ai

H H£K 13 ••< MR

1 Mr ^^H Ab . > H

.•*. V

1 *'"* ' ^H i*

<:m I ^^? Hra ^ v LA

<5 NBS TECHNICAL NOTE 693

NBS Pubii - cations

U.S. DEPARTMENT OF COMMERCE / National Bureau of Standards

Predicted Values of the Viscosity and Thermal Conductivity Coefficients

of Nitrous Oxide

QC 100 U5753 no. 693 1977 NATIONAL BUREAU OF STANDARDS

1 The National Bureau of Standards was established by an act of Congress March 3, 1901. The Bureau's overall goal is to strengthen and advance the Nation's science and technology and facilitate their effective application for public benefit. To this end, the Bureau conducts research and provides: (1) a basis for the Nation's physical measurement system, (2) scientific and technological services for industry and government, (3) a technical basis for equity in trade, and (4) technical services to pro- mote public safety. The Bureau consists of the Institute for Basic Standards, the Institute for Materials Research, the Institute for Applied Technology, the Institute for Computer Sciences and Technology, the Office for Information Programs, and the Office of Experimental Technology Incentives Program.

THE INSTITUTE FOR BASIC STANDARDS provides the central basis within the United States of a complete and consist- ent system of physical measurement; coordinates that system with measurement systems of other nations; and furnishes essen- tial services leading to accurate and uniform physical measurements throughout the Nation's scientific community, industry, and commerce. The Institute consists of the Office of Measurement Services, and the following center and divisions:

Applied Mathematics — Electricity — Mechanics — Heat — Optical Physics — Center for Radiation Research — Lab- ~ 8 oratory Astrophysics" — Cryogenics- — Electromagnetics — Time and Frequency .

THE INSTITUTE FOR MATERIALS RESEARCH conducts materials research leading to improved methods of measure- ment, standards, and data on the properties of well-characterized materials needed by industry, commerce, educational insti- tutions, and Government; provides advisory and research services to other Government agencies; and develops, produces, and distributes standard reference materials. The Institute consists of the Office of Standard Reference Materials, the Office of Air and Water Measurement, and the following divisions:

Analytical Chemistry — Polymers — Metallurgy — Inorganic Materials — Reactor Radiation — Physical Chemistry.

THE INSTITUTE FOR APPLIED TECHNOLOGY provides technical services developing and promoting the use of avail- able technology; cooperates with public and private organizations in developing technological standards, codes, and test meth- ods; and provides technical advice services, and information to Government agencies and the public. The Institute consists of the following divisions and centers:

Standards Application and Analysis — Electronic Technology — Center for Consumer Product Technology: Product Systems Analysis; Product Engineering — Center for Building Technology: Structures, Materials, and Safety; Building Environment; Technical Evaluation and Application — Center for Fire Research: Fire Science; Fire Safety Engineering.

THE INSTITUTE FOR COMPUTER SCIENCES AND TECHNOLOGY conducts research and provides technical services designed to aid Government agencies in improving cost effectiveness in the conduct of their programs through the selection, acquisition, and effective utilization of automatic data processing equipment: and serves as the principal focus wthin the exec- utive branch for the development of Federal standards for automatic data processing equipment, techniques, and computer languages. The Institute consist of the following divisions:

Computer Services — Systems and Software — Computer Systems Engineering — Information Technology.

THE OFFICE OF EXPERIMENTAL TECHNOLOGY INCENTIVES PROGRAM seeks to affect public policy and process to facilitate technological change in the private sector by examining and experimenting with Government policies and prac- tices in order to identify and remove Government-related barriers and to correct inherent market imperfections that impede the innovation process.

THE OFFICE FOR INFORMATION PROGRAMS promotes optimum dissemination and accessibility of scientific informa- tion generated within NBS; promotes the development of the National Standard Reference Data System and a system of in- formation analysis centers dealing with the broader aspects of the National Measurement System; provides appropriate services the to ensure that the NBS staff has optimum accessibility to the scientific information of the world. The Office consists of following organizational units:

Office of Standard Reference Data — Office of Information Activities — Office of Technical Publications — Library — Office of International Standards — Office of International Relations.

1 Headquarters and Laboratories at Gaithersburg, Maryland, unless otherwise noted; mailing address Washington, D.C. 20234. a Located at Boulder, Colorado 80302. m* t * iwi Predicted Values of the Viscosity and

Thermal Conductivity Coefficients

r of Nitrous Oxide 1

Howard J. M. Hanley

Cryogenics Division Institute for Basic Standards National Bureau of Standards Boulder, Colorado 80302

* L T J /

U.S. DEPARTMENT OF COMMERCE, Juanita M. Kreps, Secretary

Dr. Betsy Ancker-Johnson , Assistant Secretary for Science and Technology

NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Acting Director

Issued March 1977 NATIONAL BUREAU OF STANDARDS TECHNICAL NOTE 693

Nat. Bur. Stand. (U.S.), Tech Note 693, 64 pages (March 1977)

CODEN: NBTNAE

U.S. GOVERNMENT PRINTING OFFICE WASHINGTON"; 1977

For sale by the Superintendent ot Documents, U.S. Government Printing Office , Washington, D.C. 20402

Order by SD Catalog No C 13. 46:693). Price $1.20 (Add 25 percent additional for other than U.S. mailing). 1

