Dawn of the Space Age: Teacher Packet

Total Page:16

File Type:pdf, Size:1020Kb

Dawn of the Space Age: Teacher Packet Dawn of the Space Age: Teacher Packet Compiled by: Morehead State University Star Theatre with help from Bethany DeMoss Table of Contents Table of Contents 1 Correspond Standards 2 Vocabulary 3 Space Travel Timeline (Primary) 6 NASA Web-Quest on Space Shuttle Missions (Middle Grades) 9 References 20 1 Corresponding Standards Kentucky Department of Education, Social Studies Standards Students understand, analyze, and interpret historical events, conditions, S.S 2.20 trends, and issues to develop historical perspective. Students understand, analyze, and interpret historical events, conditions, S.S 2.20 (4th) trends, and issues to develop historical perspective. Students understand, analyze, and interpret historical events, conditions, S.S 2.20 (5th) trends, and issues to develop historical perspective. Students understand, analyze, and interpret historical events, conditions, S.S 2.20 (6th) trends, and issues to develop historical perspective. Students understand, analyze, and interpret historical events, conditions, S.S 2.20 (8th) trends, and issues to develop historical perspective. 2 Dawn of Space Age Vocabulary Older Vocabulary Word Definition Known as the Apollo Program was the third human spaceflight program carried out by the NASA, responsible America Luna Program for the landing of the first humans on Earth's Moon. The program consisted of 5 unmanned test flights, 4 manned test flights and 7 manned lunar landing flights. A multi-staged heavy lift man-rated expendable rocket Saturn V built by NASA to send Astronauts to the moon and return them to Earth. First manned flight to Moon; it made 10 lunar orbits in 20 Apollo 8 hours. Frank Borman, James Lovell, and William Anders crewed the flight. first astronaut to drive on the moon, flew in space three Commander David Scott times (Gemini 8, Apollo 10, and Apollo 15) A natural force that causes two objects to move towards Gravity each other. It is dependent on the mass of the two objects and the separation distance between them. World’s first artificial satellite, Sputnik a 23 inch diameter Sputnik polished metal sphere launched by the Soviet Union on 4 October 1957. An object that orbits another body in space. Satellites can be classified as “Natural” or “Artificial”. Natural refers to a naturally occurring physical object in orbit Satellite around another body. Artificial refers to a man-made object which has been intentionally placed into orbit around another body. First spacecraft to carry a human into space. Launched by the Soviet Union in 1961 it carried Soviet Cosmonaut Yuri Vostok 1 Gargarin in to orbit as the first human to reach outer space and the first human to orbit the earth. A Soviet Cosmonaut, was the first man to walk in space Alexey Lonov (leave his spacecraft in a spacesuit for an extra-vehicular activity). The Gemini program was a manned spaceflight program US Gemini Program with ten flights conducted between 1965 and 1966. The goal was to develop spaceflight techniques critical to support the Apollo Lunar Missions. The Gemini missions 3 practiced long durations flights simulating a trip to the Moon and back, perfected procedures for extra-vehicular activity (working outside a spacecraft in a spacesuit), orbital spacecraft maneuvering, and rendezvous and docking techniques. Fourth planet from the sun, Mars is one of the terrestrial (earth-like) planets. It has a thin carbon-dioxide atmosphere, seasons, polar ice caps valleys, mountains volcanoes, and impact craters. Mars has a rotational Mars period (day/night) approximately 40 minutes longer than Earth and a revolutionary period (Year) equal to approximately 687 earth days. Consisted of a pair of robotic space probes built by the United States to explore Mars. Each probe consisted of an orbiter and lander. The orbiters were designed to photograph the surface of Mars from orbit and to act as a communications relay for the Landers between the Vikings 1 & 2 surface of Mars and Earth. The lander carried instruments to study the biology, chemical composition, meteorology, seismology, magnetic properties, appearance, and physical properties of the Martian surface and atmosphere. A spacecraft (typically in orbit around another body) designed for long durationhabitation by a crew and is Space Station capable of docking with other spacecraft for resupply and crew transfer. An earth-based terminal station designed for extra planetary telecommunication with spacecraft, or Ground Radio Antennas reception of radio waves from an astronomical radio source. Retired suborbital air-launched space-plane design that Space Ship One completed the first manned private spaceflight in 2004 a habitable, modular structure spacecraft/artificial satellite in low Earth orbit. Consisting of pressurized modules, external trusses, solar arrays and other components, the ISS serves as a microgravity and space International Space Station environment research laboratory in where crew members conduct micro gravity experiments in biology, human biology, physics, astronomy, meteorology and other fields. 