) by Ulf Lagerkvist & edited by Erling Norrby (The Royal Swedish Academy of Sciences) This book brings together in one volume fifteen Nobel Prize- winning discoveries that have had the greatest impact upon medical science and the practice of medicine during the 20th “This is a fascinating account of how century and up to the present time. Its overall aim is to groundbreaking scientists think and enlighten, entertain and stimulate. work. This is the insider’s view of the process and demands made on the Contents: The Discovery of Insulin (Robert Tattersall) • The experts of the Nobel Foundation who Discovery of the Cure for Pernicious Anaemia, Vitamin B12 assess the originality and significance (A Victor Hoffbrand) • The Discovery of
    [Show full text]
  • VITA for WOLFGANG PAUL MENZEL Personal
    VITA for WOLFGANG PAUL MENZEL Personal: Birth: 5 October 1945 Marital Status: Married Citizenship: United States Education: Ph.D. 1974 University of Wisconsin - Madison (Theoretical Solid State Physics) M.S. 1968 University of Wisconsin - Madison B.S. 1967 University of Maryland - College Park (with high honors, Omicron Delta Kappa, Phi Beta Kappa) Experience: 2007 – present UW Senior Scientist Currently, I am pursuing research interests in remote sensing of atmospheric temperature and moisture profiles, ozone, carbon dioxide, cloud properties, and surface properties. The current focus of my research is improving the synergy of leo sounders (CrIS, IASI) and geo imagers (ABI, AHI) as well as studying cloud and moisture properties derived from HIRS data over the past four decades. For additional information see http://www.ssec.wisc.edu/~paulm/research.html. 2007 – 2011 Verner Suomi Distinguished Professor In the University of Wisconsin Department of Atmospheric and Oceanic Sciences, I was honored to be selected as the first Suomi Professor. I conducted research, taught students, and peformed public service in the socially relevant environmental and climate sciences in the spirit of the inquisitive approach pioneered by Verner Suomi. In the classroom I used my textbook titled “Remote Sensing Applications with Meteorological Satellites” that has been published as a World Meteorological Organization technical document. 1999 – 2007 Chief Scientist for the Office of Research and Applications As the Chief Scientist for the NOAA Office of Research and Applications, I was responsible for providing guidance on science issues and initiating major science programs for the Director of the Office. This included conducting and stimulating research on environmental remote sensing systems, fostering expanded utilization locally and globally, assisting in evolution of NOAA polar orbiting and geostationary satellite holdings, and guiding ORA science resources into the future.
    [Show full text]
  • Guides to the Royal Institution of Great Britain: 1 HISTORY
    Guides to the Royal Institution of Great Britain: 1 HISTORY Theo James presenting a bouquet to HM The Queen on the occasion of her bicentenary visit, 7 December 1999. by Frank A.J.L. James The Director, Susan Greenfield, looks on Front page: Façade of the Royal Institution added in 1837. Watercolour by T.H. Shepherd or more than two hundred years the Royal Institution of Great The Royal Institution was founded at a meeting on 7 March 1799 at FBritain has been at the centre of scientific research and the the Soho Square house of the President of the Royal Society, Joseph popularisation of science in this country. Within its walls some of the Banks (1743-1820). A list of fifty-eight names was read of gentlemen major scientific discoveries of the last two centuries have been made. who had agreed to contribute fifty guineas each to be a Proprietor of Chemists and physicists - such as Humphry Davy, Michael Faraday, a new John Tyndall, James Dewar, Lord Rayleigh, William Henry Bragg, INSTITUTION FOR DIFFUSING THE KNOWLEDGE, AND FACILITATING Henry Dale, Eric Rideal, William Lawrence Bragg and George Porter THE GENERAL INTRODUCTION, OF USEFUL MECHANICAL - carried out much of their major research here. The technological INVENTIONS AND IMPROVEMENTS; AND FOR TEACHING, BY COURSES applications of some of this research has transformed the way we OF PHILOSOPHICAL LECTURES AND EXPERIMENTS, THE APPLICATION live. Furthermore, most of these scientists were first rate OF SCIENCE TO THE COMMON PURPOSES OF LIFE. communicators who were able to inspire their audiences with an appreciation of science.
