REDACTED Diver Exposure Scenario for the Portland Harbor Risk Assessment

Total Page:16

File Type:pdf, Size:1020Kb

REDACTED Diver Exposure Scenario for the Portland Harbor Risk Assessment Diving For Science 2009 Proceeding of the American Academy of Underwater Sciences 28th Scientific Symposium Neal W. Pollock Editor Atlanta, GA March 13-14, 2009 ii The American Academy of Underwater Sciences (AAUS) was formed in 1977 and incorporated in the State of California in 1983 as a 501c6 nonprofit corporation. Visit: www.aaus.org. The mission of AAUS is to facilitate the development of safe and productive scientific divers through education, research, advocacy, and the advancement of standards for scientific diving practices, certifications, and operations. Acknowledgments Thanks to Alma Wagner of the AAUS main office for her organizational efforts and the team from the Georgia Aquarium who hosted many events for the 2009 symposium of the American Academy of Underwater Sciences: Dr. Bruce Carlson Chief Science Officer Jeff Reid Diving Officer Jim Nimz Assistant Diving Officer Mauritius Bell Assistant Diving Officer Special thanks to Kathy Johnston for her original artwork donations (www.kathyjohnston.com) and Kevin Gurr (http://technologyindepth.com) for his dive computer donations. Both provide continued support of the AAUS scholarship program. Cover art by Kathy Johnston. Thanks to Mary Riddle for proof-reading assistance. ISBN 978-0-9800423-3-7 Sea Grant Publication # CTSG-10-09 Copyright © 2010 by the American Academy of Underwater Sciences Dauphin Island Sea Lab, 101 Bienville Boulevard, Dauphin Island, AL 36528 iii Table of Contents Scientific Diving and the Law: an Evolving Relationship Dennis W. Nixon........................................................................................................................1 Diver Exposure Scenario for the Portland Harbor Risk Assessment Sean Sheldrake, Dana Davoli, Michael Poulsen, Bruce Duncan, Robert Pedersen...................7 Submerged Cultural Resource Discoveries in Albania: Surveys of Ancient Shipwreck Sites Derek M. Smith .......................................................................................................................19 The Minerals Management Service's Seafloor Monitoring Program David A. Ball............................................................................................................................23 Underwater Acoustic Ecology: Boat Noises and Fish Behavior Phillip S. Lobel........................................................................................................................31 Convenient Fish Acoustic Data Collection in the Digital Age Kathryn E. Kovitvongsa and Phillip S. Lobel.........................................................................43 Use of Technical Diving to Study Deep Reef Environments in Puerto Rico Clark Sherman, Richard Appeldoorn, Milton Carlo, Michael Nemeth, Hector Ruíz, Ivonne Bejarano.................................................................................................58 2008 Battle of the Atlantic Survey Methodology Joseph C. Hoyt........................................................................................................................66 Habitat-Mediated Signal Reception by a Passive Acoustic Receiver Array as Determined by Scuba Surveys James Lindholm, Ashley Knight, Jeremiah Brantner, Les Kaufman and Steven Miller.......75 Torrid Seas to Icebound Lakes: Shipwreck Investigations within NOAA's National Marine Sanctuaries Tane R. Casserly.....................................................................................................................86 Flower Garden Banks National Marine Sanctuary and Texas A&M University at Galveston: Building a Research and Learning Partnership Kevin Buch, Emma Hickerson...............................................................................................91 Exceptional Areas, Significant Challenges, a Perfect Opportunity: The National Marine Sanctuary University Partnership Program Bradley W. Barr, Robert Pavia...............................................................................................95 The Office of National Marine Sanctuaries Science Needs Assessment: A To Do List for Ocean Conservation Mitchell Tartt..........................................................................................................................99 The Etiology of Spinal Cord