4 Younger Vocabulary Word Definition Third human spaceflight program carried out America Luna Program by NASA ( Apollo Program) Apollo 8 First manned flight to Moon Commander David Scott first astronaut to drive on the moon Gravity Force of attraction between two bodies Sputnik World’s first artificial satellite An object that orbits another body in space. Satellite Satellites can be classified as “Natural” or “Artificial”. The Gemini program was a manned US Gemini Program spaceflight program with ten flights conducted between 1965 and 1966. Fourth planet from the sun, Mars is one of the Mars terrestrial (earth-like) planets. A spacecraft that orbits the Earth, where Space Station astronauts can live for up to 6 months Retired space-plane design that completed the Space Ship One first manned private spaceflight in 2004 5 Space Travel Timeline From: KB Teachers 6 7 8 NASA: Web-Quest on Space Shuttle Missions From: Bethany DeMoss 9 Space Travel Exploration An interactive computer activity crossing curriculum between Social Studies, Math, and Science In the activity students will be actively engaged using multiple senses. Students will use computer NASA’s website to explore the number of space missions and the years in which they occurred. They will compile a list of information using the NASA website to then create a graph to see the trend in space travel, past to present. Student will answer questions to better understand the trends in the graph. Lastly students will form groups and create a small presentation providing information on one specific space mission to the class. Materials: Computers Student Packets (p. 2-5) Teacher Packet (p. 6-10) Coloring Pencils Teacher Instruction: Students will work individually or in pairs to complete the activity. While students search on the NASA website to acquire their information, have them read through some of the information as well. Click on view under a specific year, each year has clickable information. This will familiarize the students with the missions. When all students complete through question 6, work through question 7 with them. The teacher packet provides the graph to answer the remaining questions. Display the graph on the board or give the students print outs so that they can compare both graphs and complete their packet. Lastly, assign your students into groups of 3 or 4 depending on class size. Pick several space missions, just giving them the name (ex: STS-66), have each group explore the website again acquiring enough information at the particular space mission to present to the class their space mission. All can be found on the same NASA website. Information for their presentation can be pictures, dates, names, launch and landing dates, the purpose of the mission, etc. Happy Exploring! Created by: Bethany DeMoss 10 2 Name: _______________________________________ Date:_______________ Space Travel Exploration 1. Access the webpage: http://www.nasa.gov/mission_pages/shuttle/index.html 2. Using the webpage fill in your chart below. Years to use are listed below. Chart does not use every year listed on the webpage. NASA Missions 1981-2011 Number of Missions Launch Landing Year (Past to Present) Pick 1 Mission Total Date Date 1981 1983 1985 1988 1990 1991 Created by: Bethany DeMoss 11 3 1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 Created by: Bethany DeMoss 12 4 3. After completing your table, use your data to create a line graph that shows how many space missions occurred in each year above. Use the graph paper below. Make sure to label both X & Y axis and give your graph a title. Use colored pencils to enhance your line graph. Created by: Bethany DeMoss 13 5 4. What year has the largest peak in space missions? 5. What year has the largest peak in missions? __ _______________ 6. The lowest peak? ___ ______________________ 7. There are several more years when NASA had space missions according to their website, we only used every other year for data. If we add in the other years, how much do you think the graph will change? 8. In the graph on the board, there are two years with zero missions. Why might there have been no missions for those particular years? _____ ________________________________________________________________. 9. Using the graph on the board, in which years did the graph stabilize? _ ____________ Created by: Bethany DeMoss 14 6 Name:TEACHER PACKET Date:_______________ Space Travel Exploration 1. Access the webpage: http://www.nasa.gov/mission_pages/shuttle/index.html