    [Show full text]
  • Liste Der Nobelpreisträger
    Physiologie Wirtschafts- Jahr Physik Chemie oder Literatur Frieden wissenschaften Medizin Wilhelm Henry Dunant Jacobus H. Emil von Sully 1901 Conrad — van ’t Hoff Behring Prudhomme Röntgen Frédéric Passy Hendrik Antoon Theodor Élie Ducommun 1902 Emil Fischer Ronald Ross — Lorentz Mommsen Pieter Zeeman Albert Gobat Henri Becquerel Svante Niels Ryberg Bjørnstjerne 1903 William Randal Cremer — Pierre Curie Arrhenius Finsen Bjørnson Marie Curie Frédéric John William William Mistral 1904 Iwan Pawlow Institut de Droit international — Strutt Ramsay José Echegaray Adolf von Henryk 1905 Philipp Lenard Robert Koch Bertha von Suttner — Baeyer Sienkiewicz Camillo Golgi Joseph John Giosuè 1906 Henri Moissan Theodore Roosevelt — Thomson Santiago Carducci Ramón y Cajal Albert A. Alphonse Rudyard \Ernesto Teodoro Moneta 1907 Eduard Buchner — Michelson Laveran Kipling Louis Renault Ilja Gabriel Ernest Rudolf Klas Pontus Arnoldson 1908 Metschnikow — Lippmann Rutherford Eucken Paul Ehrlich Fredrik Bajer Theodor Auguste Beernaert Guglielmo Wilhelm Kocher Selma 1909 — Marconi Ostwald Ferdinand Lagerlöf Paul Henri d’Estournelles de Braun Constant Johannes Albrecht Ständiges Internationales 1910 Diderik van Otto Wallach Paul Heyse — Kossel Friedensbüro der Waals Allvar Maurice Tobias Asser 1911 Wilhelm Wien Marie Curie — Gullstrand Maeterlinck Alfred Fried Victor Grignard Gerhart 1912 Gustaf Dalén Alexis Carrel Elihu Root — Paul Sabatier Hauptmann Heike Charles Rabindranath 1913 Kamerlingh Alfred Werner Henri La Fontaine — Robert Richet Tagore Onnes Theodore
    [Show full text]
  • Manfred Eigen: the Realization of His Vision of Biophysical Chemistry
    CORE Metadata, citation and similar papers at core.ac.uk Provided by OIST Institutional Repository Manfred Eigen: the realization of his vision of Biophysical Chemistry Author Herbert Jackle, Carmen Rotte, Peter Gruss journal or European Biophysics Journal publication title volume 47 number 4 page range 319-323 year 2017-12-11 Publisher Springer International Publishing Rights (C) 2017 The Author(s). Author's flag publisher URL http://id.nii.ac.jp/1394/00000696/ doi: info:doi/10.1007/s00249-017-1266-y Creative Commons Attribution 4.0 International (http://creativecommons.org/licenses/by/4.0/) European Biophysics Journal (2018) 47:319–323 https://doi.org/10.1007/s00249-017-1266-y REVIEW Manfred Eigen: the realization of his vision of Biophysical Chemistry Herbert Jäckle1 · Carmen Rotte1 · Peter Gruss1,2 Received: 27 August 2017 / Accepted: 11 November 2017 / Published online: 11 December 2017 © The Author(s) 2017. This article is an open access publication Abstract Manfred Eigen turned 90 on May 9th, 2017. He celebrated with a small group of colleagues and friends on behalf of the many inspired by him over his lifetime—whether scientists, artists, or philosophers. A small group of friends, because many—who by their breakthroughs have changed the face of science in diferent research areas—have already died. But it was a special day, devoted to the many genius facets of Manfred Eigen’s oeuvre, and a day to highlight the way in which he continues to exude a great, vital and unbroken passion for science as well as an insatiable curiosity beyond his own scientifc interests.
