Physical and Chemical Changes Related to Epigenetic Dolomitization David Eugene Simon Iowa State University

Total Page:16

File Type:pdf, Size:1020Kb

Physical and Chemical Changes Related to Epigenetic Dolomitization David Eugene Simon Iowa State University Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1972 Physical and chemical changes related to epigenetic dolomitization David Eugene Simon Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Geology Commons Recommended Citation Simon, David Eugene, "Physical and chemical changes related to epigenetic dolomitization " (1972). Retrospective Theses and Dissertations. 6121. https://lib.dr.iastate.edu/rtd/6121 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This dissertation was produced from a microfilm copy of the original document. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the original submitted. The following explanation of techniques is provided to help you understand markings or patterns which may appear on this reproduction. 1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity. 2. When an image on the film is obliterated with a large round black mark, it is an indication that the photographer suspected that the copy may have moved during exposure and thus cause a blurred image. You will find a good image of the page in the adjacent frame. 3. When a map, drawing or chart, etc., was part of the material being photographed the photographer followed a definite method in "sectioning" the material. It is customary to begin photoing at the 'jppsr left hard ccrr.sr of s larga sheet and to continue pnotoing rrom left to right in equal sections with a small overlap. If necessary, sectioning is continued again — beginning below the first row and continuing on until complete. 4. The majority of users indicate that the textual content is of greatest value, however, a somewhat higher quality reproduction could be made from "photographs" if essential to the understanding of the dissertation. Silver prints of "photographs" may be ordered at additional charge by writing the Order Department, giving the catalog number, title, author and specific pages you wish reproduced. University Microfilms 300 North Zeeb Road Ann Arbor, Michigan 48106 A Xerox Education Company 73-9486 S DON, David Eugene, 1943- PHYSICAL AND CHEMICAL CRINGES RELATED TO EPIGENETIC DOLCMITIZATION. Iowa State University, Ph.D., 1972 Geology University Microfilms, A XEROX Company , Ann Arbor, Michigan THIS DISSERTATION HAS BEEN MICROFILMED EXACTLY AS RECEIVED. Physical and chemical changes related to epigenetic dolomitization by David Eugene Simon A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of The Requirements for the Degree of DOCTOR OF PHILOSOPHY Department: Earth Science Major: Geology Approved: Signature was redacted for privacy. in Charge of Major Work Signature was redacted for privacy. r the Major Department Signature was redacted for privacy. For the Graduate College lews State University Ames, Iowa 1972 PLEASE NOTE: Some pages may have indistinct print. Filmed as received. University Microfilms, A Xerox Education Company i i TABLE OF CONTENTS Page TWTDon: irTT nKi i EPIGENETIC DOLOMITES 3 COMPOSITION-VCLUXE RELATIONSHIPS 8 DEVELOPMENT OF A WORKING MODEL FOR STUDY OF REPLACEMENT PROCESSES 15 i'lc inuu ùiuu! I 3 GEOLOGIC SETTING A.ND PETROLOGY 25 Ferguson Ouarr_y 25 Peloid limestone 28 Transition zone 31 Dolomite 34 Randall Quarry 34 Limestone 37 Dolomite 37 Summary of Petrography 42 Paragenesis of Ferguson Quarry Samples 42 Paragenesis of Randall Quarry Samples 43 Composition of the Carbonate Phases 44 Ferguson Quarry samples 44 Randall Quarry samples 46 Summary 47a PRESENIAII'JN UF uaim Void Volume-Pore Radii Relationships 48 Ferguson Quarry samples 48 Randall Quarry samples 51 Summary 55 i ii Page Phase and Component Relationships 57 Ferguson Quarry samples 57 Randall Quarry samples 62 DISCUSSION 68 Volume-Mass Changes of the Carbonate Phases 70 Petrogenic Models of Dolomitization 77 Ferguson Quarry 78 Randall Quarry 82 Competing Reactions and Complexity of the Process 85 Relation of Model to Nature 89 CONCLUSIONS 92 REFERENCES CITED 96 ACKNOWLEDGEMENTS 101 APPENDIX A 102 Analysis of Limestones and Dolomites 103 APPENDIX B 106 APPENDIX C 120 1 INTRODUCTION The major purpose of this study is to account for, by chemical and physical methods, the changes which occur in geological materials; specifically changes related to alteration or replacement processes. Geologic alteration or replacement generally results from reactions of minerals with components of a fluid phase flowing through the rock. Because changes in mass and pore volumes usually accompany the replace­ ments, study of associated composition and volume changes is necessary to explain how the replacement operates. This type of study requires measurement