Recommended publications
  • In-Depth Review of Satellite Imagery / Earth Observation Technology in Official Statistics Prepared by Canada and Mexico
    In-depth review of satellite imagery / earth observation technology in official statistics Prepared by Canada and Mexico Julio A. Santaella Conference of European Statisticians 67th plenary session Paris, France June 28, 2019 Earth observation (EO) EO is the gathering of information about planet Earth’s physical, chemical and biological systems. It involves monitoring and assessing the status of, and changes in, the natural and man-made environment Measurements taken by a thermometer, wind gauge, ocean buoy, altimeter or seismograph Photographs and satellite imagery Radar and sonar images Analyses of water or soil samples EO examples EO Processed information such as maps or forecasts Source: Group on Earth Observations (GEO) In-depth review of satellite imagery / earth observation technology in official statistics 2 Introduction Satellite imagery uses have expanded over time Satellite imagery provide generalized data for large areas at relatively low cost: Aligned with NSOs needs to produce more information at lower costs NSOs are starting to consider EO technology as a data collection instrument for purposes beyond agricultural statistics In-depth review of satellite imagery / earth observation technology in official statistics 3 Scope and definition of the review To survey how various types of satellite data and the techniques used to process or analyze them support the GSBPM To improve coordination of statistical activities in the UNECE region, identify gaps or duplication of work, and address emerging issues In-depth review of satellite imagery / earth observation technology in official statistics 4 Overview of recent activities • EO technology has developed progressively, encouraging the identification of new applications of this infrastructure data.
    [Show full text]
  • Apollo 8 (AS-503) Mission Operation Report
    Pre- Launch Mission Operation Report No. M-932-68-08 MEMORANDUM To: A/Acting Administrator /7/4-7dY& 5/ From: MA/Apollo Program Director Subject: Apollo 8 Mission (AS-503) No earlier than 21 December 1968, we plan to launch the next Apollo/Saturn V mission, Apollo 8. This will be the first manned Saturn V flight, the second flight of a manned Apollo spacecraft and the first manned Apollo flight to the lunar vicinity. The purpose of this mission is to demonstrate: crew/space vehicle/mission support facilities performance during a manned Saturn V mission with CSM, and performance of nominal and selected backup lunar orbital mission activities including translunar injection, CSM navigation, communications and midcourse corrections, and CSM consumables assessment and passive thermal control. Mission duration is planned for approximately six days and three hours. The launch will be the third Saturn V from.Launch Complex 39 at Kennedy Space Center. The launch window opens at 7~51 EST 21 December and closes for December at 18:20 EST 27 December, Daily windows during this period vary in duration from 4-l/2 hours to approximately l-1/2 hours. The nominal mission will comprise: ascent to parking orbit; translunar injection by the S-IVB; CSM separation from S-IVB; translunar coast with required midcourse corrections; lunar orbit insertion and circularization; up to 10 lunar orbits; transearth injection, transearth coast and required midcourse corrections; reentry and splashdown. Recovery will be in the Pacific recovery area with exact location dependent on launch conditions. Apollo Program Director APPROVAL: /associate Administrator for / Manned Space Flight l_l ,.
    [Show full text]
  • Information Summaries
