Stratigraphy and Sedimentary Facies Or the Madison Limestone and Associated Rocks in Parts Pf Montana, Nebraska, North Dakota, S

Total Page:16

File Type:pdf, Size:1020Kb

Stratigraphy and Sedimentary Facies Or the Madison Limestone and Associated Rocks in Parts Pf Montana, Nebraska, North Dakota, S Stratigraphy/"~t * 1 and1 Sedimentaryf~^ "I * FaciesT ^ orf-» the Madison Limestone and Associated Rocks in Parts pf Montana, Nebraska, North Dakota, South Dakota, and Wyoming GEOLOGICAL SURVEY PROFESSIONAL PAPER 1273-A Stratigraphy and Sedimentary Fades of the Madison Limestone and Associated Rocks in Parts of Montana, Nebraska, North Dakota, South Dakota, and Wyoming By JAMES A. PETERSON GEOLOGY AND HYDROLOGY OF THE MADISON LIMESTONE AND ASSOCIATED ROCKS IN PARTS OF MONTANA, NEBRASKA, NORTH DAKOTA, SOUTH DAKOTA, AND WYOMING GEOLOGICAL SURVEY PROFESSIONAL PAPER 1273-A UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1984 DEPARTMENT OF THE INTERIOR WILLIAM P. CLARK, Secretary U.S. GEOLOGICAL SURVEY Dallas L. Peck, Director Library of Congress Cataloging in Publication Data Peterson, James A. Stratigraphy and sedimentary facies of the Madison Umestone and associated rocks in parts of Montana, Nebraska, North Dakota, South Dakota, and Wyoming. (Geological Survey professional paper ; 1273A) Bibliography: p. Supt. of Docs, no.: 119.16:1273-A 1. Limestone Middle West. 2. Geology, Stratigraphic Paleozoic. I. Title. II. Series. QE471.15.L5P47 1981 552'.5 82-600376 For sale by the Distribution Branch, U.S. Geological Survey, 604 South Pickett Street, Alexandria, VA 22304 CONTENTS Page Page Abstract ._.__.__.._.................._-.__.. Al Stratigraphy and sedimentary facies Continued Introduction.................................. 1 Mississippian rocks Continued Acknowledgments .............................. 2 Madison Limestone Continued Regional paleogeography and paleostructure ........... 3 M-7 to M-8.5 interval (middle Osagean) ..... A18 Stratigraphy and sedimentary facies ................. 6 M-8.5 to M-12 interval (upper Osagean) ...... 19 Precambrian rocks .......................... 6 M-12 to Me interval (approximately Cambrian rocks ....................______._ 6 Meramecian) ..................... Ordovician rocks ......__...._...____....... 9 Summary of Madison Limestone Silurian rocks ............................. 10 Stratigraphy ...........-.-.----.. Devonian rocks ............................ 13 Big Snowy Group ...------.-._----------. Devonian and Mississippian rocks ................ 13 Pennsylvanian rocks ___.__-------..---------. Bakken Formation ..................._._. 13 Permian rocks ......---.---.-.------------ Mississippian rocks _.._._...._..._.__........ 16 Triassic rocks .............---.---.----.-. Madison Limestone ....................... 16 Summary .............---------.-..--------- 25 M-l to M-3 interval (approximately Selected references _____._..-_------..---------- 28 Kinderhookian) .................... 16 Supplemental data ___.....-----.-.---------_-_- 32 M-3 to M-7 interval (lower Osagean) ....... 18 ILLUSTRATIONS [All plates are in pocket at end of report] PLATE 1. Map showing location of control points and lines of geologic sections for the Madison Limestone and associated rocks in parts of Montana, Nebraska, North Dakota, South Dakota, and Wyoming. 2. Map showing thickness of sedimentary rocks of Cambrian through Tertiary age in parts of Montana, Nebraska, North Dakota, South Dakota, and Wyoming. 3. Map showing thickness of Paleozoic rocks and limits of main Paleozoic evaporite units in part of Montana, Nebraska, North Dakota, South Dakota, and Wyoming. 