Mastozoología Neotropical ISSN: 0327-9383 ISSN: 1666-0536 [email protected] Sociedad para el Estudio de los Mamíferos Argentina

González, Susana; Barbanti Duarte, José Maurício SPECIATION, EVOLUTIONARY HISTORY AND CONSERVATION TRENDS OF NEOTROPICAL Mastozoología Neotropical, vol. 27, núm. 0, 2020, -Julio, pp. 37-47 Sociedad Argentina para el Estudio de los Mamíferos Tucumán, Argentina

Disponible en: https://www.redalyc.org/articulo.oa?id=45765132012

Cómo citar el artículo

Número completo Sistema de Información Científica Redalyc Más información del artículo Red de Revistas Científicas de América Latina y el Caribe, España y Portugal Página de la revista en redalyc.org Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso abierto Mastozoología Neotropical, 27(SI):37-47, Mendoza, 2020 Copyright ©SAREM, 2020 Versión on-line ISSN 1666-0536 http://www.sarem.org.ar https://doi.org/10.31687/saremMN_SI.20.27.1.05 https://sbmz.org

Número Aniversario

SPECIATION, EVOLUTIONARY HISTORY AND CONSERVATION TRENDS OF NEOTROPICAL DEER

Susana González1 and José Maurício Barbanti Duarte2

1 Biodiversidad y Genética, Instituto de Investigaciones Biológicas Clemente Estable-Ministerio de Educación y Cultura, Montevideo, . [Correspondence: Susana González ] 2 Núcleo de Pesquisa e Conservação de Cervídeos (NUPECCE), Departamento de Zootecnia, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Jaboticabal-SP, Brasil.

ABSTRACT. Neotropical deer species have broad geographic ranges in vulnerable Latin American ecosystems. Habitat destruction and overhunting have limited deer species to a portion of their historical ranges. Our aims are to provide an overview of the current state of knowledge of Neotropical deer species systematics and evo- lutionary history, and to discuss their current conservation status. Genetic methods lead to a reassessment of earlier systematics, largely based only on morphological analyses, and revealed several cryptic species. Neotropi- cal deer species show substantial karyotypic variation from 2n = 32 to 2n = 70. Moreover, several species with chromosomal polymorphisms and complex karyotypes have been described in the genus Mazama. Analysis of the complete cytochrome b gene revealed two clades with different evolutionary histories. Mazama and Hip- pocamelus are not monophyletic genera, and both genera include cryptic species. At least two new deer species need to be described and their geographic range and population status assessed. Based on the latest IUCN Red List of Threatened Species™ 59% of the 17 Neotropical deer species are threatened and 12% are listed as Data Deficient (DD). The contribution of genetic and biogeographic data will be useful for solving taxonomic uncertainties and updating the assessment of the conservation status of species in Latin American ecosystems, providing data to perform models for testing management and conservation policies.

RESUMEN. Los ciervos neotropicales: patrones de especiación, su historia evolutiva y el estado de conser- vación. Las especies de ciervos neotropicales tienen amplios rangos de distribución geográfica en los ecosis- temas vulnerables de América Latina. La destrucción del hábitat y la caza excesiva han limitado las especies a una parte de sus rangos históricos. Nuestros objetivos son proporcionar una visión global del estado actual del conocimiento de la sistemática de las especies de ciervos neotropicales así como de su historia evolutiva, y discutir su estado de conservación actual. El empleo de métodos genéticos permitió una reevaluación de la sistemática anterior, basada en gran parte solo en análisis morfológicos, y reveló la existencia de varias especies crípticas. Las especies de ciervos neotropicales muestran una variación cariotípica sustancial de 2n = 32 a 2n = 70. Además, varias especies con polimorfismos cromosómicos y cariotipos complejos se han descrito en el género Mazama. El análisis del gen completo del citocromo b reveló dos clados con diferentes historias evolutivas. Mazama e no son géneros monofiléticos, incluyendo especies crípticas. Se deben describir al me- nos dos nuevas especies de corzuelas rojas y se debe evaluar su rango geográfico y estado poblacional. Según la última Lista Roja de Especies Amenazadas de la UICN ™, el 59% de las 17 especies de ciervos neotropicales están amenazadas y el 12% figuran como deficientes en datos (DD). La contribución de los datos genéticos y biogeográficos será útil para resolver las incertidumbres taxonómicas y actualizar la evaluación del estadode

Recibido 31 marzo 2019. Aceptado 5 agosto 2019. Editor invitado: E. Lessa 38 Mastozoología Neotropical, 27(SI):37-47, Mendoza, 2020 S. González & J. M. Barbanti Duarte http://www.sarem.org.ar - https://sbmz.org conservación de las especies en los ecosistemas de América Latina, proporcionando datos para realizar modelos para evaluar las políticas de gestión y conservación.