Decompression Sickness: A Literature Review Dawn N. Kernagis.................................................................................................................106 iv The Haldane Effect Michael A. Lang, Alf O. Brubakk..........................................................................................112 Community Science for In-Shore Marine Resource Management: Building a Toolkit Drawing on the Magothy River Association Experience Richard B. Carey, Richard V. Ducey, Carolyn Winter, Miriam Kelty, Sally Hornor, Bruce Macphail................................................................................................125 Assessing Seasonal Variation in Epibenthic Community Structure on Restored Oyster Reefs: Macrovertebrate Biodiversity and Polychaete (Nereis succinea) Biomass Elizabeth J. Ducey..................................................................................................................140 Exploring the 'Marine Twilight Zone' in the Gulf of Eilat, Red Sea, Israel Oded Ben-Shaprut, Beverly Goodman-Tchernov..................................................................156 Field Programmable Gate Array (FPGA)-Based Fish Detection Using Haar Classifiers Bridget Benson, Junguk Cho, Deborah Goshorn, Ryan Kastner...........................................160 Science of the National Association for Cave Diving (NACD): Water Quality, Hydrogeology, Biology and Psychology Donald F. Kendrick................................................................................................................168 Health of Coral Reefs: Measuring Benthic Indicator Groups and Calcuating Tipping Points Mark M. Littler, Diane S. Littler............................................................................................175 Collaborative Diving for Science: A Report on the Diving Equipment, Techniques and Collaborative Approach Used to Conduct Subtidal Shellfish Surveys in Coos Bay, Oregon Vallorie J. Hodges, Caren E. Braby, Alix M. Laferriere.......................................................192 Oxygen and Hydrogen Isotopes Suggest Two Sources for Little Salt Spring Noelle J. Van Ee, E. Rick Riera-Gomez................................................................................199 Approaches for Analyzing Behavioral Interactions of Fishes Using Time Series Video Observations at an Ocean Observatory off the Coast of Georgia Amy E. Paquette, Peter J. Auster, Michael D. Arendt...........................................................206 Tourist Charge Capacities for Recreational Scuba Diving in Marine Protected Areas and Establishment of Interpretative Underwater Paths Vicente Munoz-Fernandez, Alejandro Ramirez-Cordero, Eduardo Rios-Jara......................216 Algal Garden Cultivation and Guarding Behavior of Dusky Damselfish on Coral Rubble and Intact Reef in Dry Tortugas National Park Valentina Di Santo, Christopher M. Pomory, Wayne A. Bennett.........................................222 Population Analysis of an Introduced Coral Species, Tubastraea coccinea, in Florida Tonya L. Shearer....................................................................................................................229 Design and Evaluation of Cold Water Diving Garments Using Super-Insulating Aerogel Fabrics M. Lew Nuckols, D.E. Hyde, J.L. Wood-Putnam, J. Giblo, G.J. Caggiano, J.A. Henkerner, B. Stinton.....................................................................................................237 v Underwater Paleontology: Recovery of a Prehistoric Whale Mandible Offshore Georgia Scott E. Noakes, Erv G. Garrison, Greg B. McFall................................................................245 Symposium Speaker Schedule ...........................................................................................................252 vi In: Pollock NW, ed. Diving for Science 2009. Proceedings of the American Academy of Underwater Sciences 28th Symposium. Dauphin Island, AL: AAUS; 2009. Scientific Diving and the Law: An Evolving Relationship Dennis W. Nixon College of the Environment and Life Sciences, University of Rhode Island, 9 East Alumni Avenue, Kingston, Rhode Island 02881, USA [email protected] Abstract This paper will review the development of both the American Academy of Underwater Science (AAUS) and the University – National Oceanographic Laboratory System (UNOLS). Casualties and their related legal implications were central to the development of both