of physical and chemical changes occurring in a gradational sequence of rocks undergoing replacement; in this study epigenetic dolomitization of limestone. A majority of past studies on dolomitization have described the nature and direction of the process, but not the actual mass and volume changes which occurred. This study will utilize a model of replacement by which related mass and volume changes can be determined. Such knowledge will provide a better insight into some aspects of epi genetic dolomitization. It is generally agreed that the majority of dolomites owe their origin to replacement of pre-existing calcium carbonate material. However, the exact method by which this replacement occurs and the related composition- volume relationships are still unknown. Epigenetic dolomitization is here defined as the post-1ithification replacement of limestone, which probably includes the 1ate-diagenetic classification of some investigators (Fairbridge, 1957; Friedran and Sanders, 1967). Epigenetic dolomites comr^nly exhibit a cross-cutting relationship across bedding planes of the 9 host limestones. This parent-daughter relationship allows siucy of gains and losses of component oxides, phases and volume changes for the system, evaluation of the method by which the process operates, and to what extent local controls, if any, influence the process. Investigations by numerous people (Landes, 1946; Hewett, 1928; Levering, 1949; Murray, 1960; Weyl, 195Û) have shown that dolomitization porosity changes range from large increases in some instances to none in others and to actual decreases in still others. Usually two methods, mole-for-mole and volume-for-volume, are used to describe the colomitization process but they do not adequately explain the mass and void volume changes actually observed. However, through use of parent-daughter sample sets considered representative of epigenetic dolomitization, measurement of related mass and pore volume changes, chemical changes and pétrographie study will yield interrelated data concerning the changes associated with dolcmitization. Such an approach is undertaken in this study and makes it possible to explain how these changes occurred. The following sections will review composition-volume relationships, ep'! genetic dolomi tizati on and the proposed model of alteration or replacement processes. Following these reviews the systems selected for study, experimental methods, data obtained, and interpretations will be oresented. 3 EPÎGENETIC DOLOMITES Recent comprehensive reviews of modern and ancient dolomites indicate most moaern workers in carbonate petrology believe that mosz dolomites originate by reclacement of pre-existing calcium carbonate material by hypersaline brine: (Friedman and Sanders, 1967; Zenger, 1972; Bathurst, 1971). For detailed discussions of various aspects cf tne dolomitization, the reader is referred to the above references. In general, three types of dolomites are recognized: (1) Syngenetic dolomite-formed essentially penecontemporaneously with deposition, generally considered to be a marine evaporite basin. (2) Diagenetic dolomite-formed by replacement of calcium carbonate sediments during the period when the sediments are being consolidated. (3) Epigenetic dolomite-formed by replacement of limestone along faults, joints, bedding planes and other primary and secondary structural elements long after the sediment is lithified. usually show a cross-cuiting relationship of the dolomitized zones across the original limestone bedding. These zones generally have gradational to sharp contacts between the limestone and dolomite which allow parent- daughter sample sequences to be obtained laterally within the same bed and serve as a basis to study the alteration process. Friedman and Sanders (1957) have discussed several unsolved problems regarding the replacement of calcium carbonate by dolomite. They point out that it is not understood if the dolomite replacement occurs by the ^ 4,iiW « V./I VI I LV LV i I V* w Ciltsrf L* ^ Vv ^ I V I V/ I I ^ i 4 dolomite, or diffusion and ion exchange of Mg for Ca in the crystal or the amount and how the Mg
Recommended publications
  • Dolomitization