RESUMO. Cervideos neotropicais: padrões de especiação, sua história evolutiva e estado de conservação. As espécies de cervídeos neotropicais tem ampla distribuição geográfica em ecossistemas vulneráveis da América Latina. A destruição do habitat e a caça excessiva limitaram as espécies de cervídeos a uma parte de suas distri- buições históricas. Objetivamos aqui fornecer uma visão geral do estado atual do conhecimento da sistemática e da história evolutiva das espécies de cervídeos neotropicais e discutir seu status atual de conservação. Métodos genéticos levaram a uma reavaliação da sistemática anterior, baseada apenas em análises morfológicas, e revela- ram várias espécies crípticas. As espécies de cervídeos neotropicais apresentam variação cariotípica substancial, de 2n = 32 a 2n = 70. Além disso, várias espécies com polimorfismos cromossômicos e cariótipos complexos foram descritas no gênero Mazama. A análise do gene completo do citocromo b revelou dois clados com diferentes histórias evolutivas. Mazama e Hippocamelus não são gêneros monofiléticos, e ambos incluem espécies crípticas. Pelo menos duas novas espécies de veados vermelhos precisam ser descritas e sua distribuição geográfica e status populacional avaliados. Com base na última Lista Vermelha de Espécies Ameaçadas da IUCN, 59% das 17 espécies de cervídeos neotropicais estão ameaçadas e 12% estão listadas como Dados Deficientes (DD). A contribuição de dados genéticos e biogeográficos será útil para solucionar incertezas taxonômicas e atualizar a avaliação do estado de conservação de espécies em ecossistemas latino-americanos, fornecendo dados para realizar modelos de teste de gestão e políticas de conservação.

Key words: genetic diversity, morphological variation, phylogenetic relationships.

Palabras clave: diversidad genética, variación morfológica, relaciones filogenéticas.

Palavras-chave: diversidade genética, variação morfológica, relações filogenéticas.

INTRODUCTION sity of deer. It contains several biodiversity hotspots and encompasses an impressive range The Cervidae is one of the most diverse family of biomes, reflecting high gamma diversity, of large , containing more than 60 including both dry and moist tropical forest, species that currently inhabit nearly all conti- woodlands, savannahs, mangroves, and mon- nents (Wilson & Mittermeier 2011; Heckeberg tane habitats (Myers et al. 2000). The success of & Wörheide 2019). Their origin and evolution- these taxa in South America may be attributed ary history date back to almost 20 million years in part to the absence of other oc- ago (MYA) to the Miocene and Early Pliocene cupying the same ecological niche (Webb 2000). in Eurasia (Webb 2000). By the early Pliocene, However, the evolution and of the true cervid morphotypes became identifiable in Cervidae in this region still remain unclear North America; nevertheless, the evolutionary (Webb 2000; Duarte et al. 2008; González et history of deer in North America and the Neo- al. 2017). tropics still remains somewhat obscure (Stehli The origin and evolution of Neotropical deer & Webb 1985). species has been a matter of much speculation Approximately 2.5-3 MYA, during the late and debate, as is reflected in the uncertainties Pliocene, the uplift of the Panamanian land about their evolutionary relationships at differ- bridge allowed deer to spread southwards, as ent taxonomic levels (Gilbert et al. 2006; Duarte part of the “Great American Biotic Interchange” et al. 2008; Merino & Rossi 2010). Until recently, between North and South America (Stehli & several questions regarding the origin of Ameri- Webb 1985). can deer and the timing of their colonization of The Neotropical is considered one of the South America had not been addressed (Gilbert richest biogeographical regions for the diver- et al. 2006; Duarte et al. 2008). EVOLUTIONARY AND CONSERVATION TRENDS OF NEOTROPICAL DEER 39

In this article we review the taxonomy, evolu- Red Brockets: This group of ecological special- tion, and patterns of speciation of Neotropical ist species inhabits closed forests in montane Cervidae, and update the current conservation areas in the tropical , and in lowlands situation of these taxa. from Argentina north to tropical Mexico. Taxonomic revisions based on cytogenetic data NEOTROPICAL DEER TAXONOMY combined with morphological approaches have Seventeen species of Neotropical cervids are proven useful to recognize new cryptic species currently recognized and are grouped into six of red brockets (Groves & Grubb 1990). Studies genera: Blastocerus, Hippocamelus, Mazama, using cytogenetics led to the identification of an- , Ozotoceros, and Pudu. Two major other species from Mexico, the temama brocket morphological forms that are differentiated (M. temama) as distinct from M. americana mainly by size are often recognized (Eisenberg (Taylor et al. 1969; Jorge & Benirschke 1977; 1987, 2000; Weber & González 2003; Merino Neitzel 1987; Sandoval 2019). Other karyotypical et al. 2005; Merino & Rossi 2010; González studies reveal sharp divergences between several et al. 2017): red brocket species (Duarte 1992; Duarte & Small deer less than 60 cm high at the Jorge 2003; Abril et al. 2010; Cursino et al. 2014; shoulder (usually < 25 kg), where males have Rincón 2016; Salviano et al. 2017; Luduvério un-branched spike antlers, with morphological 2018; Sandoval 2019). and ecological adaptations to forest and other closed vegetation habitats (Mazama and Pudu). Gray Brockets: The gray brocket group is Medium to large deer species (> 25 kg), similarly widespread. Among the gray brocket typical of more open vegetation types, where deer species, Cabrera (1960) considered the males have branched antlers (Odocoileus, Amazonian gray (M. nemorivaga) Hippocamelus, Ozotoceros, and Blastocerus). to be a synonym of the gray brocket deer The phylogeny of the Cervidae based on (M. gouazoubira). However, the two species can morphological characters has been repeat- be distinguished morphologically (González et edly questioned because of high levels of al. 2018) and genetically (Borges 2017; Donoso homoplasy (Merino et al. 2005; Duarte et 2017). Additional examples of species that were al. 2008; Merino & Rossi 2010). There are not recognized in the 1960s include species several examples of species that were con- with restricted ranges, such as M. chunyi, an sidered synonyms (e.g., Mazama nemorivaga Andean species found in southern , and and M. gouazoubira, which were considered M. pandora, in the Yucatán of Mexico (Allen as valid different species after proper review, 1915; Medellín et al. 1998). additional cases of misidentification involved Morphological approaches have not proven to several red brocket deer species, such as be efficient tools to discriminate cryptic species M. americana, M. temama, M. rufa, and in sympatry. The taxonomy of brocket deer has, M. bororo (Duarte 1996). however, proven challenging due in large part Between 6 and 18 species of brocket deer to morphological differentiation not clearly (genus Mazama) have been identified based associated with the wide karyotypic diversifica- on morphological characteristics (Allen 1915; tion among the species in this genus (Duarte Eisenberg 2000; Merino et al. 2005; Merino & & Merino 1997; Duarte & Jorge 1998; Duarte Rossi 2010). They are adapted to live in dense et al. 2008). Diploid chromosome numbers vegetation habitats and show high levels of con- vary in brocket from 32 to 70 (Duarte & Jorge vergence. Brocket deer have been traditionally 2003). Compelling arguments further exist to divided into two groups, red and gray, using split the genera Pudu and Hippocamelus, with pelage coloration patterns and body size and the latter including also two cryptic species shape (Allen 1915; Duarte et al. 2008). (Duarte et al. 2008). 40 Mastozoología Neotropical, 27(SI):37-47, Mendoza, 2020 S. González & J. M. Barbanti Duarte http://www.sarem.org.ar - https://sbmz.org