CONTENTS Page

Abstract 1

1. INTRODUCTION 1

2. DATA SURVEY 1

3. PREDICTION METHOD 2

3 . Summary 8

3.2 Kinetic Theory 8

3.3 The Behavior of the Thermal Conductivity Coefficient in the

Critical Region 9

4. COMPARISONS WITH DATA 10

5. TABLES 12

5.1 Assessment of Accuracy 12

6. MIXTURES 31

7. CONCLUSION 31

8. ACKNOWLEDGMENTS 31

9. REFERENCES 48 APPENDIX. Application of Statistical Mechanics 50

Note on Units

The results in this paper are given in British Engineering units at the specific request of the sponsor. Selected results, however, are also given in SI units to conform with the policy of the National Bureau of Standards to promote the SI system.

in LIST OF FIGURES Page

Figure 1. Top curve: 1 atm viscosity percent deviation plot

between values predicted from equation (20) and the

correlation equation (31) . Percent deviation is defined

as n[eq. (20)] -n[eq. (31) ]*100.0/n[eq. (31)]. Bottom

curve: 1 atm thermal conductivity deviations between

equation (21) and equation (31) 14

Figure 2. Dense gas and liquid isotherms for the thermal conduc-

tivity coefficient calculated from equation (21) (curves)

compared with the data of reference [19] (open and filled

circles) 16

Figure 3(a). Viscosity coefficient of dilute N„0: comparison between

kinetic theory values and equation (31) 58

Figure 3(b). Plot of the second virial, B, versus temperature. Data,

filled circles, from reference [30]. The curve is from

equation (9A) , while the triangles are results discussed

in the text 58 . .

PREDICTED VALUES OF THE VISCOSITY AND THERMAL CONDUCTIVITY COEFFICIENTS OF NITROUS OXIDE"

Howard J. M. Hanley

The viscosity and thermal conductivity coefficients of nitrous

oxide are calculated for temperatures between 180 and 900 K (330 to

1600°R) for pressures to 23 MPa (^ 3500 psi) . Tables of values are presented. Two mixtures with carbon dioxide are also discussed. These transport coefficients (for the pure fluid and for the mixtures) were predicted from thermodynamic data. Details of the prediction procedure are presented. Estimates of the accuracy of the tabular values are

+ 6% for the viscosity and + 8% for the thermal conductivity.

Key words: Carbon dioxide; corresponding states; mixtures; nitrous oxide; prediction; thermal conductivity; transport property; viscosity.

1. INTRODUCTION

In this report we discuss the transport coefficients — the viscosity coefficient (f)) and the thermal conductivity coefficient (A) — of nitrous oxide,

N~0. Tables of values are presented from 0.1 to 23 MPa (approximately 15 to

3500 psi) for temperatures between 180 and 900 K (approximately 330 to 1600°R) Two selected' mixtures of nitrous oxide and carbon dioxide are considered briefly,

Nitrous oxide is a common substance yet the transport coefficients have not been measured over a wide temperature and pressure range. In fact, the data are so scarce we prefer to obtain the coefficients by calculation [1]: the limited data are used only to check the procedure where possible.

2. DATA SURVEY

A bibliography of data sources for the thermodynamic and transport properties of nitrous oxide was prepared by the Cryogenic Data Center, National Bureau of Standards, Boulder, Colorado. The appropriate references for the

Contribution of the National Bureau of Standards, not subject to' copyright viscosity and thermal conductivity are as follows: viscosity coefficient ,

references [2]-[8]; thermal conductivity coefficient , references [9]-[23].

We have correlated the transport coefficients of several simple fluids

[Ar, 0„, N„ , CH, , C~H,] in a series of papers [24]. Criteria were set up to evaluate data critically, and an equation to represent the coefficients was proposed. Unfortunately, this procedure cannot be applied to nitrous oxide at this time because suitable data are not available for analysis. We have been able to find only two data sets for the dense gas and liquid, those from references [19] and [23], for the thermal conductivity. The other references cover the dilute gas only.

As remarked, therefore, we decided to present tables based on a prediction procedure, which will be outlined in the next section.

3. PREDICTION METHOD

The method used is an application of a procedure introduced in detail in reference [1]. An outline is given here.

As is well known, if classical two-parameter corresponding states applies to two fluids designated a and o, one can write the viscosity of one at a density

(p) and temperature (T) , in terms of the other:

= -« (i) n (p,t) n (p , t )(-*) (-«) lp o

Also for the thermal conductivity,

1/2/ c\2/3/^cvl/2 Vp.t) = up„_.(p t„ j\~\ \-a 1^1 (2) » vv| (7) (7)

In the above equations, M is the molecular weight, and p and T are the density and temperature respectively, for fluid o to correspond to the density and temperature for fluids a. The variables can be expressed in terms of the C C p° /p*~) /T The critical parameters, and T ; thus, p^ = p(p and T = T(T ). CXjO OCX \X y O (JUL coefficients r| and A also have to be scaled as shown in equations (1) and (2). o o It is common practise to calculate the coefficients for a given those for

o — which is then treated as a reference fluid.