    TIROS 8 12/21/63 Delta-22 TIROS-H (A-53) 17B S National Aeronautics and TIROS 9 1/22/65 Delta-28 TIROS-I (A-54) 17A S Space Administration TIROS Operational 2TIROS 10 7/1/65 Delta-32 OT-1 17B S John F. Kennedy Space Center 2ESSA 1 2/3/66 Delta-36 OT-3 (TOS) 17A S Information Summaries 2 2 ESSA 2 2/28/66 Delta-37 OT-2 (TOS) 17B S 2ESSA 3 10/2/66 2Delta-41 TOS-A 1SLC-2E S PMS 031 (KSC) OSO (Orbiting Solar Observatories) Lunar and Planetary 2ESSA 4 1/26/67 2Delta-45 TOS-B 1SLC-2E S June 1999 OSO 1 3/7/62 Delta-8 OSO-A (S-16) 17A S 2ESSA 5 4/20/67 2Delta-48 TOS-C 1SLC-2E S OSO 2 2/3/65 Delta-29 OSO-B2 (S-17) 17B S Mission Launch Launch Payload Launch 2ESSA 6 11/10/67 2Delta-54 TOS-D 1SLC-2E S OSO 8/25/65 Delta-33 OSO-C 17B U Name Date Vehicle Code Pad Results 2ESSA 7 8/16/68 2Delta-58 TOS-E 1SLC-2E S OSO 3 3/8/67 Delta-46 OSO-E1 17A S 2ESSA 8 12/15/68 2Delta-62 TOS-F 1SLC-2E S OSO 4 10/18/67 Delta-53 OSO-D 17B S PIONEER (Lunar) 2ESSA 9 2/26/69 2Delta-67 TOS-G 17B S OSO 5 1/22/69 Delta-64 OSO-F 17B S Pioneer 1 10/11/58 Thor-Able-1 –– 17A U Major NASA 2 1 OSO 6/PAC 8/9/69 Delta-72 OSO-G/PAC 17A S Pioneer 2 11/8/58 Thor-Able-2 –– 17A U IMPROVED TIROS OPERATIONAL 2 1 OSO 7/TETR 3 9/29/71 Delta-85 OSO-H/TETR-D 17A S Pioneer 3 12/6/58 Juno II AM-11 –– 5 U 3ITOS 1/OSCAR 5 1/23/70 2Delta-76 1TIROS-M/OSCAR 1SLC-2W S 2 OSO 8 6/21/75 Delta-112 OSO-1 17B S Pioneer 4 3/3/59 Juno II AM-14 –– 5 S 3NOAA 1 12/11/70 2Delta-81 ITOS-A 1SLC-2W S Launches Pioneer 11/26/59 Atlas-Able-1 –– 14 U 3ITOS 10/21/71 2Delta-86 ITOS-B 1SLC-2E U OGO (Orbiting Geophysical
    [Show full text]
  • Detecting, Tracking and Imaging Space Debris
    r bulletin 109 — february 2002 Detecting, Tracking and Imaging Space Debris D. Mehrholz, L. Leushacke FGAN Research Institute for High-Frequency Physics and Radar Techniques, Wachtberg, Germany W. Flury, R. Jehn, H. Klinkrad, M. Landgraf European Space Operations Centre (ESOC), Darmstadt, Germany Earth’s space-debris environment tracked, with estimates for the number of Today’s man-made space-debris environment objects larger than 1 cm ranging from 100 000 has been created by the space activities to 200 000. that have taken place since Sputnik’s launch in 1957. There have been more than 4000 The sources of this debris are normal launch rocket launches since then, as well as many operations (Fig. 2), certain operations in space, other related debris-generating occurrences fragmentations as a result of explosions and such as more than 150 in-orbit fragmentation collisions in space, firings of satellite solid- events. rocket motors, material ageing effects, and leaking thermal-control systems. Solid-rocket Among the more than 8700 objects larger than 10 cm in Earth orbits, motors use aluminium as a catalyst (about 15% only about 6% are operational satellites and the remainder is space by mass) and when burning they emit debris. Europe currently has no operational space surveillance aluminium-oxide particles typically 1 to 10 system, but a powerful radar facility for the detection and tracking of microns in size. In addition, centimetre-sized space debris and the imaging of space objects is available in the form objects are formed by metallic aluminium melts, of the 34 m dish radar at the Research Establishment for Applied called ‘slag’.
    [Show full text]
  • Space Launch System (Sls) Motors
    Propulsion Products Catalog SPACE LAUNCH SYSTEM (SLS) MOTORS For NASA’s Space Launch System (SLS), Northrop Grumman manufactures the five-segment SLS heavy- lift boosters, the booster separation motors (BSM), and the Launch Abort System’s (LAS) launch abort motor and attitude control motor. The SLS five-segment booster is the largest solid rocket motor ever built for flight. The SLS booster shares some design heritage with flight-proven four-segment space shuttle reusable solid rocket motors (RSRM), but generates 20 percent greater average thrust and 24 percent greater total impulse. While space shuttle RSRM production has ended, sustained booster production for SLS helps provide cost savings and access to reliable material sources. Designed to push the spent RSRMs safely away from the space shuttle, Northrop Grumman BSMs were rigorously qualified for human space flight and successfully used on the last fifteen space shuttle missions. These same motors are a critical part of NASA’s SLS. Four BSMs are installed in the forward frustum of each five-segment booster and four are installed in the aft skirt, for a total of 16 BSMs per launch. The launch abort motor is an integral part of NASA’s LAS. The LAS is designed to safely pull the Orion crew module away from the SLS launch vehicle in the event of an emergency on the launch pad or during ascent. Northrop Grumman is on contract to Lockheed Martin to build the abort motor and attitude control motor—Lockheed is the prime contractor for building the Orion Multi-Purpose Crew Vehicle designed for use on NASA’s SLS.