NEOTROPICAL DEER GENETIC SPECIATION AND REPRODUCTIVE AND PHYLOGENETIC ISOLATION RELATIONSHIPS The colonization of South America by deer The evolutionary history of South American appears to have occurred by at least 6 distinct deer has been studied using a variety of ge- forms: (1) the ancestor of M. gouazoubira and netic markers: isozymes (Smith et al. 1986), H. bisulcus; (2) the ancestor of B. dichotomus; cytogenetics (Neitzel 1987; Spotorno et al. 1987; (3) the ancestor of O. bezoarticus, H. antisensis, Duarte & Merino 1997), and mitochondrial and and M. nemorivaga; 4) the ancestor of P. puda; nuclear markers (Gilbert et al. 2006; Duarte et and 5) an ancestor that gave rise the red brocket al. 2008; González et al. 2017). deer M. americana, M. nana, M. bororo, and The development of powerful molecular 6) O. virginianus (Duarte et al. 2008, Fig. 1). techniques has improved the approaches that Apparently, not all invasions occurred during can be used to estimate the genetic diversity the formation of the Panama Isthmus at the in Neotropical deer species. It is now possible end of the Pliocene. In particular, the invasion to quantify the genetic variability of historical of O. virginianus likely occurred more recently. populations and their living descendants, and Its southern population has changed little in thus assess the rate at which genetic variation relation to the North American populations is being lost and restructured in fragmented and has not yet been able to cross the barrier populations (González et al. 1998; Márquez et of the Amazon rainforest southwards. al. 2006, Mantellatto et al. 2017). The ancestral forms that invaded South Analysis of mitochondrial cytochrome b America quickly differentiated and established, sequences showed an astounding and complex with some species having a clear taxonomic evolutionary pattern and phylogenetic relation- identity, such as B. dichotomus (Márquez et ships among Neotropical deer, particularly in al. 2006), O. bezoarticus (González et al. 1998, brocket deer. Phylogenetic analysis showed two 2002, 2010), H. bisulcus (Vila et al. 2010), clades with different evolutionary histories, as and H. antisensis (Barrio 2010). The species well as hybridizations episodes (Duarte et al. currently recognized in the Mazama genus 2008; González et al. 2010; Fig. 1). The mito- underwent a more complex evolutionary pro- chondrial DNA phylogeny shows a clade that cess linked to chromosomal rearrangements includes gray brockets (M. gouazoubira and that produced a very rapid speciation (Abril M. nemorivaga), (B. dichotomus), et al. 2010a; Potter et al. 2017). huemul (H. bisulcus), and deer Brocket deer (Mazama) have impressive (O. bezoarticus) whose ancestor was estimated chromosomal variation, with diploid numbers to have lived approximately 5 MYA. A second ranging from 2n = 32 to 2n = 70 (Duarte & clade includes the red brocket deer group of Jorge 1996, 2003; Abril & Duarte 2008; Abril species (M. bororo, M. nana, M. americana, and et al. 2010b). This wide variation also occurs M. temama), white tail deer (O. virginianus) in Muntiacus and seems to be explained to and mule deer (O. hemiomus), whose com- chromosome fragility (Yang et al. 1995). Several mon ancestor was estimated to have lived studies performed to evaluate chromosome approximately 2 MYA ago. These phylogenetic stability applying mutagenic agents showed analyses suggest that what is now considered that, particularly in the case of M. gouazoubira, the genus Mazama actually corresponds to chromosomes show great breakability (Vargas- a polyphyletic arrangement, with one clade Munar et al. 2010; Tomazella et al. 2017). This including only the red brocket and the other presents a high degree of intra-population the gray brocket species. Consequently, many polymorphism. For instance, three different of the morphological traits used to identify chromosomal rearrangements were found in Mazama (e.g., unbranched antlers) are evolu- individuals from a restricted area (2000 ha) in tionary convergent features, likely associated the Brazilian (Valeri et al. 2018). The with adaptations to similar environments. centric fusions (Robertsonian translocations) EVOLUTIONARY AND CONSERVATION TRENDS OF NEOTROPICAL DEER 41