Equations (1) and (2) can be extended for a mixture, x, if it is assumed that the mixture can be represented as an equivalent pure fluid — the one-fluid approximation — and that the mixture is "conformal," that is, all components obey the two-parameter corresponding states law. Hence one can write

1/2/ c\2/3/_c\l/2

T) T ; V?> " pa,o- a,o' V ,«(?)\tl \f>

and similarly for the thermal conductivity, A . Equation (3) can be derived under well-defined assumptions [25] . The derivation further yields a set of mixing rules:

Ct p and

C C 1 C C 1 T (pK ) = Z Z x x T (p ) (5) x x „ a MP ag

where x is the mole fraction of a. The mixing rule used in this work for the mass is M = Z x M (which differs slightly from that proposed in reference [25])

The a$ variables of equations (4) and (5) are given by

c C ly/2 T = F (t° T ) (6)

and

- c l 1 c ,-1/3 . 1 . c .-1/3 / \ = i , (p } (p + (p } (7) aS ^a3 2 aa> 2 33 where E, a and \\l D are binary interaction parameters, which are best obtained CXp Ctp from experiment.

The mixing rules, equations (6) and (7), are consistent with the mixing rules derived for thermodynamic properties using the one-fluid approximation.

If, therefore, the binary interaction parameters are assumed to be those valid

for thermodynamic properties , one has a procedure to predict the viscosity and thermal conductivity coefficients of mixture x, given the equivalent coefficients of the reference fluid.

Equations (l)-(3) are not general in that two-parameter corresponding states is invalid for polyatomic fluids, or for mixtures containing polyatomic molecules. The situation is, of course, paralleled with respect to the thermodynamic properties and has been discussed extensively in this latter context. For example, a recent approach due to Leland [26] and to Rowlinson [27], is of interest here. According to Leland and Rowlinson a third parameter, co — which can be taken as the Pitzer acentric factor — is introduced, but the framework of simple two-parameter corresponding states is preserved, if one considers the scaling functions

C C C f (T ; = /T ) h (P /P° ) (8) aa,o aa o aa,o aa,o o aa T aa,o

for fluid a with respect to o. The terms 6 and 6 are called shape factors r aa,o aa,o and are weakly varying functions of temperature and density:

6 = 1 (co -co = 1 + (co -co )G(T,p) + )F(T,p);

where co and co are acentric factors for fluids a and o, respectively. Using aa o the shape factors, the (for example) of a would be given

by the relation Z (p,T) = Z (ph , T/f ). With the appropriate expression 3 a o aa,o aa,o for the Helmholtz free energy, the thermodynamic properties of a are completely defined in terms of the properties of o.

It is a logical step to introduce shape factors into the viscosity and thermal conductivity expressions: for fluid a, therefore n n (p,t) = n (p' , t' ) FH (io) a o a,o a,o a,o where

"2/3 l/2 p' - = n = Ph ; T' T/f ; FH -£ ) h f ( , a,o aa,o a,o aa,o a,o fe)'"\M / aa,o aa,o

Similarly,

T A A = (p' , ) (p,T)K ' X T FH (12) a o a,o a,o a,o where

2/ 3 l/2_ FH* - U h" £ (13) a,o \M / "aa,oaa,o aa,o \M /V

And for mixtures,

T) T (14) \ ( P' = % ( x,o }

X A (p,T) = A (p' , T' ) FH (15) x o x,o x,o x,o

For mixing rules for h and f we take x,o x,o

h h (16) x,o =ZExxa a3,oD a 3

f h =EZxx D f h D (17) x,o x,o _ a 3 a3,o a3,o

with 1/2 f " (f f ) (18) a(3,o ^ag aa,o 3g,o and

3 1 ,1/3 1 ,1/3 I + 3l r h h *« -1 (19) a(3,o ag 2 aa,o 2 ;,oJ

An evaluation of equations (10), (12), (14) and (15) is discussed in reference [1]. In particular we were interested if these equations could be used to predict the transport coefficients of a or x, given values for the reference fluid. Specifically, one might hope that equations could be used

successfully if the shape factors, 9 and (J), and the mixing interaction

parameters, and \\) , were taken from a fit of thermodynamic (PVT) data. £ R R Unfortunately, the equations could not represent data satisfactorily if the above constraint was imposed.

We have, however, been able to propose a possible modification; we suggested that one should consider expressions of the form

n n n (p,T)K = n (p' , T» ) FH X (p,T) (20) a ' o a,o a,o a,o a,o and

A X 1 A (p,T) = A (p , T' ) FH X (p,T) (21) a o a,o a,o a,o a,o

with corresponding expression for the mixture. Note that equations (20) and (21) differ from those introduced earlier by the factor X or X„ . Based on how J a,o a,o equations (20) and (21) represent experiment, it turns out that X should be unity if fluids a and o follow classical two-parameter corresponding states, as in the case of the rare gases and their mixtures [25], but should be a function of temperature and density otherwise.

No formal equation is available for X but a possible expression was

determined in reference [1] . The expressions are based on a study of the Modified Enskog Theory. This theory has been discussed in detail in our previous work [28]. Following the arguments that are given in full in reference [1], we obtained for the pure fluid (with corresponding expressions for the mixture)

X^ (p,T) = Q G^ : X* (p,T) = Q G* (22) ot,o ot,o ot,o a,o 0L,O 0L,0

Q is function of p and T defined as a,o

- (pC/p)3] [1 1/exP = [(bp) /(bp) (23) n ]

where b is a term given by b = B + TdB/dT, with B the equilibrium second virial coefficient. G and G are ratios bgiven, respectively, by -,a,o, a,o n n n G = [] /[] and []/[]. The bracket expressions are [28] a,o a o a o

n [] = [1/bpx + 0.8 + 0.761 bpx]

(24) A [] = [1/bpx + 1.2 + 0.755 bpX ] with

- i < 25 > PR !;^ \3TJp

for fluids a or o. R is the gas constant.