4. West-east geologic section A-A', Porcupine dome area, Montana to eastern North Dakota. 5. South-north geologic section B-B', northern end of Bighorn Mountains, Montana, to north-central Montana. 6. West-east geologic section C-C' showing Madison Group marker-defined carbonate-evaporite cycles (Mississippian), northern Bighorn Mountains, Wyoming, to eastern North Dakota (west half). 7. West-east geologic section C-C' showing Madison Group marker-defined carbonate-evaporite cycles (Mississippian), northern Bighorn Mountains, Wyoming, to eastern North Dakota (east half). 8. South-north geologic section D-D' showing Madison Group marker-defined carbonate-evaporite cycles (Mississippian), northern Bighorn Mountains, Wyoming, to Little Rocky Mountains, Montana. 9. South-north geologic section E-E' showing Madison Group marker-defined carbonate-evaporite cycles (Mississippian), northern Black Hills, South Dakota, to southwestern North Dakota. 10. North-south geologic section F-F' showing Madison Group marker-defined carbonate-evaporite cycles (Mississippian), south-central South Dakota to northwestern North Dakota. 11. Map showing thickness and rock facies of the Madison Limestone interval M-l to M-3 and equivalent rocks (Mississippian) in parts of Montana, North Dakota, South Dakota, and Wyoming. 12. Map showing oolitic-algal and crinoidal-bioclastic facies in Madison Limestone and interval M-l to M-3 and equivalent rocks (Mississippian) in parts of Montana, North Dakota, South Dakota, and Wyoming. 13. Map showing thickness and rock facies of the Madison Limestone interval M-3 to M-7 and equivalent rocks (Mississippian) in parts of Montana, Nebraska, North Dakota, South Dakota, and Wyoming. 14. Map showing oolitic-algal and crinoidal-bioclastic facies in Madison Limestone interval M-3 to M-7 and equivalent rocks (Mississippian) in parts of Montana, Nebraska, North Dakota, South Dakota, and Wyoming. 15. Map showing thickness and rock facies of the Madison Limestone interval M-7 to M-8.5 and equivalent rocks (Mississippian) in parts of Montana, Nebraska, North Dakota, South Dakota, and Wyoming. in IV CONTENTS PLATE 16. Map showing oolitic-algal and crinoidal-bioclastic fades in Madison Limestone interval M-7 to M-8.5 and equivalent rocks (Mississippian) in parts of Montana, Nebraska, North Dakota, South Dakota, and Wyoming. 17. Map showing thickness and rock facies of the Madison Limestone interval M-8.5 to M-12 and equivalent rocks (Mississippian) in parts of Montana, Nebraska, North Dakota, South Dakota, and Wyoming. 18. Map showing oolitic-algal and crinoidal-bioclastic facies in Madison Limestone interval M-8.5 to M-12 and equivalent rocks (Mississippian) in parts of Montana, Nebraska, North Dakota, South Dakota, and Wyoming. 19. Map showing thickness of the Madison Limestone interval M-12 to Me and equivalent rocks (Mississippian) in parts of Montana, North Dakota, South Dakota, and Wyoming. 20. Map showing oolitic-algal and crinoidal-bioclastic facies in Madison Limestone interval M-12 to Me and equivalent rocks (Mississippian) in parts of Montana, North Dakota, South Dakota, and Wyoming. Page FIGURE 1. Map showing location of study area ________________________-_--------------------------------- A2 2. Map showing regional paleogeography and paleostructure during Paleozoic time, Western Interior, United States .... 4 3. Map showing present-day structural features, Western Interior, United States ________-______-___-.------- 5 4. Map showing thickness and rock facies of Deadwood Formation or equivalent rocks (Cambrian and Lower Ordovician). 7 5. Map showing thickness of Middle and Upper Ordovician rocks ...........___________-_---.----.-.