Fig. 1. Phylogenetic tree showing the relationships among 59 deer haplotypes derived from a 934 base pair fragment of the mitochondrial cytochrome b compiled with the computer program MEGA 4 (Tamura et al. 2007) after performing a branch length test (Takezaki et al. 1995) to test for differences in base substitution rates. Bootstrap values (1000 replicates) and Bayesian posterior probabilities (> 50%) are denoted above nodes. The geographic location is denoted with abbrevia- tions for each of the following Brazilian states: PA, Pará; RO, Rondônia; GO, Goiás; PR, Paraná; AM, Amazonas; AC, Acre. (gb), GenBank. Yellow bar refers to the timing of the uplift of the formation of the land bridge and timing of the entry of cervids into South America. The scale on top corresponds to time whereas the scale below corresponds to the observed mean sequence divergence using the substitution model K2P (Kimura 1980). Tree modified from Duarte et al. (2008) with permission of Duarte & González (2010). 42 Mastozoología Neotropical, 27(SI):37-47, Mendoza, 2020 S. González & J. M. Barbanti Duarte http://www.sarem.org.ar - https://sbmz.org found in this population have the capacity tropics (Mexico) and identified another taxon to generate post-zygotic isolation, which can from Mexico, the temama brocket (M. temama) produce sympatric speciation. (Taylor et al. 1969; Jorge & Benirschke 1977; The Amazonian gray brocket deer species Neitzel 1987; Sandoval 2019). These karyotypical (M. nemorivaga) also need deeper assessment. divergences between red brocket species have Morphological analyses allowed to discriminate now been confirmed (Duarte 1992; Duarte & the gray brocket deer (M. gouazoubira) from the Jorge 2003; Rincón 2016; Borges 2017; Donoso Amazonian gray brocket deer (M. nemorivaga), 2017; Luduvério 2018; Sandoval 2019). but no intraspecific differences could be identi- Rincón (2016) proposed a neotype for the fied (González et al. 2018; Rossi 2000). Previ- red brocket deer (M. americana) collected at ous cytogenetic and molecular data suggested, the type locality in French Guiana. The neotype however, the existence of at least three clearly was then compared with other M. americana distinct species within this taxon (Fiorillo et al. cytotypes from several Brazilian locations 2013; Figueiredo 2014; Donoso 2017). showing that they are undoubtedly genetically The most impressive example of chromosom- distinct, thus indicating that a detailed taxo- al polymorphism (from 2n = 42 to 54) occurs in nomic revision is necessary. The application of the red brocket deer complex (M. americana), cytogenetic and molecular analyses has already which includes cryptic and sympatric species allowed revalidation of M. rufa, which inhabits (Abril et al. 2010b; Fig. 2). The karyotypical the interior of the Atlantic Forest, one of the analysis discriminated among the red brocket most threatened areas of this biome (Luduverio species (M. americana) from the northern Neo- 2018). This species was previously described by

Fig. 2. Male specimens of red brocket deer M. americana and their respective karyotypes showing the corresponding karyo- types, 2n = 45 and 53, respectively. Hybrids between these two cytotypes are sterile (Cursino et al. 2014; Salviano et al. 2017). EVOLUTIONARY AND CONSERVATION TRENDS OF NEOTROPICAL DEER 43

Azara (1802) and nominated by Illiger (1811), development, the use of dogs in rural areas and but was later considered a subspecies (Cabrera globalization trends (González et al. 2017). 1960) or a junior synonym of M. americana The trophic competition and pathogen trans- (Rossi 2000). mission with exotic ungulate species (Sus scrofa, Another example of two cryptic and sym- taurus) and introduced deer ( elaphus, patric species were the small red brocket Axis and dama) also affect the native deer (M. bororo) and the red brocket deer populations of Latin American deer and lead (M. americana), that can only be distinguished to their decline (Patz et al. 2004). by their remarkably different karyotypes (Du- The deer species that shown a decline trend arte 1996; Duarte & Jorge 2003). are: marsh deer, , taruca, huemul, Experimental crosses of individuals with northern pudu, southern pudu, Brazilian dwarf different karyotypes within the red brocket brocket deer, small red brocket deer, merida complex resulted in hybrid infertility, indicat- brocket deer, and Peruvian dwarf brocket ing post zygotic isolation (Cursino et al. 2014; deer. Reductions of species distributions are Salviano et al. 2017). estimated to range from 40 to 90% (Weber & González 2003). If the goal is to maintain CONSERVATION IMPLICATIONS long-term population stability and preserve genetic variation, conservation efforts should Based on the latest Red List™, 10 (59%) of the focus on the restoration of deer habitats in 17 species of Neotropical deer are listed in a Latin America. threatened category, two are Data Deficient Deer were included in the Convention on (DD), two are listed as Near Threatened (NT), International Trade in Endangered Species of and two as Least Concern (LC) (IUCN 2019; Wild Fauna and Flora, with the aim to protect Table 1). The conservation situation of the them and avoid illegal traffic (CITES 2017). Neotropical deer species is considerably worse when compared with all the species FINAL REMARKS assessed, of which 22% are threatened and 15% AND PERSPECTIVES data deficient (Schipper et al. 2008). The num- ber of threatened species will certainly increase We recommend continuing the detailed taxo- once the taxonomy has been updated, especially nomic revision of the genus Mazama. Sampling with the revision of the Mazama species. An cryptic species in more detail would allow easy distinction of the species is crucial for defining their geographic distribution patterns. monitoring population trends, designing effec- Field studies on the behavior, home range, feed- tive management plans to protect and recover ing ecology, demography, and geographic range endangered species, and performing a sustainable of small forest species (e.g., Mazama) are ur- use of Neotropical deer species in rural com- gently needed. Brocket deer are elusive , munities. As most of them inhabit forested and and intensive efforts should include sampling forestry areas, developing non-invasive sampling to obtain karyotypes and DNA sequence data. techniques will be necessary to diagnose species We have designed a set of primers that amplify and determine occurrence areas. informative sequence regions of mitochondrial Several Neotropical deer species have broad DNA from feces that allow discriminating geographic ranges in vulnerable Latin Ameri- between species and analysing intraspecific can ecosystems. Most threats for the species variability (González et al. 2009). Additional are directly linked to human activities, such samples can be effectively secured with the as habitat loss, degradation, fragmentation and help of trained scat detection dogs (Oliveira et overhunting, which have impacted and limited al. 2012; Duarte et al. 2016). Additionally, the them to a small portion of their former range. isolation of DNA from museum collections There are also indirect threats as a result of hu- and archaeological sites are a promising tool man activities that have affected the conservation for surveying deer and reconstruct their past status of Neotropical deer, such as urbanization, geographic ranges. Next-generation sequencing 44 Mastozoología Neotropical, 27(SI):37-47, Mendoza, 2020 S. González & J. M. Barbanti Duarte http://www.sarem.org.ar - https://sbmz.org