    2/25/2009 Dolomitization A Short Course VU March, 2009 Peter Swart University of Miami www.aoqz76.dsl.pipex.com/ Landscapes.htm Dieudonné Sylvain Guy Tancrede de Gratet de Dolomieu usually known as Déodat de Dolomieu (Dolomieu June 23, 1750 - Chateuneuf November 28, 1801) a French geologist; the rock Dolomite was named after him. During one of his field trips to the Alps of South Tyrol (today part of northeastern Italy) he discovered a calcareous rock which, unlike limestone, did not effervesce in weak acid. He published these observations in 1791 in the Journal de Physique. The following year, in the same journal, the rock was named dolomie (or dolomite, in English) by Nicolas-Théodore de Saussure. Today both the rock and its major mineral constituent bear the name of Dolomieu, as do the Dolomites, the mountain range in northwestern Italy, where he first identified the rock. http://en.wikipedia.org/wiki/Dolomieu 1 2/25/2009 1980 1994 "Dolomite is a complicated mineral. It exhibits a wide range in the concentration of major elements and is as complex as Feldspar" (Land, 1980) 2 2/25/2009 CaMg(CO3)2 Dolomites appear to be OXYGEN between 3 to 4 per mille heavier (more O-18) than co-occuring carbonates. +3 Dolomite CARBON Calcite +1 Dolomites are about 1 per mille heavier in carbon Stable Isotopes Natural Variations UNDA 18 Oo/oo - - - - 6 2 4 0 4 8 2 12345 6 200 Bulk Dolomites 400 o 3 /oo 600 (fbmp) Depth 800 1000 1200 1400 3 2/25/2009 Experimental CaMgCO3+H3PO4=CO2+H2O+CaMgHPO4 1/2 1/4 = [CO2] [H2O][CaMgHPO4] /[CaMgCO3][H3PO4] 4 2/25/2009
    [Show full text]
  • 9 Carboniferous: Extensional Basins, Advancing Deltas and Coal Swamps
    Carboniferous: extensional 9 basins, advancing deltas and coal swamps C. N. WATERS & S. J. DAVIES The structural evolution of England and Wales during the Trough and Widmerpool Gulf of the East Midlands (Fig. 9.4), Carboniferous was primarily a consequence of an oblique the Craven Basin of Lancashire and Harrogate Basin of (dextral) collision between Gondwana and Laurussia (Warr Yorkshire, formed connected narrow embayments. The inter- 2000). Several phases can be recognized. The Rhenohercynian vening platforms include the linked East Midlands Shelf and Ocean opened during Early–Mid Devonian regional back-arc Derbyshire High, the Holme High, Hathern Shelf and the transtension between Avalonia and Armorica (Fig. 9.1), possi- North Wales Shelf (Fig. 9.2). These platform areas represent the bly associated with northward-directed subduction along the northern margin of the Wales–Brabant High, which formed a southern margin of Armorica. A narrow seaway floored by persistent topographical feature throughout the Carboniferous. oceanic crust developed, extending across southwest England, Along the southern margin of the Wales–Brabant High there northern France and Germany. Cessation of the subduction, is a gradual change southward from a shelf in the South Wales associated with the Ligerian orogenic phase of central Europe, and Bristol region into a deep marine back-arc seaway of the resulted from the collision of the Iberian and Armorican Culm Basin of Cornwall and Devon (Fig. 9.2), that developed microplates (Fig. 9.1). During the Late Devonian, transpressive from the Late Devonian to Silesian times (see Chapter 10). closure of this restricted ocean, associated with the Bretonian By late Dinantian time the magnitude of regional N–S exten- orogenic phase, may have occurred in response to short-lived sion had greatly reduced.
    [Show full text]
  • Dolomitization of the Upper Jurassic Carbonate Rocks in the Geneva Basin, Switzerland and France
    Swiss Journal of Geosciences (2018) 111:475–500 https://doi.org/10.1007/s00015-018-0311-x (012 3456789().,- volV)(0123456789().,-volV) Dolomitization of the Upper Jurassic carbonate rocks in the Geneva Basin, Switzerland and France 1 1 1 1 2 1 Yasin Makhloufi • Elme Rusillon • Maud Brentini • Andrea Moscariello • Michel Meyer • Elias Samankassou Received: 1 September 2017 / Accepted: 1 May 2018 / Published online: 30 May 2018 Ó Swiss Geological Society 2018 Abstract The Upper Jurassic carbonates represent important potential targeted reservoirs for geothermal energy in the Geneva Basin (Switzerland and France). Horizons affected by dolomitization, the focus of the present study, are of particular interest because they proved to be productive in time-equivalent deposits currently exploited in Southern Germany. The study is based on sub-surface samples and outcrops in the Geneva Basin. Petrographic analyses allowed to constrain the parage- nesis of the Upper Jurassic units prior to discussing the cause(s) and effect(s) of dolomitization. Data reveal that the facies are affected by early and late diagenesis. All samples show at least two stages of burial blocky calcite cementation with the exception of those from the sub-surface, which display an incomplete burial blocky cementation preserving primary intercrystalline porosity. Dolomitization affected all units. The results point to an early dolomitization event, under the form of replacement dolomite. Dedolomitization, through calcitization and/or dissolution, is an important process, creating secondary pore space. Results of the present study favor a reflux model for dolomitization rather than the mixing-zone model suggested in earlier work. However, considering the geodynamic context, other dolomitization models cannot be excluded for the subsurface.