---- 8 6. Map showing thickness and rock facies of Red River Formation or equivalent rocks (Upper Ordovician) .......... 11 7. Map showing thickness and rock facies of Interlake Formation (uppermost Ordovician and Silurian) __.__._...... 12 8. Map showing thickness and salt distribution of Middle and Upper Devonian rocks .......--._-----....--_--- 14 9. Map showing thickness of the Bakken Formation (uppermost Devonian and lowermost Mississippian) _._..__..... 15 10. Illustration showing example of well-log patterns and lithology of Madison Group marker units ................ 17 11. Map showing thickness and rock facies of the Madison Limestone and equivalent rocks (Lower and Upper Mississippian). 20 12. Map showing thickness and rock facies of Big Snowy Group (Upper Mississippian) ..___.................___ 22 13. Map showing thickness and rock facies of Pennsylvania!! and Permian rocks .........-.----.-------.----- 23 14. Map showing thickness and rock facies of Triassic rocks ........-.---.----_-----------.------------ 26 TABLE TABLE 1. Generalized correlation chart of Paleozoic rocks [in pocket] METRIC CONVERSION TABLE [Inch-pound units in this report may be converted to the International System (SI) of units by using the following conversion factors:] Multiply inch-pound units By To obtain metric units foot (ft) 0.3048 meter (m) 30.48 centimeter square mile (mi2) 2.590 square kilometer (km2) mile 1.609 kilometer National Geodetic Vertical Datum of 1929 (NGVD of 1929): A geodetic datum derived from a general adjustment of the first-order level nets of both the United States and Canada; formerly called "mean sea level." NGVD of 1929 is referred to as sea level in this report. GEOLOGY AND HYDROLOGY OF THE MADISON LIMESTONE AND ASSOCIATED ROCKS IN PARTS OF MONTANA, NEBRASKA, NORTH DAKOTA, SOUTH DAKOTA, AND WYOMING STRATIGRAPHY AND SEDIMENTARY FACIES OF THE MADISON LIMESTONE AND ASSOCIATED ROCKS IN PARTS OF MONTANA, NEBRASKA, NORTH DAKOTA, SOUTH DAKOTA, AND WYOMING By JAMES A. PETERSON ABSTRACT porous sandstone beds are present in the Upper Pennsylvanian and Lower Permian section in Wyoming, southeastern Montana, Paleozoic sedimentary rocks in the Northern Great Plains and southwestern North Dakota, and northwestern South Dakota. Northern Rocky Mountains region include a sequence of mostly Triassic marine and continental red shale, siltstone, sandstone, and shallow-water marine carbonate, clastic, and evaporite deposits of some evaporites overlie the Permian in most of the area. These beds Middle Cambrian through
Recommended publications
  • Modern Shale Gas Development in the United States: a Primer
    U.S. Department of Energy • Office of Fossil Energy National Energy Technology Laboratory April 2009 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe upon privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. Modern Shale Gas Development in the United States: A Primer Work Performed Under DE-FG26-04NT15455 Prepared for U.S. Department of Energy Office of Fossil Energy and National Energy Technology Laboratory Prepared by Ground Water Protection Council Oklahoma City, OK 73142 405-516-4972 www.gwpc.org and ALL Consulting Tulsa, OK 74119 918-382-7581 www.all-llc.com April 2009 MODERN SHALE GAS DEVELOPMENT IN THE UNITED STATES: A PRIMER ACKNOWLEDGMENTS This material is based upon work supported by the U.S. Department of Energy, Office of Fossil Energy, National Energy Technology Laboratory (NETL) under Award Number DE‐FG26‐ 04NT15455. Mr. Robert Vagnetti and Ms. Sandra McSurdy, NETL Project Managers, provided oversight and technical guidance.
    [Show full text]
  • Bakken – the Biggest Oil Resource in the United States?