Table 1 Detailed geographic range, habitat and Red List™ (www.iucnredlist.org) category of Neotropical deer species.

Species Geographic Range Habitat Category Criteria Blastocerus dichotomus Argentina, , Wetlands and marshes VU A4acde ,, Perú. Hippocamelus antisensis Argentina, Bolivia, Chile, Mountain Andes VU C2a(i); E Perú. (5000-1500 m) Hippocamelus bisulcus Argentina and Chile Mountain Andes EN B2ab(i,ii,iii,iv,v); (3000-2000 m) C2a(i) Mazama americana Argentina; Bolivia, Pluri- Forest areas DD national States of; Brazil; (lowlands-1000 m) Colombia; Ecuador; French Guiana; Guyana; Paraguay; Peru; Suriname; Trinidad and Tobago; Venezuela. Mazama bororo Brazil (Paraná, São Paulo, Atlantic Forest VU C2a(ii) Santa Catarina) (lowlands-1000m) Mazama bricenii Colombia and Venezuela Mountain Andes VU A4c (3200-1000 m) Mazama chunyi Bolivia and Perú Mountain Andes VU (4000-1000 m) Mazama gouazoubira Argentina, Bolivia, Shrubland, savannah, forest LC Brazil,Paraguay, Uruguay. areas Mazama nana Argentina, Brazil,Paraguay VU A3cde Mazama nemorivaga Brazil; Colombia; Ecuador; Forestry and border areas LC French Guiana; Guyana; (lowlands -1500m) Panama; Peru; Suriname; Venezuela, Mazama pandora Belize; Guatemala; Mexico Forest areas (lowlands-300 m) VU A2c Female Allen 1915 Mazama rufina Brazil, Colombia. Ecuador Mountain Andes VU A4c (3500-1500 m) Mazama temama Belize; Colombia; Costa Forest areas DD Rica; El Salvador; Guatemala; (lowlands-2800 m) Honduras; Mexico; Nicaragua; Panama Odocoileus virginianus Belize; Brazil;Colombia; Costa Wetlands (inland), Savanna, LC Rica; Ecuador; El Salvador; Forest, Desert, Grassland, Ar- French Guiana; Guatemala; tificial/Terrestrial, Shrubland, Guyana; Honduras; Mexico; Marine Neritic, Marine Inter- Nicaragua; Panama; Peru; tidal, Introduced vegetation Suriname, Venezuela. Ozotoceros bezoarticus Argentina; Bolivia, Pluri- Pampas, Grasslands, NT national States of; Brazil; (lowlands-1000 m) Paraguay; Uruguay Pudu puda Argentina and Chile Forest, Shrubland NT (lowlands-1700 m) Pudu mephistophiles Colombia; Ecuador; Peru Mountain Andes VU C2a(i) (4000-1700 m) EVOLUTIONARY AND CONSERVATION TRENDS OF NEOTROPICAL DEER 45 technologies (NGS) have boosted the field of Azara, F. 1802. Apuntamientos para la historia natural ancient archaeological DNA (Moreno et al. de los quadrúpedos del Paraguay y rio de La Plata. Tomo Primero. Imprenta de l Viuda de Ibarra, 2016). These techniques promise to revolu- Madrid. tionize the field of molecular genetics with Barrio, J. 2010. Taruka Hippocamelus antisensis (d’Orbigny applications in evolution, ecology, medicine, 1834). Neotropical Cervidology (J. M. B. Duarte & and ancient DNA (Davey et al. 2011). In addi- S. González, eds.). Funep/IUCN, Jaboticabal. Borges, C. H. S. 2017. Caracterização morfológica, tion, these novel methodologies will be useful citogenética e molecular de Mazama gouazoubira to recognize new species and evolutionary (Artiodactyla, Cervidae) a partir de um topótipo atual. significant units and achieve a better resolution Dissertação (Mestrado em genética e melhoramento of the molecular phylogeny and evolution for ) – Faculdade de Ciências Agrárias e Veterinárias, Universidade estadual Paulista “Júlio de managing populations (Moritz 1994). Mesquita Filho” Jaboticabal, Brasil. The contribution of genetic and biogeo- Cabrera, A. 1960. Catálogo de los mamíferos de América graphic data will be useful for solving the del Sur. Revista Museo Argentino Bernardino uncertain taxonomy and update the assessment Rivadavia 4:309-732. CITES (2017). Appendices I, II and III, valid from 4 October of the conservation status of Neotropical deer 2017 https://www.cites.org/esp/app/appendices.php>. species. This key information will provide data Cursino, M. S., M. B. Salviano, V. V. Abril, E. S. Zanetti, to perform models for testing management and & J. M. B. Duarte. 