    [Show full text]
  • The Space Race
    The Space Race Aims: To arrange the key events of the “Space Race” in chronological order. To decide which country won the Space Race. Space – the Final Frontier “Space” is everything Atmosphere that exists outside of our planet’s atmosphere. The atmosphere is the layer of Earth gas which surrounds our planet. Without it, none of us would be able to breathe! Space The sun is a star which is orbited (circled) by a system of planets. Earth is the third planet from the sun. There are nine planets in our solar system. How many of the other eight can you name? Neptune Saturn Mars Venus SUN Pluto Uranus Jupiter EARTH Mercury What has this got to do with the COLD WAR? Another element of the Cold War was the race to control the final frontier – outer space! Why do you think this would be so important? The Space Race was considered important because it showed the world which country had the best science, technology, and economic system. It would prove which country was the greatest of the superpowers, the USSR or the USA, and which political system was the best – communism or capitalism. https://www.youtube.com/watch?v=xvaEvCNZymo The Space Race – key events Discuss the following slides in your groups. For each slide, try to agree on: • which of the three options is correct • whether this was an achievement of the Soviet Union (USSR) or the Americans (USA). When did humans first send a satellite into orbit around the Earth? 1940s, 1950s or 1960s? Sputnik 1 was launched in October 1957.
    [Show full text]
  • The SKYLON Spaceplane
    The SKYLON Spaceplane Borg K.⇤ and Matula E.⇤ University of Colorado, Boulder, CO, 80309, USA This report outlines the major technical aspects of the SKYLON spaceplane as a final project for the ASEN 5053 class. The SKYLON spaceplane is designed as a single stage to orbit vehicle capable of lifting 15 mT to LEO from a 5.5 km runway and returning to land at the same location. It is powered by a unique engine design that combines an air- breathing and rocket mode into a single engine. This is achieved through the use of a novel lightweight heat exchanger that has been demonstrated on a reduced scale. The program has received funding from the UK government and ESA to build a full scale prototype of the engine as it’s next step. The project is technically feasible but will need to overcome some manufacturing issues and high start-up costs. This report is not intended for publication or commercial use. Nomenclature SSTO Single Stage To Orbit REL Reaction Engines Ltd UK United Kingdom LEO Low Earth Orbit SABRE Synergetic Air-Breathing Rocket Engine SOMA SKYLON Orbital Maneuvering Assembly HOTOL Horizontal Take-O↵and Landing NASP National Aerospace Program GT OW Gross Take-O↵Weight MECO Main Engine Cut-O↵ LACE Liquid Air Cooled Engine RCS Reaction Control System MLI Multi-Layer Insulation mT Tonne I. Introduction The SKYLON spaceplane is a single stage to orbit concept vehicle being developed by Reaction Engines Ltd in the United Kingdom. It is designed to take o↵and land on a runway delivering 15 mT of payload into LEO, in the current D-1 configuration.
    [Show full text]
  • Human Behavior During Spaceflight - Videncee from an Analog Environment
    Journal of Aviation/Aerospace Education & Research Volume 25 Number 1 JAAER Fall 2015 Article 2 Fall 2015 Human Behavior During Spaceflight - videnceE From an Analog Environment Kenny M. Arnaldi Embry-Riddle Aeronautical University, [email protected] Guy Smith Embry-Riddle Aeronautical University, [email protected] Jennifer E. Thropp Embry-Riddle Aeronautical University - Daytona Beach, [email protected] Follow this and additional works at: https://commons.erau.edu/jaaer Part of the Applied Behavior Analysis Commons, Experimental Analysis of Behavior Commons, and the Other Astrophysics and Astronomy Commons Scholarly Commons Citation Arnaldi, K. M., Smith, G., & Thropp, J. E. (2015). Human Behavior During Spaceflight - videnceE From an Analog Environment. Journal of Aviation/Aerospace Education & Research, 25(1). https://doi.org/ 10.15394/jaaer.2015.1676 This Article is brought to you for free and open access by the Journals at Scholarly Commons. It has been accepted for inclusion in Journal of Aviation/Aerospace Education & Research by an authorized administrator of Scholarly Commons. For more information, please contact [email protected]. Arnaldi et al.: Human Behavior During Spaceflight - Evidence From an Analog Environment Introduction Four years after the launch of Sputnik, the world’s first artificial satellite, Yuri Gagarin became the first human to reach space (National Aeronautics and Space Administration [NASA], 2011a). The United States soon followed on the path of manned space exploration with Project Mercury. Although this program began with suborbital flights, manned spacecraft were subsequently launched into orbit around the Earth (NASA, 2012). With President Kennedy setting the goal of landing a man on the moon, NASA focused on short-duration orbital flights as a stepping-stone to lunar missions.