    Winter 2011 Oil & Natural Gas Program Newsletter Bakken – The Biggest Oil Resource in the United States? The announcement of the acquisition of large acreage positions in the Bakken play has become a fairly regular event. Leasing activity in the Bakken has exploded over the last five years and bonus payments per acre CONTENTS have jumped. Total lease bonus payments exceeded $100 million in 2009 (Figure 1). Bakken – The Biggest Oil Resource in the United States? ...1 The heightened acquisition activity is driven by the Bakken’s immense potential. In 2008, the United States Geological Survey (USGS) estimated Commentary ...................................2 that the U.S. portion of the Bakken formation contains between 3 and 4.3 Successful Oil Production in billion barrels (a mean of 3.63 billion barrels) of undiscovered, recoverable the Bakken Formation .................6 oil, ranking it among the very largest U.S. oil plays. The Bakken—An Unconventional Petroleum The number of producing wells and Reservoir System ................9 and volume of oil production has Crude Souring in the Bakken ....11 grown with the growth in leasing and drilling (Figure 2). Production Geomechanical Study has reached nearly 8 million barrels of the Bakken .................................13 per month from roughly 4500 Bakken Requires Outlet for producing wells. Increased Production ................. 16 E&P Snapshots ............................ 18 The Bakken Formation Upcoming Meetings and The Bakken petroleum system is Presentations ............................... 20 part of a larger depositional system CONTACTS laid down in the Williston Basin during the Phanerozoic period with Roy Long Figure 1: Lease payments in North Dakota’s portion sediments up to 16,000 feet thick.
    [Show full text]
  • Evolution of Oil Production in the Bakken Formation
    EvolutionEvolution ofof OilOil ProductionProduction inin thethe BakkenBakken FormationFormation JulieJulie A.A. LeFeverLeFever NorthNorth DakotaDakota GeologicalGeological SurveySurvey PlaysPlays ofof thethe BakkenBakken FormationFormation ¾¾ ConventionalConventional BakkenBakken (pre(pre--1987)1987) ¾¾ CycleCycle 11 –– AntelopeAntelope StructureStructure (1950s(1950s –– 60s)60s) ¾¾ CycleCycle 22 –– DepositionalDepositional EdgeEdge (1970s(1970s –– 80s)80s) ¾¾ HorizontalHorizontal DrillingDrilling ofof thethe BakkenBakken ShaleShale (post(post--1987)1987) ¾¾ HorizontalHorizontal DrillingDrilling ofof thethe BakkenBakken MiddleMiddle MemberMember (2001(2001 toto present)present) ConventionalConventional BakkenBakken CycleCycle 11 –– AntelopeAntelope FieldField ¾¾DiscoveryDiscovery WellWell ¾¾ StanolindStanolind -- #1#1 WoodrowWoodrow StarrStarr ¾¾ InitialInitial PotentialPotential (536(536 BO;BO; 0.10.1 BW)BW) ¾¾ AntelopeAntelope FieldField ¾¾ 5252 wells;wells; 12.512.5 millionmillion BO;BO; 1010 BCFBCF GasGas ¾¾ ““SanishSanish SandSand”” ¾¾ CompletionCompletion MethodMethod Conventional Bakken Exploration between Cycles ¾¾ElkhornElkhorn RanchRanch ¾¾ ShellShell OilOil Co.Co. -- #41X#41X--55--11 GovernmentGovernment ¾¾NessonNesson AnticlineAnticline ¾¾ #1#1 B.E.B.E. HoveHove ¾¾ IPIP -- 756756 BOPD,BOPD, 33 BWPDBWPD ¾¾ CompletionCompletion MethodMethod ConventionalConventional BakkenBakken CycleCycle 22 –– DepositionalDepositional LimitLimit ¾¾StratigraphyStratigraphy && StructureStructure ¾¾ ThinThin BakkenBakken ¾¾ MultipleMultiple PaysPays
    [Show full text]
  • Ennis 30 X 60 Text–MBMG