2014. The role of chromosome conservation policies. Finally, if the goal is to variation in the speciation of the red brocket deer complex: the study of reproductive isolation in females. maintain long-term population stability and BMC Evolutionary Biology 14:40. preserve genetic variation, conservation efforts Davey, J. W., P. A. Hohenlohe, P. D. Etter, J. Q. Boone, should focus on the restoration of deer habitats J. M. Catchen, & M. L. Blaxter. 2011. Genome-wide in Latin America. genetic marker discovery and genotyping using next- generation sequencing. Nature Reviews 12:499-510. Donoso, J. M. 2017. Caracterização morfológica, citogenética ACKNOWLEDGMENTS e molecular de Mazama nemorivaga (Cuvier, 1817) a partir de um topotipo atual. 2017. Dissertação de We thank Enrique Lessa, Gabriel Marroig and Eileen Lacey Mestrado thesis. Faculdade de Ciências Agrárias e for inviting us to participate in this special issue, celebrat- Veterinárias, Universidade estadual Paulista “Júlio de ing the 25th anniversary of Mastozoología Neotropical. Mesquita Filho”, Jaboticabal, Brasil. We are grateful to the following agencies that funded our Duarte, J. M. B. 1992. Aspectos taxonômicos e research: Agencia Nacional de Investigación e Innovación citogenéticos de algumas espécies de cervídeos (ANII), Comision Sectorial de Investigación Científica de brasileiros. Dissertação de Mestrado. Faculdade de Universidad de la República (CSIC-UDELAR), Conselho Ciencias Agrárias e Veterinárias, Universidade Estadual Nacional de Desenvolvimento Científico e Tecnológico Paulista “Júlio de Mesquita Filho”, Jaboticabal. (CNPq), Fundação de Amparo à Pesquisa do Estado de Duarte, J. M. B. 1996. Guia de identificação de Cervídeos São Paulo (FAPESP), Programa de Desarrollo de Ciencias brasileiros. FUNEP, Jaboticabal, Brasil. Básicas (PEDECIBA), Whitley Fund for Nature, and Lóreal- Duarte, J. M. B., S. González, & J. E. Maldonado. 2008. Unesco-Ministerio de Educación y Cultura from Uruguay. The surprising evolutionary history of South American deer. Molecular Phylogenetics and Evolution 49:17-22. LITERATURE CITED Duarte, J. M. B., & W. Jorge. 1996. Chromosomal polymorphism in several population of deer (genus Abril, V. V., E. A. G. Carnelossi, S. González, & J. M. Mazama) from Brazil. Archivos de Zootecnia 45: B. Duarte. 2010a. Elucidating the evolution of 281-287. the red brocket deer Mazama americana complex Duarte, J. M. B., & W. Jorge. 1998. Análise citotaxonômica (Artiodactyla; Cervidae). Cytogenet Genome Research dos Mazama cinzas do Brasil (Mazama gouazoubira e 128:177-187. Mazama rondoni). Análise citogenética e taxonômica Abril, V. V., & J. M. B. Duarte. 2008. Chromosome do gênero Mazama (Cervidae; Artiodactyla) no Brasil. polymorphism in the Brazilian dwarf brocket deer, Ph. D. dissertation. Universidade Estadual Paulista, Mazama nana (Mammalia, Cervidae). Genetic Botucatu, Brasil. Molecular Biology 31:53-57. Duarte, J. M. B., & W. Jorge. 2003. Morphologic and Abril, V. V., J. A. Sarria-Perea, D. S. F. Vargas-Munar, cytogenetic description of the small red brocket & J. M. B. Duarte. 2010b. Chromosome evolution. (Mazama bororo, Duarte, 1996) in Brazil. Mammalia Neotropical Cervidology (J. M. B. Duarte & S. 67:403-410. González, eds.). Funep/IUCN, Jaboticabal. Duarte, J. M. B., & M. L. Merino. 1997. Taxonomia Allen, J. A. 1915. Notes on American deer of the genus e evolução. Biologia e conservação de cervídeos Mazama. Bull. American Museum Natural Hisory Sul-Americanos: Blastocerus, Ozotoceros e Mazama 34:521-553. (J. M. B. Duarte, ed.). FUNEP, Jaboticabal. 46 Mastozoología Neotropical, 27(SI):37-47, Mendoza, 2020 S. González & J. M. Barbanti Duarte http://www.sarem.org.ar - https://sbmz.org