    [Show full text]
  • Dolomitization of Holocene Mg-Calcite Supratidal Deposits, Ambergris Cay, Belize
    Dolomitization of Holocene Mg-calcite supratidal deposits, Ambergris Cay, Belize ^ Geological Consultants, Midland, Texas 79701 A. M. REID J J. M. GREGG St Joe Minerals Corp., Viburnum, Missouri 65566 ABSTRACT Skinner, 1957; Von der Borch and Lock, 1979; slow rates and over-all limited amounts of do- Von der Borch and others, 1964; Muir and oth- lomite found in most recent supratidal deposits Dolomitized crusts and associated sedi- ers, 1980), and the arid Persian Gulf sabkhas (Machel and Mountjoy, 1986) seemingly are in- ments 845-2925 yr old on Ambergris Cay, (Curtis and others, 1963; Illing and others, 1965; compatible with the formation of many thick Belize, Central America, compose a signifi- McKenzie and others, 1980). These dolomites sequences of ancient bedded peritidal dolomites. cant portion of the Holocene sediment section characteristically are microcrystalline, poorly An addition to the inventory of Holocene do- on many supratidal flats. The dolomitic sec- ordered and calcium-rich, and compose from a lomites described above are those crusts and as- tions are as thick as 0.7 m and contain an trace to, rarely, as much as 95%-100% of some sociated dolomitic sediments found on the average of 70% calcic dolomite. Dolomite oc- indurated supratidal crusts (Shinn and others, humid, supratidal carbonate flats on Ambergris curs as a replacement of high-Mg calcite mic- 1965; Deffeyes and others, 1965; Illing and oth- Cay in Belize, Central America (Fig. 1). Recent rite matrix and allochems, and as pas- ers, 1965), or they occur as poorly consolidated mapping has shown that supratidal dolomitiza- sively precipitated cements.
    [Show full text]
  • Origins and Geochemistry of Dolomites and Their Dissolution in the Middle Triassic Leikoupo Formation, Western Sichuan Basin, China
    minerals Article Origins and Geochemistry of Dolomites and Their Dissolution in the Middle Triassic Leikoupo Formation, Western Sichuan Basin, China Shunli Zhang 1,2, Zhengxiang Lv 1,2,*, Yi Wen 1,2 and Sibing Liu 1,2 1 State Key Laboratory of Oil-Gas Reservoirs Geology and Exploitation, Chengdu University of Technology, Chengdu 610059, China; [email protected] (S.Z.); [email protected] (Y.W.); [email protected] (S.L.) 2 College of Energy Resources, Chengdu University of Technology, Chengdu 610059, China * Correspondence: [email protected] Received: 18 May 2018; Accepted: 30 June 2018; Published: 6 July 2018 Abstract: Triassic dolomites occur pervasively in the Western Sichuan Basin. Although these strata have been deeply buried and affected by multiple phases of dolomitization and dissolution, some intervals in the upper part of the Leikoupo Formation have developed high porosity. Based on their petrographic and geochemical features, three major types of dolomite fabrics are recognized, namely, dolomicrite, fabric-retentive dolomite, and fabric-destructive dolomite. Geochemical evidence indicates that the dolomicrite formed following the Sabkha model in a low-temperature hypersaline environment, as these rocks exhibit abnormally high Sr and Na contents, lower Fe and Mn contents, δ18O values generally ranging from −1.70 to −1.67 (with an average value of −1.69 ), and higher Mg/Ca ratios. The fabric-retentiveh dolomiteh formed following the seepage-refluxh model in a shallow burial environment, and these rocks exhibit the highest 87Sr/86Sr ratios, δ18O values generally ranging from −6.10 to −2.50 (with an average value of −3.98 ), and a wide range of Fe and Mn contents, indicatingh that theyh may have been altered by meteorich water.