    GEOLOGIC MAP OF THE ENNIS 30' x 60' QUADRANGLE MADISON AND GALLATIN COUNTIES, MONTANA, AND PARK COUNTY, WYOMING by Karl S. Kellogg* and Van S. Williams* Montana Bureau of Mines and Geology Open-File Report 529 2006 * U. S. Geological Survey, Denver, CO Revisions by MBMG This report has been reviewed for conformity with Montana Bureau of Mines & Geology’s technical and editorial standards. Introductory Note This geologic quadrangle map is based almost entirely on the original map by Karl S. Kellogg and Van S. Williams (2000) published by the U.S. Geological Survey as Geologic Investigation Series I-2690, scale 1:100,000. Differences from the original map arise from MBMG’s effort to integrate the Ennis quadrangle data with adjacent MBMG quadrangle maps to establish a seamless geologic coverage in southwest Montana. To this end, some map unit letter symbols have been revised, twelve new units have been added, two units have been dropped, and a few unit text descriptions have been slightly modified. 1 Kalispell MONTANA 15 Great Falls 90 Missoula Helena 94 Butte Bozeman Billings 90 90 15 112°00' R3W R2W R1W R1E R2E R3E R4E R5E 111°00' 45°30' R n o s T4S 287 i d a 191 Mc Allister M Ennis TOBACCO ROOT Lake MOUNTAINS T5S r MADISON CO CO GALLATIN C Ja te ck ni C ra r G Ennis Virginia T6S City 287 A Big Sky CO PARK ld Big Sky e r Meadow Village C Mountain Village r GALLATIN CO GALLATIN G M r C a k a c l o d R T7S l i a s Cameron t o Bea i r C n n r GALLATIN RANGE GRAVELLY R 287 R i i v v RANGE e MADISON RANGE r e T8S Indian Cr r ylor Fo r Ta k R ub r y C T9S R by 191 Ru 45°00' 0246 mile 0 2 46 8 km Figure 1.
    [Show full text]
  • L'.3350 Deposmon and DISSOLUTION of the MIDDLE DEVONIAN PRAIRIE FORMATION, Williston BASIN, NORTH DAKOTA and MONTANA By
    l'.3350 DEPOsmON AND DISSOLUTION OF THE MIDDLE DEVONIAN PRAIRIE FORMATION, WilLISTON BASIN, NORTH DAKOTA AND MONTANA by: Chris A. Oglesby T-3350 A thesis submined to the Faculty and the Board of Trustees of the Colorado School of Mines in partial fulfillment of the requirements for the degree of Master of Science (Geology). Golden, Colorado Date f:" /2 7 /C''i::-- i ; Signed: Approved: Lee C. Gerhard Thesis Advisor Golden, Colorado - 7 Date' .' Samuel S. Adams, Head Department of Geology and Geological Engineering II T-3350 ABSTRACf Within the Williston basin, thickness variations of the Prairie Formation are common and are interpreted to originate by two processes, differential accumulation of salt during deposition, and differential removal of salt by dissolution. Unambiguous evidence for each process is rare because the Prairie/Winnipegosis interval is seldom cored within the U.S. portion of the basin. Therefore indirect methods, utilizing well logs, provide the principal method for identifying characteristics of the two processes. The results of this study indicate that the two processes can be distinguished using correlations within the Prairie Formation. Several regionally correlative upward-brining, and probably shoaling-upward sequences occur within the Prairie Formation .. Near the basin center, the lowermost sequence is transitional with the underlying Winnipegosis Formation. This transition is characterized by thinly laminated carbonates that become increasingly interbedded with anhydrites of the basin-centered Ratner Member, the remainder of the sequence progresses up through halite and culminates in the halite-dominated Esterhazy potash beds. Two overlying sequences also brine upwards, however, these sequences lack the basal anhydrite and instead begin with halite and culminate in the Belle Plaine and Mountrail potash Members, respectively.