Duarte, J. M. B. et al. 2016. Scat detection dogs, DNA Heckeberg, N. S., & G. Wörheide. 2019. A comprehensive and species distribution modelling reveal a diminutive approach towards the systematics of Cervidae. PeerJ geographical range for the Vulnerable small red brocket Preprints 7:e27618v1. deer Mazama bororo. 51:656-664. Illiger, J. A. 1811. Notes on American Mazama. Deer Eisenberg, J. F. 1987. The evolutionary history of the of the Genus. Bulletin American Museum Natural Cervidae with special reference to the South American History 34:521-553. radiation. Biology and Management of the Cervidae IUCN. 2019. The IUCN Red List of Threatened Species. (C. Wemmer, ed.). Smithsonian Institute Press, Version 2019-1. http://www.iucnredlist.org. Washington, D.C. Jorge, W., & K. Benirschke. 1977. Centromeric Eisenberg, J. F. 2000. The contemporary Cervidae of Central heterochromatin and G-banding of the red brocket and South America. Antelopes, deer, and relatives. deer, Mazama americana temama (Cervidea, Fossil Record, Behavioral Ecology, Systematics, and Artiodactyla) with a probable non-robertsonian Conservation (E. Vrba & G. B. Schaller eds.). University translocation. Cytologia 42:711-721. Press, Yale. Kimura, M. 1980. A simple method for estimating Figueiredo, M. G. 2014. Filogenia e taxonomia dos veados evolutionary rate of base substitutions through cinza (Mazama gouazoubira e Mazama nemorivaga). comparative studies of nucleotide sequences. Journal Tese (Doutorado em Genética e Melhoramento of Molecular Evolution 16:111-120. Animal). Faculdade de Ciências Agrárias e Veterinárias, Luduvério, D. J. 2018. O status taxonômico de Cervus Universidade Estadual Paulista “Júlio de Mesquita rufus Illiger, 1811 e sua caracterização genética e Filho”, Jaboticabal, Brasil. morfológica. Dissertação (Mestrado em genética e Fiorillo, B. F., J. A. Sarria-Perea, V. V. Abril, & melhoramento animal). Faculdade de Ciências Agrárias J. M. B. Duarte. 2013. Cytogenetic description of e Veterinárias, Universidade estadual Paulista “Júlio de the Mazama nemorivaga Mesquita Filho”, Jaboticabal, Brasil. (Artiodactyla, Cervidae). Comparative Cytogenetics Mantellatto, A. M. B., R. Caparroz, M. D. 7:25-31. Christofoletti, U. Piovezan, & J. M. B Duarte. Gilbert, C., A. Ropiquet, & A. Hassanin. 2006. 2017. Genetic diversity of the Pampas deer (Ozotoceros Mitochondrial and nuclear phylogenies of Cervidae bezoarticus) population in the Brazilian Pantanal (Mammalia, Ruminantia): Systematics, morphology, assessed by combining fresh fecal DNA analysis and and biogeography. Molecular Phylogenetics and a set of heterologous microsatellite loci. Genetics and Evolution 40:101-117. Molecular Biology 40:774-780. González, S. et al. 1998. Conservation genetics of the Márquez, A., J. E. Maldonado, S. González, M. D. endangered Pampas deer (Ozotoceros bezoarticus). Beccaceci, J. E. Garcia, & J. M. B. Duarte. 2006. Molecular Ecology 7:47-56. Phylogeography and Pleistocene demographic history González, S. et al. 2009. Identification of the endangered of the endangered marsh deer (Blastocerus dichotomus) small red brocket deer (Mazama bororo) using from the Río de la Plata Basin. Conservation Genetics noninvasive genetic techniques (Mammalia; Cervidae). 7:563-575. Molecular Ecology. Resources 9:754-758. Medellín, R. A., A. L. Gardner, & J. M. Aranda. 1998. González, S., F. Álvarez, & J. E. Maldonado. 2002. The taxonomic status of the Yucatán brown brocket, Morphometric differentiation of the endangered Mazama pandora (Mammalia: Cervidae). Proceedings Pampas deer (Ozotoceros bezoarticus L. 1758) with of the Biological Society of Washington 111:1-14. description of new subspecies from Uruguay. Journal Merino, M. L., N. Milne, & S. F. Vizcaíno. 2005. A cranial of Mammalogy 83:1127-1140. morphometric study of deer (Mammalia: Cervidae) González, S., J. M. B. Duarte, M. Cosse, & L. Repetto. from Argentina using three-dimensional landmarks. 2017. Conservation genetics taxonomy and Acta Theriologica 50:91-108. management applications in Neotropical deer. Tropical Merino, M. L., & R. Rossi. 2010. Origin, systematics, and Conservation (A. Aguirre & R. Sukumar, eds.). Oxford morphological radiation. Neotropical Cervidology (J. M. University Press. B. Duarte & S. González eds.). Funep/IUCN, Jaboticabal. González, S., J. M. B. Duarte, & J. E. Maldonado. 2010. Moreno, F. et al. 2016. Use of next-generation molecular Molecular phylogenetics and evolution. Neotropical tools in archaeological Neotropical deer sample analysis Cervidology (J. M. B. Duarte & S. González, eds.). Journal of Archaeology Science Reports 10:403-410. Jaboticabal, Funep/IUCN. Moritz, C. 1994. Defining ‘Evolutionary Significant Units’ González, S., & J. E. García. 2010. Fecal DNA. for conservation. Trends Ecology and Evolution. Neotropical Cervidology (J. M. B. Duarte & S. 9:373-375. González, eds.). Funep/IUCN, Jaboticabal. Myers, N., R. A. M Ittermeier, C. G. Mittermeier, G. A. González, S., A. M. B. Mantellatto, & J. M. B. Duarte. B. da Fonseca, & J. Kent. 2000. Biodiversity hotspots 2018. Craniometrical differentiation of gray brocket for conservation priorities. Nature 403:853-858. deer species from Brazil. Revista Museo Argentino Neitzel, H. 1987. Chromosome evolution of Cervidae: Ciencias Naturales n.s. 20:179-193. karyotypic and molecular aspects. Cytogenetics: Groves, C. P. & P. Grubb. 1990. Muntiacidae. Horns, Basic and applied aspects. (G. Obe & A. Basler, eds.). and Antlers: Evolution, Morphology, Springer Verlag, New York. Physiology and Social Significance (G. A. Bubenik & Oliveira M. L., D. Norris, J. F. M. Ramírez, P. H. F A. B. Bubenik, eds.). Springer, New York. Peres, M. Galetti, & J. M. B. Duarte. 2012. Dogs EVOLUTIONARY AND CONSERVATION TRENDS OF NEOTROPICAL DEER 47