    [Show full text]
  • Controls on Dolomitization in Extensional Basins: an Example from the Derbyshire Platform, U.K
    Journal of Sedimentary Research, 2020, v. 90, 1156–1174 Research Article DOI: http://dx.doi.org/10.2110/jsr.2020.58 CONTROLS ON DOLOMITIZATION IN EXTENSIONAL BASINS: AN EXAMPLE FROM THE DERBYSHIRE PLATFORM, U.K. 1 2 3 2 3 3 CATHERINE BREISLIN,* STEPHEN CROWLEY, VANESSA J. BANKS, JIM D. MARSHALL, IAN L. MILLAR, JAMES B. RIDING, AND CATHY HOLLIS1 1Department of Earth and Environmental Science, University of Manchester 2Jane Herdman Laboratories, University of LIverpool 3British Geological Survey ABSTRACT: Fault-controlled dolomitization has been documented in Lower Carboniferous (Visean)´ platform carbonates at various localities in the Pennine Basin and North Wales. The largest of these dolomite bodies (approx. 60 km2) occurs on the Derbyshire Platform, on the southern margin of the Pennine Basin. This study tests the hypothesis that dolomitization occurred at this locality during deposition, platform drowning, and the earliest stages of burial, coincident with the transition from a late syn-rift to post-rift regime. It also assesses the importance of syn-rift volcanism on dolomitization. Planar, fabric-retentive dolomite with single-phase (i.e., low temperature) fluid inclusions occurs along NW–SE and E–W oriented faults, and in platform margin facies and in proximity to the Masson Hill Volcanic Complex. Oxygen isotope data are consistent with dolomitization from seawater, but slightly depleted d13C values reflect mixing with magmatic fluids. Volcanic activity is likely to have produced a thermal drive for fluid circulation on the platform margin, and post-depositional alteration of basalts by CO2-rich fluids could have led to alteration of olivine and release of magnesium to convecting seawater.
    [Show full text]
  • Stratigraphy and Sedimentary Facies Or the Madison Limestone and Associated Rocks in Parts Pf Montana, Nebraska, North Dakota, S
    Stratigraphy/"~t * 1 and1 Sedimentaryf~^ "I * FaciesT ^ orf-» the Madison Limestone and Associated Rocks in Parts pf Montana, Nebraska, North Dakota, South Dakota, and Wyoming GEOLOGICAL SURVEY PROFESSIONAL PAPER 1273-A Stratigraphy and Sedimentary Fades of the Madison Limestone and Associated Rocks in Parts of Montana, Nebraska, North Dakota, South Dakota, and Wyoming By JAMES A. PETERSON GEOLOGY AND HYDROLOGY OF THE MADISON LIMESTONE AND ASSOCIATED ROCKS IN PARTS OF MONTANA, NEBRASKA, NORTH DAKOTA, SOUTH DAKOTA, AND WYOMING GEOLOGICAL SURVEY PROFESSIONAL PAPER 1273-A UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1984 DEPARTMENT OF THE INTERIOR WILLIAM P. CLARK, Secretary U.S. GEOLOGICAL SURVEY Dallas L. Peck, Director Library of Congress Cataloging in Publication Data Peterson, James A. Stratigraphy and sedimentary facies of the Madison Umestone and associated rocks in parts of Montana, Nebraska, North Dakota, South Dakota, and Wyoming. (Geological Survey professional paper ; 1273A) Bibliography: p. Supt. of Docs, no.: 119.16:1273-A 1. Limestone Middle West. 2. Geology, Stratigraphic Paleozoic. I. Title. II. Series. QE471.15.L5P47 1981 552'.5 82-600376 For sale by the Distribution Branch, U.S. Geological Survey, 604 South Pickett Street, Alexandria, VA 22304 CONTENTS Page Page Abstract ._.__.__.._.................._-.__.. Al Stratigraphy and sedimentary facies Continued Introduction.................................. 1 Mississippian rocks Continued Acknowledgments .............................. 2 Madison Limestone Continued Regional paleogeography and paleostructure ........... 3 M-7 to M-8.5 interval (middle Osagean) ..... A18 Stratigraphy and sedimentary facies ................. 6 M-8.5 to M-12 interval (upper Osagean) ...... 19 Precambrian rocks .......................... 6 M-12 to Me interval (approximately Cambrian rocks ....................______._ 6 Meramecian) ....................