groups, as well the need for common safety and operational standards. The role of the scientific diving exemption under the Occupational and Safety and Health Administration (OSHA) rules, and the recent interest from the U.S. Coast Guard in revising commercial diving regulations will be discussed, along with three recent high-profile casualties that have focused attention on government and scientific diving. Keywords: OSHA, research vessel law, scientific diving law Historical Development of AAUS and UNOLS Both organizations have their beginnings in concerns over liability, and the special issues involved with conducting science at, or under, the sea. The origins of AAUS can be traced to the deaths of two scientific divers from Scripps in 1951, which led to the formation of the first scientific diving program in the United States. The goal of the
Recommended publications
  • History of Hyperbaric Medicine ROBERT S
    American Osteopathic College of Occupational and Preventive Medicine 2015 Mid Year Educational Conference, Ft. Lauderdale, Florida How Did We Get From Here History of Hyperbaric Medicine ROBERT S. MICHAELSON, DO, MPH MARCH 14, 2015 To Here 3 History of Hyperbaric Medicine Discuss history of diving Discovery of the atmosphere Five major milestones in the development of hyperbaric medicine Triger’s caisson Eads and Brooklyn Bridge Haldane and staged decompression Rescue of the USS Squalus Donnell and Norton 5 Gourd Breathing About 375 AD Diving as a Profession Salvage Operations From as early as 9th century BC Pay scale based on depth of dive Military Operations Early attempts to bore into hull of ships or attach crude explosives to vessels Confined to shallow waters and for short duration dives Very Hard to be Stealthy and Effective T-1 American Osteopathic College of Occupational and Preventive Medicine 2015 Mid Year Educational Conference, Ft. Lauderdale, Florida DivingHood by Flavius Vegetius Renatus about 375 AD in Leonardo’s (1452-1519) Design For Swim Fins Epitome Institutionum Rei Militaris Diving Rig of Niccolo Tartaglia Canon Recovery Mid-1600’s about 1551 Probably First Diving Bell Mid-1600’s T-2 American Osteopathic College of Occupational and Preventive Medicine 2015 Mid Year Educational Conference, Ft. Lauderdale, Florida T-3 American Osteopathic College of Occupational and Preventive Medicine 2015 Mid Year Educational Conference, Ft. Lauderdale, Florida Diving as a Profession Salvage Operations From as early as 9th century BC Pay scale based on depth on dive Military Operations Early attempts to bore into hull of ships or attach crude explosives to vessels Confined to shallow waters and for short duration dives Very Hard to be Stealthy and Effective Diving Bell-1664 Klingert’s Diving Suit -1797 The Vasa, a Swedish ship sunk within a This equipment is the first to be called mile of her maidenvoyage in 1628.
    [Show full text]
  • Scuba Diving History
    Scuba diving history Scuba history from a diving bell developed by Guglielmo de Loreno in 1535 up to John Bennett’s dive in the Philippines to amazing 308 meter in 2001 and much more… Humans have been diving since man was required to collect food from the sea. The need for air and protection under water was obvious. Let us find out how mankind conquered the sea in the quest to discover the beauty of the under water world. 1535 – A diving bell was developed by Guglielmo de Loreno. 1650 – Guericke developed the first air pump. 1667 – Robert Boyle observes the decompression sickness or “the bends”. After decompression of a snake he noticed gas bubbles in the eyes of a snake. 1691 – Another diving bell a weighted barrels, connected with an air pipe to the surface, was patented by Edmund Halley. 1715 – John Lethbridge built an underwater cylinder that was supplied via an air pipe from the surface with compressed air. To prevent the water from entering the cylinder, greased leather connections were integrated at the cylinder for the operators arms. 1776 – The first submarine was used for a military attack. 1826 – Charles Anthony and John Deane patented a helmet for fire fighters. This helmet was used for diving too. This first version was not fitted to the diving suit. The helmet was attached to the body of the diver with straps and air was supplied from the surfa 1837 – Augustus Siebe sealed the diving helmet of the Deane brothers’ to a watertight diving suit and became the standard for many dive expeditions.