can detect scat samples more efficiently than humans: Takezaki, N., A. Rzhetsky, & M. Nei. 1995. Phylogenetic an experiment in a continuous Atlantic Forest remnant. test of the molecular clock and linearized trees. Zoologia (Curitiba) 29:183-186. Molecular Biology and Evolution 12:823-833. Patz, J. A. et al. 2004. Unhealthy landscapes: Policy Tamura, K., J. Dudley, M. Nei, & S. Kumar. 2007. recommendations on land use change and infectious MEGA4: Molecular Evolutionary Genetics Analysis disease emergence. Environmental Health Perspectives. (MEGA) software version 4.0. Molecular Biology and 112:1092-1098. Evolution 10:1093. Potter, S. et al. 2017. Chromosomal speciation in the Taylor, K. M., D. A. Hungerford, & R. L. Snyder. 1969. genomics era: Disentangling phylogenetic evolution of Artiodactyl Mammals: their chromosome cytology rock-wallabies. Frontiers in Genetics 8:10. in relation to patterns of evolution. Comparative Rincón, A. C. 2016. Caracterização morfológica, citogenética Mammalian Cytogenetics (K. Benirschke ed.) Springer e molecular de Mazama americana (Artiodactyla: Verlag. Cervidae) a partir de um topótipo atual. Dissertação Tomazella, I. M., V. V. Abril, & J. M. B. Duarte. (Mestrado em genética e melhoramento animal). 2017. Identifying Mazama gouazoubira (Artiodactyla; Faculdade de Ciências Agrárias e Veterinárias, Cervidae) chromosomes involved in rearrangements Universidade estadual Paulista “Júlio de Mesquita Filho”, induced by doxorucibin. Genetic Molecular Biology Jaboticabal, Brasil. 40:460-467. Rossi, R. V. 2000. Taxonomia de Mazama Rafinesque, Valeri, M., I., M. Tomazzella, & J. M. B. Duarte. 1817 do Brasil (Artiodactyla, Cervidae). M.S. thesis, 2018. Intrapopulation chromosomal polymorphism in Universidade de São Paulo, São Paulo, Brasil. Mazama gouazoubira (Cetartiodactyla; Cervidae): The Salviano, M. B., M. S. Cursino, E. S. Zanetti, V. V. Abril, Emergence of a New Species? Cytogenetic and Genome & J. M. B Duarte. 2017. Intraspecific chromosome Research 154:147-152 polymorphisms can lead to reproductive isolation and Vargas-Munar, D. S. F., J. A. Sarria-Perea, & J. M. B. speciation: an example in red brocket deer (Mazama Duarte. 2010. Different responses to doxorubicin- americana). Biology of Reproduction 96:1279-1287. induced chromosome aberrations in Brazilian deer Sandoval, E. P. D. 2019. Caracterização morfológica, species. Genetics and Molecular Research 9:1545-1549. citogenética e molecular de Mazama temama Kerr Vila A. R., C. E. Saucedo Galvez, D. Aldridge, E. Ramilo, 1792, com proposta de um neótipo para o táxon. & P. Corti González. 2010. South Andean huemul Dissertação (Mestrado em genética e melhoramento Hippocamelus bisulcus (Molina, 1782). Neotropical animal). Faculdade de Ciências Agrárias e Veterinárias, Cervidology (J. M. B. Duarte & S. González, eds.). Universidade estadual Paulista “Júlio de Mesquita Funep/IUCN, Jaboticabal. Filho”, Jaboticabal, Brasil. Webb, S. D. 2000. Evolutionary history of new world deer. Schipper, J. et al. 2008. The status of the world’s land and Antelopes, deer, and relatives. Fossil record, behavioral marine mammals: diversity, threat, and knowledge. ecology, systematic, and conservation (E. S. Vrba & Science 322:225-230. G. B. Schaller, eds.). Yale University Press, New Haven Smith, M. H., W. V. Branan, R. L. Marchinton, and London. P. E. Johns, & M. C. Wooten. 1986. Genetic and Weber, M., & S. González. 2003. Latin American deer morphologic comparisons of red brocket, brown diversity and conservation: a review of status and brocket, and white-tailed deer. Journal of Mammalogy distribution. Ecoscience 10:443-454. 67:103-111. Wilson, D. E., & R. A. Mittermeier. 2011. Handbook Spotorno, A. E., N. Brum, & M. D. Tomaso. 1987. of the Mammals of the World, Volume 2: Hoofed Comparative cytogenetics of South American deer. Mammals. Lynx Edicions, Barcelona, Spain. Fieldiana 39:473-483. Yang, F., N. P. Carter, & M. A. Ferguson-Smith. 1995. Stehli, F. G., & S. D. Webb. 1985. The Great American A comparative study of karyotypes of by biotic interchange. Topics in geobiology. Plenum Press, chromosome painting. Chromosoma 103:642-652. New York.