    [Show full text]
  • Bead Lake District
    State of Washington ARTHUR B. LANGLIE, Governor Department of Conservation and Development W. A. GALBRAITH, Director DIVISION OF MINES AND GEOLOGY SHELDON L. GLOVER, Supervisor Bulletin No. 40 GEOLOGY OF THE BEAD LAKE DISTRICT PEND OREILLE COUNTY, WASHINGTON By MELVIN C. SCHROEDER !loTAT£ PRINTING PLANT OLYMPIA. WASH, 1952 f'or sale by Department of Conservation and Development, Olympia, Washington. Price, 75 cents. CONTENTS Page Foreword . ... 4 Introduction . 5 Location . .. 5 Topography . 6 Acknowledgments and field work...................... ..... ..... 6 Summary of earlier work. 6 Scope of the report. 7 Principal geologic features. 8 Sedimentary rocks . 8 General features . 8 Pre-Cambrian sediments-Newport group.......................... 9 Bead Lake formation ... ...................................... 10 Distribution and thickness ....... .. ........ .. ............ 10 Stratigraphic relations . 10 Lithology .... ..... .. ....................... .......... .. 10 No Name argillite ... ........................................ 11 Distribution and thickness. 11 Stratigraphic relations . 12 Lithology . 12 Skookum formation . 13 Distribution and thickness. 13 Stratigraphic relations . 13 Lithology ............................. .............. .... 14 Conditions of sedimentation. 17 Correlation . 18 Tertiary sediments . 20 Tiger formation ....................... .. ........... ..... .... 20 Distribution and thickness. 20 Lithology . 20 Age ..................................................... 20 Quaternary deposits ................... ..............
    [Show full text]
  • The Role of Microorganisms on the Formation of a Stalactite
    EGU Journal Logos (RGB) Open Access Open Access Open Access Advances in Annales Nonlinear Processes Geosciences Geophysicae in Geophysics Open Access Open Access Natural Hazards Natural Hazards and Earth System and Earth System Sciences Sciences Discussions Open Access Open Access Atmospheric Atmospheric Chemistry Chemistry and Physics and Physics Discussions Open Access Open Access Atmospheric Atmospheric Measurement Measurement Techniques Techniques Discussions Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Open Access Biogeosciences Discuss., 10, 6563–6603, 2013 Open Access www.biogeosciences-discuss.net/10/6563/2013/ Biogeosciences Biogeosciences BGD doi:10.5194/bgd-10-6563-2013 Discussions © Author(s) 2013. CC Attribution 3.0 License. 10, 6563–6603, 2013 Open Access Open Access This discussion paper is/has been under review for the journal BiogeosciencesClimate (BG). Climate The role of Please refer to the correspondingof finalthe Past paper in BG if available. of the Past Discussions microorganisms on the formation of a Open Access The role of microorganisms on the Open Access stalactite Earth System Earth System formation of aDynamics stalactite in BotovskayaDynamics M. Pacton et al. Discussions Open Access Cave, Siberia – palaeoenvironmental Open Access Geoscientific Geoscientific Title Page implicationsInstrumentation Instrumentation Methods and Methods and Abstract Introduction Data Systems Data Systems 1 1 1 2 3 M. Pacton , S. F. M. Breitenbach , F. A. Lechleitner , A. Vaks , C. Rollion-BardDiscussions
    [Show full text]
  • The Geology and Genesis of the Chlorite-Carbonate Alteration in the Footwall of the Hellyer Volcanic­ Hosted Massive Sulphide (Vhms) Deposit
    THE GEOLOGY AND GENESIS OF THE CHLORITE-CARBONATE ALTERATION IN THE FOOTWALL OF THE HELLYER VOLCANIC­ HOSTED MASSIVE SULPHIDE (VHMS) DEPOSIT Alison Bradley, B.Sc. A research thesis submitted in partial fulfilment of the requirements of the degree of Bachelor of Science with Honours Centre for Ore Deposit Research, Geology Department, University of Tasmania. November, 1997. ~EOLOGY PEPT.. _ i ABSTRACT The chlorite-carbonate alteration assemblage is an unusual feature in the footwall of the Hellyer volcanic~hosted massive sulphide deposit, Tasmania. Carbonate alteration is common to many VHMS deposits however its origin and characteristics has been rarely studied in detail. Chlorite-carbonate alteration is defined as texturally diverse dolomite in a matrix of fine-grained chlorite. This distinctive alteration is found at the top of the chlorite-alteration zone around the central and northern hydrothermal discharge sites beneath the deposit. On the ore contact ('contact zone'), the chlorite-carbonate assemblage occurs as thin discontinuous lenses. A lower stratiform chlorite-carbonate alteration zone ('lower zone') occurs approximately 40 metres below the contact zone, is more laterally continuous and only occurs on the west side of the east flank of the ore deposit. Carbonate alteration is associated with sericite, chlorite and quartz in the contact zone but is primarily associated with chlorite in the lower zone. Carbonate-chlorite assemblages have not been observed at greater depths in the footwall alteration pipe, or distal to the deposit. The carbonate mineralogy is Fe-dolomite or dolomite. Carbonate textures consist of large and small spheroids, rhombs, massive carbonate and veinlets. These textures appear to be associated with the initial porosity and permeability of the host rock.