    [Show full text]
  • Marine Fish Conservation Global Evidence for the Effects of Selected Interventions
    Marine Fish Conservation Global evidence for the effects of selected interventions Natasha Taylor, Leo J. Clarke, Khatija Alliji, Chris Barrett, Rosslyn McIntyre, Rebecca0 K. Smith & William J. Sutherland CONSERVATION EVIDENCE SERIES SYNOPSES Marine Fish Conservation Global evidence for the effects of selected interventions Natasha Taylor, Leo J. Clarke, Khatija Alliji, Chris Barrett, Rosslyn McIntyre, Rebecca K. Smith and William J. Sutherland Conservation Evidence Series Synopses 1 Copyright © 2021 William J. Sutherland This work is licensed under a Creative Commons Attribution 4.0 International license (CC BY 4.0). This license allows you to share, copy, distribute and transmit the work; to adapt the work and to make commercial use of the work providing attribution is made to the authors (but not in any way that suggests that they endorse you or your use of the work). Attribution should include the following information: Taylor, N., Clarke, L.J., Alliji, K., Barrett, C., McIntyre, R., Smith, R.K., and Sutherland, W.J. (2021) Marine Fish Conservation: Global Evidence for the Effects of Selected Interventions. Synopses of Conservation Evidence Series. University of Cambridge, Cambridge, UK. Further details about CC BY licenses are available at https://creativecommons.org/licenses/by/4.0/ Cover image: Circling fish in the waters of the Halmahera Sea (Pacific Ocean) off the Raja Ampat Islands, Indonesia, by Leslie Burkhalter. Digital material and resources associated with this synopsis are available at https://www.conservationevidence.com/
    [Show full text]
  • History of Scuba Diving About 500 BC: (Informa on Originally From
    History of Scuba Diving nature", that would have taken advantage of this technique to sink ships and even commit murders. Some drawings, however, showed different kinds of snorkels and an air tank (to be carried on the breast) that presumably should have no external connecons. Other drawings showed a complete immersion kit, with a plunger suit which included a sort of About 500 BC: (Informaon originally from mask with a box for air. The project was so Herodotus): During a naval campaign the detailed that it included a urine collector, too. Greek Scyllis was taken aboard ship as prisoner by the Persian King Xerxes I. When Scyllis learned that Xerxes was to aack a Greek flolla, he seized a knife and jumped overboard. The Persians could not find him in the water and presumed he had drowned. Scyllis surfaced at night and made his way among all the ships in Xerxes's fleet, cung each ship loose from its moorings; he used a hollow reed as snorkel to remain unobserved. Then he swam nine miles (15 kilometers) to rejoin the Greeks off Cape Artemisium. 15th century: Leonardo da Vinci made the first known menon of air tanks in Italy: he 1772: Sieur Freminet tried to build a scuba wrote in his Atlanc Codex (Biblioteca device out of a barrel, but died from lack of Ambrosiana, Milan) that systems were used oxygen aer 20 minutes, as he merely at that me to arficially breathe under recycled the exhaled air untreated. water, but he did not explain them in detail due to what he described as "bad human 1776: David Brushnell invented the Turtle, first submarine to aack another ship.
    [Show full text]
  • Heat Stroke Heat Exhaustion
    Environmental Injuries Co lin G. Ka ide, MD , FACEP, FAAEM, UHM Associate Professor of Emergency Medicine Board-Certified Specialist in Hyperbaric Medicine Specialist in Wound Care The Ohio State University Wexner Medical Center The Most Dangerous Drug Combination… Accidental Testosterone Hypothermia and Alcohol! The most likely victims… Photo: Ralf Roletschek 1 Definition of Blizzard Hypothermia of Subnormal T° when the body is unable to generate sufficient heat to sustain normal functions Core Temperature < 95°F 1979 (35°C) Most Important Temperatures Thermoregulation 95°F (35° C) Hyper/Goofy The body uses a Poikilothermic shell to maintain a Homeothermic core 90°F (32°C) Shivering Stops Maintains core T° w/in 1.8°F(1°C) 80°F (26. 