Notice that the calculation of the correction factors X and X require only thermodynamic information for fluid a or x with respect to the reference fluid; for example, b [Equation (23)] can be obtained from the second virial

coefficient of the reference fluid, B , according to the expression o

(h B ) aa '° b (T) = h B + T d - (26) a aa,o o dT and similarly for the term bpx [equation (25)]. 3 . 1 Summary

To summarize the calculation procedure. To calculate the coefficients of

a fluid, a, or mixture, x, one needs (a) the viscosity and thermal conductivity

coefficients of a reference fluid, (b) the shape factors and, if necessary, the mixing parameters of the fluid with respect to the reference fluid; these quantities to be obtained from a fit of thermodynamic data. The viscosity and thermal conductivity of a or x follow from the equations

= 1 n n n VK(P,T) n (pK , T' ) FH x v(20)' a ' 'o a,o a,o a,o a,o

A ? A \ (p,T) = A (p , T ) FH X (21) a o a,o a,o a,o a,o

= n n n (p,t) n (p' , t' ) FH x (27) x o x,o x,o x,o x,o

A A X (p,T) = X (p' , T' ) FH X (28) x o x,o x,o x,o x,o

In this work a is, of course, nitrous oxide. Methane was chosen as the reference fluid and numerical values of the transport coefficients were those of the correlation of Hanley, Haynes and McCarty [24]. The for methane used here is due to Goodwin [29].

Shape factors for nitrous oxide with respect to methane, equation (8), were obtained by analyzing the PVT data of Couch, Kobe and Hirth [30]. The procedure is due to McCarty [31] and will not be described here.

3.2 Kinetic Theory

For consistency, the transport coefficients of nitrous oxide for all pressures and temperatures will be calculated by the method summarized in section 3.1. However, alternative approaChs are possible for the dilute gas since some data are available. In previous work on the dilute gas [32-34], we have used an empirical fit of data and/or calculated values via statistical mechanics and kinetic theory. This latter approach has several advantages, one of which is that statistical mechanics and kinetic theory allow an assess- ment to be made of systematic error by comparing independently measured properties through the pair potential function. For example, in references [32-34], we showed the transport properties of the rare gases, and and nitrogen were consistent with their respective second virial coefficients. As a matter of interest, nitrous oxide is briefly discussed along these lines in the Appendix.

3.3 The Behavior of the Thermal Conductivity Coefficient in the Critical Region

It is now well known that the thermal conductivity behaves anomalously in the vicinity of the critical point: in fact the coefficient will approach infinity as the density and temperature approach their critical values. An account of this phenomenon is given in reference [35], and it is considered in our previous data correlations of , oxygen, nitrogen and methane [24]. Undoubtedly, nitrous oxide will also display the anomaly.

The anomaly can be calculated directly and is discussed in reference [35] but it is included indirectly in our corresponding states procedure as follows.

The thermal conductivity is given by equation (21)

X X A (p,T) = A (p , T ) FH X (p,T) (21) a o a,o a,o a,o a,o

where a E NO and o E CH , but A can be separated into two terms, the , conductivity in the absence of a critical point anomaly, A', and the anomaly

itself, A : o

c A = A' + A (29) o o o

Hence

A A C A A A = A' FH X + A FH X (30) a o a,o a,o o a,o a,o n Since we have incorporated A in the methane correlation, A will have an r o a equivalent contribution.

4. COMPARISONS WITH DATA

Comparisons between our calculated values of the transport properties of

nitrous oxide and data are restricted to the dilute gas region, and to one data

set for the thermal conductivity [19]. First the dilute gas.

We attempted to assess the accuracy of the dilute gas viscosity data using

the arguments discussed in reference [24]. Data from references [6] and [7] were selected as the most reliable with an estimated accuracy of + 3%.

The dilute gas thermal conductivity data were also evaluated as far as

possible. Data from references [10], [14] and [18] were selected as the more

reliable with an estimated accuracy of + 6%.

Following the procedure of our previous work [24], the selected viscosity

and thermal conductivity data were fitted to an empirical function for computation convenience

X 2/3 1/3 1/3 n° = GV(1)T + GV(2)T + GV(3)T + GV(4) + GV(5)T

(31) 2/3 4/3 5/3 + GV(6)T + GV(7)T + GV(8)T + GV(9)T

and similarly for A°, but with coefficients GT(i)(i = 1...9) replacing GV(i)

in equation (31). n and X refer to the dilute gas viscosity and thermal conductivity coefficients, respectively. Values of GV and GT are listed in

table 1.

10 Table 1. Values of the coefficients of equation (31) for the dilute gas

viscosity, n, , and the dilute gas thermal conductivity, A . Units: temperature in K, n. in ug/(cm*s) and A in mW/(m*K).