    [Show full text]
  • Otto Stern Annalen 4.11.11
    (To be published by Annalen der Physik in December 2011) Otto Stern (1888-1969): The founding father of experimental atomic physics J. Peter Toennies,1 Horst Schmidt-Böcking,2 Bretislav Friedrich,3 Julian C.A. Lower2 1Max-Planck-Institut für Dynamik und Selbstorganisation Bunsenstrasse 10, 37073 Göttingen 2Institut für Kernphysik, Goethe Universität Frankfurt Max-von-Laue-Strasse 1, 60438 Frankfurt 3Fritz-Haber-Institut der Max-Planck-Gesellschaft Faradayweg 4-6, 14195 Berlin Keywords History of Science, Atomic Physics, Quantum Physics, Stern- Gerlach experiment, molecular beams, space quantization, magnetic dipole moments of nucleons, diffraction of matter waves, Nobel Prizes, University of Zurich, University of Frankfurt, University of Rostock, University of Hamburg, Carnegie Institute. We review the work and life of Otto Stern who developed the molecular beam technique and with its aid laid the foundations of experimental atomic physics. Among the key results of his research are: the experimental test of the Maxwell-Boltzmann distribution of molecular velocities (1920), experimental demonstration of space quantization of angular momentum (1922), diffraction of matter waves comprised of atoms and molecules by crystals (1931) and the determination of the magnetic dipole moments of the proton and deuteron (1933). 1 Introduction Short lists of the pioneers of quantum mechanics featured in textbooks and historical accounts alike typically include the names of Max Planck, Albert Einstein, Arnold Sommerfeld, Niels Bohr, Max von Laue, Werner Heisenberg, Erwin Schrödinger, Paul Dirac, Max Born, and Wolfgang Pauli on the theory side, and of Wilhelm Conrad Röntgen, Ernest Rutherford, Arthur Compton, and James Franck on the experimental side. However, the records in the Archive of the Nobel Foundation as well as scientific correspondence, oral-history accounts and scientometric evidence suggest that at least one more name should be added to the list: that of the “experimenting theorist” Otto Stern.
    [Show full text]
  • Lsu-Physics Iq Test 3 Strikes You're
    LSU-PHYSICS IQ TEST 3 STRIKES YOU'RE OUT For Physics Block Party on 9 September 2016: This was run where all ~70 people start answering each question, given out one-by-one. Every time a person missed an answer, they made a 'strike'. All was done with the Honor System for answers, plus a fairly liberal statement of what constitutes a correct answer. When the person accumulates three strikes, then they are out of the game. The game continue until only one person was left standing. Actually, there had to be one extra question to decide a tie-break between 2nd and 3rd place. The prizes were: FIRST PLACE: Ravi Rau, selecting an Isaac Newton 'action figure' SECOND PLACE: Juhan Frank, selecting an Albert Einstein action figure THIRD PLACE: Siddhartha Das, winning a Mr. Spock action figure. 1. What is Einstein's equation relating mass and energy? E=mc2 OK, I knew in advance that someone would blurt out the answer loudly, and this did happen. So this was a good question to make sure that the game flowed correctly. 2. What is the short name for the physics paradox depicted on the back of my Physics Department T-shirt? Schroedinger's Cat 3. Give the name of one person new to our Department. This could be staff, student, or professor. There are many answers, for example with the new profs being Tabatha Boyajian, Kristina Launey, Manos Chatzopoulos, and Robert Parks. Many of the people asked 'Can I just use myself?', with the answer being "Sure". 4. What Noble Gas is named after the home planet of Kal-El? Krypton.
    [Show full text]