    [Show full text]
  • Publication 21. Geological Series 17. MINERAL RESOURCES OF
    STATE OF MICHIGAN Trenton Limestone .................................................19 MICHIGAN GEOLOGICAL AND BIOLOGICAL SURVEY "Niagara" Limestone ..............................................20 Engadine Dolomite. ............................................20 Publication 21. Geological Series 17. Manistique Series...............................................21 Fiborn Limestone................................................21 MINERAL RESOURCES OF MICHIGAN Hendricks Series ................................................22 WITH Salina Formation....................................................23 STATISTICAL TABLES OF PRODUCTION Monroe Formation..................................................23 AND VALUE OF MINERAL PRODUCTS Lower Monroe, or Bass Island Series ........................23 FOR Upper Monroe, or Detroit River Series .......................23 Dundee or Onondaga Limestone ...........................24 1915 AND PRIOR YEARS. Traverse (Hamilton and Marcellus) Formation .......24 Bayport (Maxville) Limestone.................................25 WITH A TREATISE ON LIMESTONE RESOURCES R. A. SMITH. CHAPTER V. Distribution, Character, and Development of Limestone Deposits by Counties.25 PREPARED UNDER THE DIRECTION OF Pre-Cambrian Limestones. ........................................26 R. C. ALLEN Dickinson county. ...................................................26 DIRECTOR, MICHIGAN GEOLOGICAL AND Gogebic county. .....................................................26 BIOLOGICAL SURVEY Iron county. ............................................................27
    [Show full text]
  • A 4-Day Geological Field Trip in the Western Dolomites
    Geo.Alp, Vol. 8, S. 76–118, 2011 A 4-DAY GEOLOGICAL FIELD TRIP IN THE WESTERN DOLOMITES Rainer Brandner1 & Lorenz Keim2 With 28 Figures 1 Institut für Geologie & Paläontologie, Universität Innsbruck, Innrain 52, A-6020 Innsbruck; E-mail address: [email protected] 2 Amt für Geologie & Baustoffprüfung/Ufficio Geologia e prove materiali, Autonome Provinz Bozen – Südtirol/Provincia Autonoma di Bolzano-Alto Adige, Eggentalerstr./Via Val d’Ega 48, I-39053 Kardaun/Cardano; E-mail address: [email protected] Introduction and geological setting of the Dolomites The Dolomite Mountains are known for their spectacular seismic scale outcrops showing Triassic carbonate platforms and build-ups preserved with their clinoforms and slope facies in primary transition to adjacent basi- nal areas. The juxtaposition of Middle and Upper Triassic reefs and basins are preserved due to the lack of strong tectonic deformation and is strengthened by erosion to form the extraordinary landscape as seen today. Since the outstanding studies of Richthofen (1860) and Mojsisovics (1879), who correctly recognized the primary geometries of the build-ups (“Überguss-Schichtung”) in transition to the basins, the Dolomites are the type area for heteropic facies developments. Bosellini (1984) presented the first modern synthesis of depositional geometries of the build-ups. Regional sequence stratigraphy was firmly established with the revision of the chronostratigraphic framework by Brack & Rieber (1993), De Zanche et al. (1993) and Mietto & Manfrin (1995). In addition, a better understanding was developed of progradation and retrogradation geometries of carbonate platform development in context with sea level changes (Gianolla et al., 1998, with further references).
    [Show full text]