    [Show full text]
  • Helium in Southwestern Saskatchewan: Accumulation and Geological Setting
    Open File Report 2016-1 Helium in Southwestern Saskatchewan: Accumulation and Geological Setting Melinda M. Yurkowski 2016 (Revised 14 December 2016) Saskatchewan Geological Survey ii Open File Report 2016-1 Open File Report 2016-1 Helium in Southwestern Saskatchewan: Accumulation and Geological Setting Melinda M. Yurkowski 2016 (Revised 14 December 2016) Printed under the authority of the Minister of the Economy © 2016, Government of Saskatchewan Although the Saskatchewan Ministry of the Economy has exercised all reasonable care in the compilation, interpretation and production of this product, it is not possible to ensure total accuracy, and all persons who rely on the information contained herein do so at their own risk. The Saskatchewan Ministry of the Economy and the Government of Saskatchewan do not accept liability for any errors, omissions or inaccuracies that may be included in, or derived from, this product. This product is available for viewing and download at: http://www.publications.gov.sk.ca/deplist.cfm?d=310&c=176 Information from this publication may be used if credit is given. It is recommended that reference to this publication be made in the following form: Yurkowski, M.M. (2016): Helium in southwestern Saskatchewan: accumulation and geological setting; Saskatchewan Ministry of the Economy, Saskatchewan Geological Survey, Open File Report 2016-1, 20p. and Microsoft® Excel® file. Saskatchewan Geological Survey ii Open File Report 2016-1 Contents Introduction and Study Area ..........................................................................................................................................
    [Show full text]
  • Mannville Group of Saskatchewan
    Saskatchewan Report 223 Industry and Resources Saskatchewan Geological Survey Jura-Cretaceous Success Formation and Lower Cretaceous Mannville Group of Saskatchewan J.E. Christopher 2003 19 48 Printed under the authority of the Minister of Industry and Resources Although the Department of Industry and Resources has exercised all reasonable care in the compilation, interpretation, and production of this report, it is not possible to ensure total accuracy, and all persons who rely on the information contained herein do so at their own risk. The Department of Industry and Resources and the Government of Saskatchewan do not accept liability for any errors, omissions or inaccuracies that may be included in, or derived from, this report. Cover: Clearwater River Valley at Contact Rapids (1.5 km south of latitude 56º45'; latitude 109º30'), Saskatchewan. View towards the north. Scarp of Middle Devonian Methy dolomite at right. Dolomite underlies the Lower Cretaceous McMurray Formation outcrops recessed in the valley walls. Photo by J.E. Christopher. Additional copies of this digital report may be obtained by contacting: Saskatchewan Industry and Resources Publications 2101 Scarth Street, 3rd floor Regina, SK S4P 3V7 (306) 787-2528 FAX: (306) 787-2527 E-mail: [email protected] Recommended Citation: Christopher, J.E. (2003): Jura-Cretaceous Success Formation and Lower Cretaceous Mannville Group of Saskatchewan; Sask. Industry and Resources, Report 223, CD-ROM. Editors: C.F. Gilboy C.T. Harper D.F. Paterson RnD Technical Production: E.H. Nickel M.E. Opseth Production Editor: C.L. Brown Saskatchewan Industry and Resources ii Report 223 Foreword This report, the first on CD to be released by the Petroleum Geology Branch, describes the geology of the Success Formation and the Mannville Group wherever these units are present in Saskatchewan.