    [Show full text]
  • Is the Brain-Mind Quantum? a Theoretical Proposal with Supporting Evidence
    IS THE BRAIN-MIND QUANTUM? A THEORETICAL PROPOSAL WITH SUPPORTING EVIDENCE Stuart Kauffmana and Dean Radinb a Emeritus Professor of Biochemistry and Biophysics, University of Pennsylvania, [email protected] b Chief Scientist, Institute of Noetic Sciences, Petaluma, CA; , Associated Distinguished Professor, California Institute of Integral Studies, San Francisco, CA, USA [email protected]. ORCID: 0000-0003-0041-322X Abstract If all aspects of the mind-brain relationship were adequately explained by classical physics, then there would be no need to propose alternative views. But faced with possibly unresolvable puzzles like qualia and free will, other approaches are required. We propose a non-substance dualism theory, following a suggestion by Heisenberg, whereby the world consists of both ontologically real Possibles that do not obey Aristotle’s law of the excluded middle, and ontologically real Actuals, that do obey the law of the excluded middle. Measurement converts Possibles into Actuals. This quantum-oriented approach solves numerous puzzles about the mind-brain relationship, but it also raises the intriguing possibility that some aspects of mind are nonlocal, and that mind plays an active role in the physical world. We suggest that the mind-brain relationship is partially quantum, and we present evidence supporting that proposition. Keywords: brain-mind, quantum biology, consciousness, quantum measurement 1. Introduction Of the three central mysteries in science, the Origin of the Universe, the Origin of Life, and the Origin of Consciousness, the last is the most challenging. As philosopher Jerry Fodor put it in 1992, “Nobody has the slightest idea how anything material could be conscious. Nobody even knows what it would be like to have the slightest idea about how anything could be conscious” [1].
    [Show full text]
  • High Altitude Nuclear Detonations (HAND) Against Low Earth Orbit Satellites ("HALEOS")
    High Altitude Nuclear Detonations (HAND) Against Low Earth Orbit Satellites ("HALEOS") DTRA Advanced Systems and Concepts Office April 2001 1 3/23/01 SPONSOR: Defense Threat Reduction Agency - Dr. Jay Davis, Director Advanced Systems and Concepts Office - Dr. Randall S. Murch, Director BACKGROUND: The Defense Threat Reduction Agency (DTRA) was founded in 1998 to integrate and focus the capabilities of the Department of Defense (DoD) that address the weapons of mass destruction (WMD) threat. To assist the Agency in its primary mission, the Advanced Systems and Concepts Office (ASCO) develops and maintains and evolving analytical vision of necessary and sufficient capabilities to protect United States and Allied forces and citizens from WMD attack. ASCO is also charged by DoD and by the U.S. Government generally to identify gaps in these capabilities and initiate programs to fill them. It also provides support to the Threat Reduction Advisory Committee (TRAC), and its Panels, with timely, high quality research. SUPERVISING PROJECT OFFICER: Dr. John Parmentola, Chief, Advanced Operations and Systems Division, ASCO, DTRA, (703)-767-5705. The publication of this document does not indicate endorsement by the Department of Defense, nor should the contents be construed as reflecting the official position of the sponsoring agency. 1 Study Participants • DTRA/AS • RAND – John Parmentola – Peter Wilson – Thomas Killion – Roger Molander – William Durch – David Mussington – Terry Heuring – Richard Mesic – James Bonomo • DTRA/TD – Lewis Cohn • Logicon RDA – Les Palkuti – Glenn Kweder – Thomas Kennedy – Rob Mahoney – Kenneth Schwartz – Al Costantine – Balram Prasad • Mission Research Corp. – William White 2 3/23/01 2 Focus of This Briefing • Vulnerability of commercial and government-owned, unclassified satellite constellations in low earth orbit (LEO) to the effects of a high-altitude nuclear explosion.