5°C) Vfib, Coma Hypothalamus Skin 65°F (18°C) Asystole Constant T° 96.896.8-- 100.4° F 2 Thermoregulation The 2 most important factors Only 3 Causes! Shivering (10x increase) Decreased Heat Production Initiated by low skin temperature Increased Heat Loss Warming the skin can abolish Impaired Thermoregulation shivering! Peripheral vasoconstriction Sequesters heat Predisposing Predisposing Factors Factors Decreased Production Increased Loss –Endocrine problems Radiation Evaporation • Thyroid Conduction* • Adrenal Axis Convection** –Malnutrition *Depends on conducting material **Depends on wind velocity –Neuromuscular disease 3 Predisposing Systemic Responses CNS Factors T°< 90°F (34°C) Impaired Regulation Hyperactivity, excitability, recklessness CNS injury T°< 80°F (27°C) Hypothalamic injuries Loss of voluntary
    [Show full text]
  • Environmental Injuries
    Environmental Injuries Colin G. Kaide, MD, FACEP, FAAEM, UHM Associate Professor of Emergency Medicine Board-Certified Specialist in Hyperbaric Medicine Specialist in Wound Care The Ohio State University Wexner Medical Center 1 The Most Dangerous Drug Combination… Testosterone and Alcohol! The most likely victims… Photo: Ralf Roletschek Accidental Hypothermia 2 Blizzard of 1979 Definition of Hypothermia Subnormal T° when the body is unable to generate sufficient heat to sustain normal functions Core Temperature < 95°F (35°C) 3 Most Important Temperatures 95°F (35° C) Hyper/Goofy 90°F (32°C) Shivering Stops 80°F (26.5°C) Vfib, Coma 65°F(18F (18°C) AtlAsystole Thermoregulation The body uses a Poikilothermic shell to maintain a Homeothermic core Maintains core T° w/in 1.8°F(1°C) Hypothalamus Skin CttTConstant T° 96. 8- 100.4° F 4 Thermoregulation The 2 most important factors Shivering (10x increase) Initiated by low skin temperature Warming the skin can abolish shivering! Peripheral vasoconstriction Sequesters heat Only 3 Causes! Decreased Heat Production Increased Heat Loss Impaired Thermoregulation 5 Predisposing Factors Decreased Production –Endocrine problems • Thyroid • Adrenal Axis –Malnutrition –Neuromuscular disease Predisposing Factors Increased Loss RRditiadiation Evaporation Conduction* Convection** *DDdepends on cond dtitilucting material **Depends on wind velocity 6 Predisposing Factors Impaired Regulation CNS injury Hypothalamic injuries Peripheral Injury Atherosclerosis Neuropathy Interfering Agents Systemic Responses CNS
    [Show full text]
  • Modern-Day Explorers
    UT] O B A THINK O MODERN-DAY EXPLORERS Who are the men and women who are conquering the unthinkable? They walk among us, seemingly normal, but undertake feats of extreme adventure and live to tell the tale… METHING T SO Alex Honnold famous free soloist [ LEWIS PUGH RHYMES with “whew” “...he couldn’t feel his fingertips for CROSSROADS four months!” The funniest line in Lewis Pugh’s recently-released memoir, 21 Yaks and a Speedo: How to achieve your impossible (Jonathan Ball Publishers) is when he says, “I’m not a rule-breaker by nature.” The British-South African SAS reservist and endurance swimmer is a regular in the icy waters of the Arctic and Antarctic ALEX HONNOLD oceans. He’s swum long-distance in every ocean in the world and GIVES ROCKS By Margot Bertelsmann holds several world records, perhaps most notably the record of being the first person to swim 500 metres freestyle in the Finnish World Winter Swimming Championships (the usual distance is 25 “...if you fall, you’ll likely die (and metres breaststroke) – wearing only a Speedo. He also swam a near-unimaginable 1000 metres in -1.7°C waters near the North many free soloists have).” Pole, after which he couldn’t feel his fingertips for four months! When he’s not breaking endurance records, Lewis tours the When your appetite for the thrill of danger is as large as globe speaking about his passion: conserving our oceans and 27-year-old Alex Honnold’s, you’d better find a 600 metres- water, climate change and global warming.