    [Show full text]
  • Carboniferous Formations and Faunas of Central Montana
    Carboniferous Formations and Faunas of Central Montana GEOLOGICAL SURVEY PROFESSIONAL PAPER 348 Carboniferous Formations and Faunas of Central Montana By W. H. EASTON GEOLOGICAL SURVEY PROFESSIONAL PAPER 348 A study of the stratigraphic and ecologic associa­ tions and significance offossils from the Big Snowy group of Mississippian and Pennsylvanian rocks UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1962 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director The U.S. Geological Survey Library has cataloged this publication as follows : Eastern, William Heyden, 1916- Carboniferous formations and faunas of central Montana. Washington, U.S. Govt. Print. Off., 1961. iv, 126 p. illus., diagrs., tables. 29 cm. (U.S. Geological Survey. Professional paper 348) Part of illustrative matter folded in pocket. Bibliography: p. 101-108. 1. Paleontology Montana. 2. Paleontology Carboniferous. 3. Geology, Stratigraphic Carboniferous. I. Title. (Series) For sale by the Superintendent of Documents, U.S. Government Printing Office Washington 25, B.C. CONTENTS Page Page Abstract-__________________________________________ 1 Faunal analysis Continued Introduction _______________________________________ 1 Faunal relations ______________________________ 22 Purposes of the study_ __________________________ 1 Long-ranging elements...__________________ 22 Organization of present work___ __________________ 3 Elements of Mississippian affinity.._________ 22 Acknowledgments--.-------.- ___________________
    [Show full text]
  • FORT BELKNAP RESERVATION List of Topics
    FORT BELKNAP RESERVATION List of Topics BACKGROUND Reservation Overview Regional Geologic Overview GEOLOGIC OVERVIEW Geologic History Summary of Play Types CONVENTIONAL PLAY TYPES Play 1 - Shallow Cretaceous Biogenic Gas Play Play 2 - Northern Plains Biogenic Gas Play Plays 3,4,5 - Jurassic/Cretaceous and Mississippian Plays UNCONVENTIONAL / HYPOTHETICAL PLAY TYPES Plays 6,7 - Fractured Bakken and Cambrian Sandstone Plays REFERENCES Historical Background of the OVERVIEW (i.e. joint ventures) in contrast to procedures and regulatory minimums imposed Assiniboine and Gros Ventre Tribes at Fort Belknap by the previous 1938 Minerals Leasing Act. The 1982 Act further provides that FORT BELKNAP RESERVATION The Fort Belknap Indian Reservation was created in 1887 as the home for the individual Indian allottees may join agreements negotiated for tribal lands. The Assiniboine and Gros Ventre Tribes Assiniboine and Gros Ventre Indian Tribes. The ancestors of these tribes have section entitled Operating Regulations discusses the procedures for obtaining lived on the northern plains for several centuries. The Assiniboine were allottee participance in the negotiated agreement. recognized by Europeans as part of the great Sioux Nation and speak a Siouan Principal components for the formal corporate proposal should include the TRIBAL HEADQUARTERS: Fort Belknap Agency, Montana language. However, their name is taken from a Chippewa word referring to area(s) of interest, type of contract, elaboration of proposed agreement terms, GEOLOGIC SETTING: Williston Basin "those who cook with stones." At some point in time the Assiniboine bands points of potential negotiation, diligence commitments (i.e. drilling), bonus broke with the traditional Sioux and allied themselves with the Cree.
    [Show full text]
  • Oil and Gas Potential of the Red River Formation, Southwestern North Dakota Timothy O
    Oil and Gas Potential of the Red River Formation, Southwestern North Dakota Timothy O. Nesheim Introduction North Dakota has experienced commercial oil and gas production third highest for the state, a bronze medal so to speak, and is from 19 different geologic formations over the past 65 years. only eclipsed by the “gold” medal Bakken-Three Forks Formations Most of these productive formations have experienced spotlight (>1.2 billion barrels of oil) and the “silver” medal Madison Group attention from the oil and gas industry at one time or another, (Mission Canyon & Charles Formations, ~1 billion barrels of oil). and, whether for a few months or years, were considered a “hot Red River production is also regionally extensive and stretches play” to explore and develop. The unconventional Bakken-Three into northwestern South Dakota, eastern Montana, and southern Forks development is a current example of a play that brought Saskatchewan (fig. 1). oil and gas activity in the state to record levels and has sustained drilling activity even in a depressed oil and gas market. As the Summary of Red River Oil and Gas Production oil and gas industry transitions beyond the Bakken over time and The upper Red River consists of four, vertically stacked, oil- begins to spend more time evaluating the other 17 productive productive sedimentary rock layers referred to informally as the non-Bakken/Three Forks Formations, additional oil and gas plays “A” through “D” zones (fig. 2). Just over half of the Red River’s will emerge across western North Dakota. One formation that oil production has come from horizontal wells drilled within the has previously experienced “hot play” status and may be poised “B” zone of southwestern Bowman County, a prolific oil play to one day re-emerge into the spotlight of the oil and gas industry that emerged during the late 1990s and was North Dakota’s “hot is the deeply buried Red River Formation.