    [Show full text]
  • India and China Space Programs: from Genesis of Space Technologies to Major Space Programs and What That Means for the Internati
    University of Central Florida STARS Electronic Theses and Dissertations, 2004-2019 2009 India And China Space Programs: From Genesis Of Space Technologies To Major Space Programs And What That Means For The Internati Gaurav Bhola University of Central Florida Part of the Political Science Commons Find similar works at: https://stars.library.ucf.edu/etd University of Central Florida Libraries http://library.ucf.edu This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more information, please contact [email protected]. STARS Citation Bhola, Gaurav, "India And China Space Programs: From Genesis Of Space Technologies To Major Space Programs And What That Means For The Internati" (2009). Electronic Theses and Dissertations, 2004-2019. 4109. https://stars.library.ucf.edu/etd/4109 INDIA AND CHINA SPACE PROGRAMS: FROM GENESIS OF SPACE TECHNOLOGIES TO MAJOR SPACE PROGRAMS AND WHAT THAT MEANS FOR THE INTERNATIONAL COMMUNITY by GAURAV BHOLA B.S. University of Central Florida, 1998 A dissertation submitted in partial fulfillment of the requirements for the degree of Master of Arts in the Department of Political Science in the College of Arts and Humanities at the University of Central Florida Orlando, Florida Summer Term 2009 Major Professor: Roger Handberg © 2009 Gaurav Bhola ii ABSTRACT The Indian and Chinese space programs have evolved into technologically advanced vehicles of national prestige and international competition for developed nations. The programs continue to evolve with impetus that India and China will have the same space capabilities as the United States with in the coming years.
    [Show full text]
  • STS-108/ISS-UF1 Quick-Look Data Spaceflight Now
    STS-108/ISS-UF1 Quick-Look Data Spaceflight Now Rank/Seats STS-108 ISS-UF1 Family/TIS DOB STS-108 Hardware and Flight Data Commander Navy Capt. Dominic L. Gorie M/2 05/02/57 STS Mission STS-108/ISS-UF1 Up 44; STS-91,99 25.8 * Orbiter Endeavour (17th flight) Pilot/IV Navy Lt. Cmdr. Mark Kelly M/2 02/21/64 Payload Crew transfer; ISS resupply Up 37; Rookie 4.75 Launch 05:19:28 PM 12.05.01 MS1/EV1 Linda Godwin, Ph.D. M/2 07/02/52 Pad/MLP 39B/MLP1 Up/Down-5 49; STS-37,59,76 31.15 Prime TAL Zaragoza MS2/EV2/FE Daniel Tani M/0 02/01/61 Landing 01:03:00 PM 12.17.01 Up 40; Rookie 4.75 Landing Site Kennedy Space Center Duration 11/19:44 ISS-4 Air Force Col. Carl Walz M/2 09/06/55 Down-5 46; STS-51,65,79 39.25 Endeavour 167/13:26:34 ISS-4 CIS AF Col. Yuri Onufrienko M/3 02/06/61 STS Program 943/13:26:34 Down-6 40; Mir-21 197.75 ISS-4 Navy Capt. Daniel Bursch M/4 07/25/57 MECO Ha/Hp 169 X 40 nm Down-7 44; STS-51,68,77 35.85 OMS Ha/Hp 175 X 105 nm ISS Ha/Hp 235 X 229 (varies) ISS-3 Frank Culbertson M/5 05/15/49 Period 91.6 minutes Down-6 52; STS-38, 51,ISS-3 136.89 Inclination 51.6 degrees ISS-3 Mikhail Tyurin M/1 03/02/60 Velocity 17,212 mph Down-7 40; ISS-3 122.59 EOM Miles 4,467,219 miles ISS-3 CIS Lt.
    [Show full text]