GV(1 .2546211337E+07 GV(2 -.1670382040E+07 GV(3 .2898185505E+06 GV(4 .3474760268E+05 GV(5 -.1674096936E+05 GV(6 .1445438546E+04 GV(7 .8767956930E+02 GV(8 -.1932828150E+02 GV(9 .7959594290E+00

GT(1 -.1550251226E+07 GT(2 •9682908726E+06 GT(3 -.2120883669E+06 GT(4 .1779303821E+05 GT(5 -.9793550977E+03 GT(6 •3480491811E+03 GT(7 -.6424000898E+02 GT(8 .4582750314E+01 GT(9 -.1120206739E+00

11 Figure 1 displays a deviation plot between the experimental data fitted to equation (31), and our estimates from equations (20) and (21), with the pressure set at one atmosphere. Our representation of the dilute gas viscosity coefficient can be considered satisfactory, the thermal conductivity less so. for both coefficients systematic differences are observed but it is not clear whether they are caused by errors in the procedure, or are due to errors in the data. A possible reason for the deviations in the thermal conductivity is that our method does not take into account correctly the contribution of the internal degrees of freedom of nitrous oxide. This problem is under further investigation.

We next compared our predicted conductivities for nitrous oxide with the dense gas and liquid data of reference [19]. The result is shown in figure 2.

It is seen that the calculated values are within about 5%, or less, of the measured values.

5 . TABLES

Tables of values for the viscosity and thermal conductivity coefficients

of nitrous oxide were generated from equations (20) and (21) . Tables 2 and 3 give the results in the SI system of units, tables 4 and 5 in engineering units.

For convenience, saturated liquid values are listed separately as table 6 .

5.1 Assessment of Accuracy

An estimation of the accuracy of the tabular values is clearly difficult and has to be based mainly on how well the prediction method can represent other fluids for which reliable data are available. For nitrogen, ethane, propane, butane and carbon dioxide, and their mixtures, we were generally able to predict the coefficients to within about 6% using methane as the reference fluid. Here we have represented the dilute gas viscosity data to 3% and the dilute gas thermal conductivity data to 10%. The dense gas thermal

* The number of significant figures for an entry are more than the accuracy of the calculations warrant (see Section 5.1). Extra figures are included to facilitate interpolation if required.

12 conductivity measurements of reference [19] have been represented to within 6%.

Based on the above two factors, and our experience in evaluating data for fluids similar to nitrous oxide, we estimate the viscosity to be accurate to + 6% and the thermal conductivity to be accurate to + 8%. In the critical region this latter figure should be increased to + 20%. As in our previous work, these assessments refer to an accuracy estimation on a 2a basis.

13 .

Figure 1. Top curve: 1 atm viscosity percent deviation plot between values

predicted from equation (20) and the correlation equation (31) . Percent deviation is defined as n[eq. (20)] - n[eq. (31) ]*100. 0/n [eq. (31)].

Bottom curve: 1 atm thermal conductivity deviations between equation (21) and equation (31)

14 1 •

1 1

- • — <

• >-

CO • o - o — CO — > •

— • —

1 m—

N0I1VIA3Q lN33U3d

15 Figure 2. Dense gas and liquid isotherms for the thermal conductivity coefficient calculated from equation (21) (curves) compared with the data of reference [19] (open and filled circles).

16 300

PRESSURE, atm

17 1

r^ t pj

O ro P- ro in CO J- PJ K. J- to CD CO J- in J- CO C3 PJ -J- iO oo CD PJ ~4 J3 p- in J- ro ro ro -r t J- J- in in Pj

pj 3> ro XI r>- pj >M in * ro o J3 p* ro ro w pj a* r^ cr> CT> oo P. ro (J| CO ro CO in ro ro in o *-• CO i£> in p- in in in CO CP ro PJ J- J3 » in J3 CD O ro ro ro ro O ro (O in

p* OO o •H -» in in rj< in in T-< r^ ro oo in in J3 o

pj ro IP. in pj pj rM in in p. rO r^ -* t pj r m r^ oo D pj J- o> ji en m ro ro ro ro ro ro ro ro ro J- 3s pj

rs --3 J* H rr> PJ £> pj ro J- o pj CO T* P. in >-i -t

J3 * T-4 -t CO ro P^ <19 ro P.. 00 CD r^ ro cr p- CO >-3 »-i ro -o CD pj p. p. ro J* PJ PJ PJ PJ M ro ro ro ro ro ro J- -* CM CO H4-1 C

CD * PJ rO in J} T in in in in in p» PJ •H CD CD

PJ D e in ro -i r«- m ro H C3 en 0> pj jf J3 CO ro in CT> CD PJ in PJ ft PJ pj pj PJ "M ro ro ro ro ro -t J- * •H X o

en

3 "3 H T* -H o cj pj in CO CD PJ pj ro 4> ro 00 CD O P- CD ro CO in ro rj> P^ -0 pj CD CO in 03 CO • -3 •u n p» pj in p» cr> ro in CO PJ CM •H -4 PJ pj pj PJ PJ pj ro ro ro ro ro -t C PJ

>> u (J» PJ O * <7> ro o iD CM N. CP -H *H •-« CM in * p~ •H H ro P. PJ 0"» in t PJ r3 P. ro C3 O cn vO ro O eO CO n in p. CM JC J3 CO CD CM JT o CM ro *-< T-4 PJ pj pj PJ PJ ro ro ro ro IO JT o pj HCO >