    [Show full text]
  • TGI Strat Column 2009.Cdr
    STRATIGRAPHIC CORRELATION CHART TGI II: Williston Basin Architecture and Hydrocarbon Potential in Eastern Saskatchewan and Western Manitoba EASTERN MANITOBA PERIOD MANITOBA SUBSURFACE SASKATCHEWAN OUTCROP ERA glacial drift glacial drift glacial drift Quaternary Wood Mountain Formation Peace Garden Peace Garden Member Tertiary Member Ravenscrag Formation CENOZOIC Formation Goodlands Member Formation Goodlands Member Turtle Mountain Turtle Mountain Turtle Frenchman Formation Whitemud Formation Boissevain Formation Boissevain Formation Eastend Formation Coulter Member Coulter Member Bearpaw Formation Odanah Member Belly River “marker” Odanah Member Belly River Formation “lower” Odanah Member Millwood Member Lea Park Formation Millwood Member MONTANA GROUP Pembina Member Pembina Member Pierre Shale Pierre Shale Milk River Formation Gammon Ferruginous Member Gammon Ferruginous Member Niobrara Formation Chalky Unit Boyne Member Boyne Member Boyne Calcareous Shale Unit Member Carlile Morden Member Carlile upper Formation Morden Member Formation Morden Member Carlile Formation Assiniboine Marco Calcarenite Assiniboine Member Member CRETACEOUS Second White Specks Laurier Limestone Beds Favel Favel Keld Keld Member Member Formation Formation Belle Fourche Formation Belle Fourche Member MESOZOIC COLORADO GROUP Belle Fourche Member upper Fish Scale Formation Fish Scale Zone upper Base of Fish Scale marker Base of Fish Scale marker Westgate Formation Westgate Member lower Westgate Member Newcastle Formation Newcastle Member lower Viking Sandstone
    [Show full text]
  • Reservoir Characterization and Modelling of Potash Mine Injection Wells in Saskatchewan
    RESERVOIR CHARACTERIZATION AND MODELLING OF POTASH MINE INJECTION WELLS IN SASKATCHEWAN A Thesis Submitted to the College of Graduate and Postdoctoral Studies In Partial Fulfillment of the Requirements For the Degree of Master of Science In the Department of Civil, Geological and Environmental Engineering University of Saskatchewan Saskatoon By DAVID PHILLIPS Copyright David Phillips, December, 2018. All rights reserved PERMISSION TO USE In presenting this thesis/dissertation in partial fulfillment of the requirements for a Postgraduate degree from the University of Saskatchewan, I agree that the Libraries of this University may make it freely available for inspection. I further agree that permission for copying of this thesis/dissertation in any manner, in whole or in part, for scholarly purposes may be granted by the professor or professors who supervised my thesis/dissertation work or, in their absence, by the Head of the Department or the Dean of the College in which my thesis work was done. It is understood that any copying or publication or use of this thesis/dissertation or parts thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to the University of Saskatchewan in any scholarly use which may be made of any material in my thesis/dissertation. Requests for permission to copy or to make other uses of materials in this thesis/dissertation in whole or part should be addressed to: Head of the Department of Civil, Geological and Environmental Engineering University of Saskatchewan 57 Campus Drive, Saskatoon, Saskatchewan, S7N 5A9, Canada OR Dean College of Graduate and Postdoctoral Studies University of Saskatchewan 116 Thorvaldson Building, 110 Science Place Saskatoon, Saskatchewan, S7N 5C9, Canada i ABSTRACT In the Saskatchewan potash mining industry vast quantities of brine wastewater are generated from potash processing and mine inflow water.
    [Show full text]