    [Show full text]
  • © Iccat, 2007
    A5 By-catch Species APPENDIX 5: BY-CATCH SPECIES A.5 By-catch species By-catch is the unintentional/incidental capture of non-target species during fishing operations. Different types of fisheries have different types and levels of by-catch, depending on the gear used, the time, area and depth fished, etc. Article IV of the Convention states: "the Commission shall be responsible for the study of the population of tuna and tuna-like fishes (the Scombriformes with the exception of Trichiuridae and Gempylidae and the genus Scomber) and such other species of fishes exploited in tuna fishing in the Convention area as are not under investigation by another international fishery organization". The following is a list of by-catch species recorded as being ever caught by any major tuna fishery in the Atlantic/Mediterranean. Note that the lists are qualitative and are not indicative of quantity or mortality. Thus, the presence of a species in the lists does not imply that it is caught in significant quantities, or that individuals that are caught necessarily die. Skates and rays Scientific names Common name Code LL GILL PS BB HARP TRAP OTHER Dasyatis centroura Roughtail stingray RDC X Dasyatis violacea Pelagic stingray PLS X X X X Manta birostris Manta ray RMB X X X Mobula hypostoma RMH X Mobula lucasana X Mobula mobular Devil ray RMM X X X X X Myliobatis aquila Common eagle ray MYL X X Pteuromylaeus bovinus Bull ray MPO X X Raja fullonica Shagreen ray RJF X Raja straeleni Spotted skate RFL X Rhinoptera spp Cownose ray X Torpedo nobiliana Torpedo
    [Show full text]
  • Underwater Speleology
    ... _.__ ._._ ........ _- ..... _---------------. UNDERWATER SPELEOLOGY OFFICIAL NEWSLmER OF THE CAVE DIVING SECTION OF THE NATIONAL SPELEOLOGICAL SOCIETY VOLUME 8 NUMBER 1 Underwater Speleology, vol.8, N9.1 UNDERWATER SPELEOLOGY ON THE COVER ............... Published Bimonthly Beginning in February Sheck Exley (NSS 13146) begins an extensive by exploration of one of the many clear first The Cave Diving Section of magnitude springs in Florida. These springs The National Speleological Society include nine of the ten longest caves in Florida. Photo by John Zumrick (NSS 187B8). c/o Stephen Maegeriein, P. O. Box 60 Williams, Indiana 47470 CALENDAR Deadline for publication is the second Friday of the preceeding month. Send exchange publications and editorial correspondence to the editor: July 12-18 5th International Cave Diving John Zumrick Camp. Contact Sheck Exley, 10259 120 Rusty Gans Dr. Panama City Beach, Florida 32407 Crystal Sprgs Rd., Jacksonvil Ie, Florida 32221 Section membership, including a subscription to un· derwater speleology is open to all members in good stan· July 18-24 8th International Congress of ding of the National Speleological Society at $3.00 per Speleology, Bowling Green, Ky. year. Subscription to non-members is $5.00 per year. Make checks payabie to the NSS Cave Diving Section in For information write Eighth care of the Treasurer. Opinions expresSed in Underwater International Congress of Speleology are not necessarily those of the section or the Speleology, Secretariat, Dept of NSS. Geography and Geology, Western Kentucky Unlv., Bowling Green, Kentucky 42101. EXECUTIVE COMMITTEE ***************RENEWAL TIME?****************** CHAIRPERSON VICE-CHAI RPERSON Dennis Williams (N55 182&11 Karen E.
    [Show full text]
  • Mine Rescue Team Training: Metal and Nonmetal Mines (MSHA 3027, Formerly IG 6)
    Mine Rescue Team Training Metal and Nonmetal Mines U.S. Department of Labor Mine Safety and Health Administration National Mine Health and Safety Academy MSHA 3027 (Formerly IG 6) Revised 2008 Visit the Mine Safety and Health Administration website at www.msha.gov CONTENTS Introduction Your Role as an Instructor Overview Module 1 – Surface Organization Module 2 – Mine Gases Module 3 – Mine Ventilation Module 4 – Exploration Module 5 – Fires, Firefighting, and Explosions Module 6 – Rescue of Survivors and Recovery of Bodies Module 7 – Mine Recovery Module 8 – Mine Rescue Training Activities Introduction Throughout history, miners have traveled underground secure in the knowledge that if disaster strikes and they become trapped in the mine, other miners will make every possible attempt to rescue them. This is the mine rescue tradition. Today’s mine rescue efforts are highly organized operations carried out by groups of trained and skilled individuals who work together as a team. Regulations require all underground mines to have fully-trained and equipped professional mine rescue teams available in the event of a mine emergency. MSHA’s Mine Rescue Instruction Guide (IG) series is intended to help your mine to meet mine rescue team training requirements under 30 CFR Part 49. The materials in this series are divided into self-contained units of study called “modules.” Each module covers a separate subject and includes suggestions, handouts, visuals, and text materials to assist you with training. Instructors and trainers may wish to use these materials to either supplement existing mine rescue training, or tailor a program to fit their mine-specific training needs.