CD p. o> CT> P. cr> (-3 H o> in cr C3 CD CP p» J3 o> *4 H ro -* p. in J- ro ro PJ <3 5> p. •a jr ~4 en P. in m J in cr H ro in r- CO C3 pj t iO p. o< to cm H H *4 PJ PJ pj PJ PJ ro ro ro ro ro ro pj CM

a)

43 HCD * o * *J

CO m rj« -r C3 r>- PJ r^ ro CM in -< CD O CD <7> CO j} JC ro — CO J3 CO -i ro IT) P. O PJ J} CO O CM CM CM CM PJ pj PJ pj ro ro ro ro ro ro CM

J} in

IS * IT. in j} J} j} in in ro CM C3 CO in ro o CO J) o CM 10 o IM J} CO o CM ro in CD CM o PJ CM CM pj CM n ro ro ro ro ro * J-

o CD CD CD C3 o C3 o C3 o o CD CD C3 CD o CD oo PJ O eo PJ J} o Jf- pj CD Jl> CD CM J9 CD CM ro ro ro m in in r~. r>- CO 00

18 r^ m in ro PJ x> o P- ro CD CD XI 4 r^ ro cc CD P- rt pj C3 PJ CO m X) 4- o

in D J- 4- ri ro pg r^ CO o ro XI ro CO ro CP XJ rO CD CO X) in J- 4- J- in in in in XI XJ r*. CO rt ^4

4 m m r^ cj T> 4- 33 •X) PJ in r^ CD o ro in m r^ l\i CO J- ro PJ ro in PJ ro CD X>

o CD cp in in 4 pj ro in r*- O ro rt X3 ro PJ X> ro in 4 J- J- j in in in X) p>- r^ CO

•M "O m in J- CO in CO r3 C3 r^ ro ro CP ''D "3 ro ro rt *-* t lH pj ro T r^ uo 4 CO

*-> in t D "O ro CO CO rt J- (T» ro CO .t rD X> PJ a- XI 4- ro ro J -t in at in XI X) P. co

CO •U •H C £3 o^ 4 CP pj ro r^ O h*. n X> 4 -D in CO X) J- CD J- in m rt 4- CD CD in

CD -3 --4 in ,\j PJ •NJ ro in CO 4 CO pj rt x> IN. rt PJ ro CU X> 4 ro ro ro ro 4 4 * in in X) X)

•H O

en 3 =0 CP v0 -1 XI rt p. CD CO CP o O CP Mi PJ ro rt X) J- J- XI O rt CO u m X) D x> 4 r>. PJ 4- CO in ro CO ro CO ro u PJ PJ PJ pj PJ to ro ro »• 4 4- in in X> X) •H t-l c

M-l o

'3 4- CD CO o O in rt ro pj r>- CO 4 J- t5 p- ro o in ro X) J3 fO to in C3 CO CO CD in fO 4- CD

* in PJ -VI r O -O rt p» r -o ro PJ P. ro > in CM pj pj PJ ro ro ro 4 4- 4- in in X) X) r- •H 4-1 Cj 3 T3 C o ro CD rt rt in in CO P- x> X) CO 4- 4- J- 4 cj CD J- O ro ro CO JJ in pj PJ 4- cn X> x> CD

»o in J- rt ro in ro 4- «o PJ XI rt •0 PJ in PJ c\J PJ pj pj ro ro fO J- J- J- in in X) x> B •4

CU

CO in PJ O CO ro pj J} J- in o X) X) CO CD PJ 10 cp ro rt rt in ^4 ro X> X) rt pj a* CO CD

H "0 J- X> CO CD <\l <7> ro XI o> ro p*. X) CD in ^4 in rt (NJ PJ pj ^J pj ro ro ro 4- m in X) vO r>- *-< cn HCU CO CP X) PJ •o in 4> J3 o J3 J- PJ CD p. ro CP a 3 cp CT> CO CP pj ro PJ ro P» (M o o pj in CO CP rt H -4 PO XI CO rt fO PJ in ro rt in CD 4- CP in rt rt pj PJ pj PJ ro ro fO J- in in XI X> X)

4 in in PJ rt o in o rv in ro rt C3 ro rt -4 pj PJ ro in CO eg rv in -* J3 CT in ro ro jr CO PJ CP P.

PJ ro in r» CD PJ in rt 4- CO pj o C3 4- 0» ro CO o rt PJ PJ pj pj ro ro ro in in in X) X) PJ

^ CD o CD cd o C3 CD "3 CD CD CD «o PJ X> o 4- CO pj -O CD * CO pj X) 4- PJ J3 CD PJ PJ ro ro to m in in X3 X) P» CO CO CP

19 -2 Table 4. The viscosity coefficient of nitrous oxide. Pressure in 10 psi

[i.e., pressure in psi is obtained by multiplying by 100.0], temperature in degrees Rankine, viscosity coefficient in 10 lb/(ft.s) [i.e., to obtain X] in lb/(ft.s), multiply the entries by 10 ].

20 CM CM i-l vO J- •H m -* t^ CM m CD r«- CD o CD iH CD to i4 »4 o K • •M *- IO o» to tn tw in CM CM H * N. t^- iH CO t^ f^ CO CT« •4 to fO to to vO to in o< in to CM -1 O m ^ K vO 10 10 >0 \0 K h- iH CM ov <0 J- CM CO o> CO t^ >o m to CM

J- fO CO r- «o CM j- \D to CO CT« J3 a * r- J- J- CM vO * J- I*. o • i4 CO * 1-1 in I*. o» vO CM o» t4 CO vO V0 (M iH i-l CM to m l>- a» CM K CM in to -» CO j- CM i-l a> CO * 1^ vO vD >0 \D tO 10 vO vO >0 0"> 1-1 CM \0 -* (M a o» CO t^ m * CM •H H iH i4 t4 iH »4 i-t i4 i-l CM

CD •& -» in h. OS to •H >0 * i-i CO CM CD CM >0 in to N. in to e in <=> • CM i-l o» \D to N. o» H t«- i4 iO CO f>- t4 t^ in in 10 tv. o» »4 -t >0 i-l O kD •H s CM to f«- J- i-l O CO in f^ V0 in in in in in in 10 tO <0 »4 r. CM vO CM o OV

CT> in h» j- t». o CO CM r- CT> to * CM .* o CM ^ in CM in t>- 14 - j- • CD i-4 o CO in a< 14 CM CO O i-l CO l>- <4 CT> v> o •H to m 00 o to j- o o> in •r* to w4 CM K. to o a> N. CM in m * m in in in in >o <£> •4 CM 0» v0 » CM C3 o> CO m (VI CM

o r» i4 iD .» <0 o O in CM CM o» CM to ^ j1 iH CM in i4 (T> oo h. CO • CO CM CM H 0» * in m o» \0 >o CO X) vO® t^ o» 14 to \D CO i-l ^ h> 00 >0 to O* CM a> «4 -4 CO vO to to to to to to -» J- ,rm in * * m in in (O CM CO vO ro CM o o> K. vO in CM CM a.

io |H in (ft >o vO J CO -t >o CO -* CM 1-1 r^ CO to a» CO t>. CO o CM in CO °- °. 10 CM * -* to t>- CO K CO a> i4 CM to in CO o IO >0 CT> to <0 o> CM fU- <0 * i4 K. o CO o» to vO to CM CM CM CM CM to to to CO -»• ^ * in vO CM CO vO to 14 o CO N. 10 i4 i-l iH iH i4 t4 t4 •H iH i-i r4 iH t4 cm CM CO E-c

ro *. i0 v0 to CM iO 00 CM i4 l>» i4 o» 4- * o a> O a< ^ in a> • * CM 10 r- J3 »4 t4 CO * <& CT> CM CO .*• 0 CO in to O CO CM CM

CM o IA in CM in a CM m 0» to 00 to 10 o • CM f»> CO o a * CO —I * N. t4 * CO •4 in o» CM 10 a to N. o .» CM o CO in CO 0> cr>

•H •4 .* o» in -4 p~ to o» >o CM o» V0 t4 CO V0 to a r^ J- CM 00 e * • •rt to »4 X) a to Ki o -» CO t4 in 0> to >0 a * CO t4 in o> CM •4 vO CM >0 N. O o o H «4 CM CM CM •O to to * in w CO in (VI CM »4 •4

N. o» V0 IO iH a> lO » to y4 o» N. kO -* CM •H CT> l>» -* CM a N. in CM • W H ITS o» to v0 €9 J- «0 CM m to ts. i-l in CO CM 10 a * N. H ce vD t0 >o N. h. CO CO CO o> o» o a i-t T-l i4 CM CM to to to ^ in CM

Of o o O o CD o a o C3 o a o a o o a a O CD CD CD a CD o » to in t- CT —1 to in K. c* -4 to in r^ o< -4 to in ^ a» t4 to m lw I— to to fO to * rf J- * t m in m m m 10 t0 *0 10 V0 t*. N. t«. h.

21 us C\J If) r>- -» J- CM CO -< (SI J3 o» m U> *4 o» o> o (M -t CO (VI us M «H o» CD CO K sO in us ro

r^ UJ o o< o «( a J ro j- J- s. vO us J- o CO US us * ro ro (Si (SJ (SJ (SJ (SJ <\J

a* us -H rO ro a (SJ n -i CM 0^ CO N- vO US J- * ro ro

(VJ CO U>

Ifl N. ** (SJ a» k M o -» »< a> a* O (SJ ro n- o ro w a «o us us ,» ro (SI M

ro ,4

K. f«. ro so r«. US k. r» rw r>. co * us

o (SJ vO o ro us 0> CO o K. o (SJ vO (SJ <\l f>. o> N. CO (SJ eo vO UJ us <© vO us vO CO o» o J- (SJ H 0» CO r* u> us * ro (SJ <\l

»-l * -r*

CO «4 O (SJ (SJ N. .» ro •^ CO -o us * (SJ (X CO CO CO H o"> CO s. J- ro

M N. «4

US (SJ (SJ us us .» •H 0> J- co r>. (SJ -rt

* ro -i -t *0 r>- K. <0 0» r>.

r>- »* (sj us .* CD US (SJ ~i (sj ro J- V0 J- r«. .* vO o *0 M -H 0< ro o< M as i0 .» (SI *4 OS J3 US IO (SJ •H (SJ

r«. o> *h US K. 0< w ^ ^ us u> r>.