    [Show full text]
  • Unit 11 Sound Speed of Sound Speed of Sound Sound Can Travel Through Any Kind of Matter, but Not Through a Vacuum
    Unit 11 Sound Speed of Sound Speed of Sound Sound can travel through any kind of matter, but not through a vacuum. The speed of sound is different in different materials; in general, it is slowest in gases, faster in liquids, and fastest in solids. The speed depends somewhat on temperature, especially for gases. vair = 331.0 + 0.60T T is the temperature in degrees Celsius Example 1: Find the speed of a sound wave in air at a temperature of 20 degrees Celsius. v = 331 + (0.60) (20) v = 331 m/s + 12.0 m/s v = 343 m/s Using Wave Speed to Determine Distances At normal atmospheric pressure and a temperature of 20 degrees Celsius, speed of sound: v = 343m / s = 3.43102 m / s Speed of sound 750 mi/h Speed of light 670 616 629 mi/h c = 300,000,000m / s = 3.00 108 m / s Delay between the thunder and lightning Example 2: The thunder is heard 3 seconds after the lightning seen. Find the distance to storm location. The speed of sound is 345 m/s. distance = v t = (345m/s)(3s) = 1035m Example 3: Another phenomenon related to the perception of time delays between two events is an echo. In a canyon, an echo is heard 1.40 seconds after making the holler. Find the distance to the canyon wall (v=345m/s) distanceround trip = vt = (345 m/s )( 1.40 s) = 483 m d= 484/2=242m Applications: Sonar, Ultrasound, and Medical Imaging • Ultrasound or ultrasonography is a medical imaging technique that uses high frequency sound waves and their echoes.
    [Show full text]
  • Michigan Statewide Historic Preservation Plan
    2020–2025 MICHIGAN Statewide Historic Preservation Plan Working together, we can use the next five years to redefine the role of historic preservation in the state to ensure it remains relevant to Michigan’s future. State Historic Preservation Office Prepared by 300 North Washington Square Amy L. Arnold, Preservation Planner, Lansing, Michigan 48913 Michigan State Historic Preservation Office, Martha MacFarlane-Faes, Lansing, Michigan Deputy State Historic August 2020 Preservation Officer Mark Burton, CEO, With assistance from Michigan Economic Peter Dams, Dams & Associates, Development Corporation Plainwell, Michigan Gretchen Whitmer, Governor, This report has been financed entirely State of Michigan with federal funds from the National Park Service, U.S. Department of the Interior. However, the contents and opinions do not necessarily reflect the views or policies of the Department of the Interior. This program receives federal financial assistance for identification and protection of historic properties. Under Title VI of the Civil Rights Act of 1964 and Section 504 of the Rehabilitation Act of 1973, and the Age Discrimination Act of 1975, as amended, the Department of the Interior prohibits discrimination on the basis of race, color, national origin, or disability or age in its federally assisted programs. If you believe you have been discriminated against in any program, activity, or facility as described above, or you desire further information, please write to: Office for Equal Opportunity National Park Service 1849 C Street, N.W. Washington D.C. 20240 Cover photo: Thunder Bay Island Lighthouse, Alpena County. Photo: Bryan Lijewski Michigan State Historic Preservation Office 2 Preservation Plan 2020–2025 TABLE OF CONTENTS Introduction .....................................................................................................................................
    [Show full text]