22 CVJ CM

«o o. ir\ * •* cj» o CM fO vO r-. eo «» CM (M CM (V CM CM

Ift CO •H o - 1A -* <\J * * Ifl «fi h» H cm (SI CM cm C\J OJ CM CM CM T3

CI •H

C ^lv><0»Mf-"-«i*>o.r(T>tf% o HOMO u tft^OI**eO<7»OO-Ht\lf*>.*l/\l/\*0S^OCT*r^t£>-?rai-oQ

h».*CMCJ>iOCMI>»-CMi0*--f'>T*.* H iftvDN.r» «o f» ia .» cm ^ j>- »o .» ro cm -h

oaooo>0">cr-*tf>4'OKf>^rO<4CrK.>fi intrivoroooiTOT^^HiMn-^UNvOtfihoooT4-HHi-tT-tT4l\l(\J(M

«-l»-(*-(l»-lT-(!»-ICMCMCMCMCMCMC\JCMCMC\iCM^ir»ier^«oiy>ow»H(vii*5j'iiNi/>»er^

OCMMCM«-»<0-», .*f»-l>.tf> i>.vOi/\-*fo»-iof»>c\joaoinr»>»-'^m^os.«<3«oo<-i(Mro^ir\us »HxH THi-g r^'i-tPJCJCJ

ou\otf\ou>oir»oif\oir»ou\ou\oOOOQOQQOOOOOOOOOO «>«>H'OJ, JU\lftJ>

23 & o m •rH 4 r- CM CM cm CM CM CNJ

U\ i4 r».

CM vO a< ro * O -4 J- 0» »4 in r>. a O m ro CM CM • (Si * CO .* cd K. -T i4 o in ro CM -i -4 i-i ro CD o o o i-t cm CM rO * j m O -< CM CM CM CM <\j CM CM CM CM CM CM CM CM CM CM CM ro ro ro

o CM o r- -1 CJn CD in CM CM .»• CO a vO CO in o * • --4 CO .» (M on r^ m ro -> o o» a> o i-4 a* o» O o -4 t4 CM f»> rO J- in *0 r>- CO CO a< w CM cu i-« 1-t (\) <\l CM CM CM CM CM CM CM CM CM CM CM CM »o ro L HC 4-1 c o o •H a< »4 »4 r- N- CJ vO -» * r^ CM CD CM CT» ro N.

i- f*> ON • .* r>. in CM o N. in ro «4 CD c CO 1^. co 0» o> CD O -i CM rO ro * in o r^ N. CO ON o »4 H i-l iH CM CM CM CM CM CM CM CM CM CM CM CM CM ro ro St

ro fv to vD vO i-l r~ 0) N. O in ro in CJN H o * CM m • CD * O vO ro CD CO in ro iH o CO r^ vO 10 >o rw IS. o» CJ> o O iH (M CM ro .» in -O vO K CO o» CD -4 i-l i-l i-l CM CM CM CM CM CM CM CM CM CM CM CM CM CO ro

vO vO •a CM CM lO i-l a> en o ro r«. CJ< m CO i-4 CD. • «o •4 r- J -4 CO >n ro -H CD CO -D in * -» -* o i4 i-4 CM ro * in in >o r^ CO o> CD 14 i4 »4 1-1 -H CM CM CM CM CM CM CM CM CM CM CM CM ro ro

•4 vO o> CO O in CM i-l i-l ro N. CM H CM CO CD CM o • ro CO J- i4 a> >.o .* CM CD CO NO in J- fO CM ro * UN o O «4 CM ro * .* in vO N. CO o< o •4. i-l 1-1 »4 .4 CM CM CM CM CM CM CM CM CM CM CM CM ro ro

r~ l>- -» in <7> fO "0 -» .0 CD in CM o> jj -» CM CD CO J3 in ro CM •4 iH i-( CM .» r^ CO a* o> o i-i CM ro ro * in J5 N. CO o> CD •4 CM CM CM CM CM CM CM CM CM CM CM ro ro

cc o at a a CD CD O e> a CJ O o C3 O o CD o o n o in O m O in o in o in o m o in O m CD 1— CO CO a> CJ» CD o i* w4 CM CM ro ro -» * in m tO

24 Table 5- The thermal conductivity coefficient of nitrous oxide. -2 Pressure in 10 psi [i.e., to obtain the pressure in psi multiply by 100.0], 3 temperature in degrees Rankine, thermal conductivity in 10 BTU/(ft. hr. °R) _3 [i.e., to obtain A in BTU/(ft. hr. °R) , multiply the entries by 10 ].

25 1 i

ro CO in to in iH in r- ro ro ro in in CM CO t4 iH iH rv O CM m to CM CM ro ro rv. o-> in 10 >0 «0 00 a

rv i-i ro in ro rw *4 m C3 v0 o» CO I*. S. K |v K. CO 1-1 o O CO CO rv vO <0 J- CM CM H in

N. i-l rv CO CO CM in CM in CM m CO 00 CM 0> r^ O 00 i-l o ro i-l o CO CO V0 ro 1-1 a CM ro <0

CM CO J- r- i-4 CO CM <0 o J- o» CO t4 o o a* co CO rv <0 V0 m in ro CM i-l T-l

ro ro o in r». cr CO CO CO CO CM o o"> in rv ro o o CO »-l rv -t CM CO CD in in CO o in in in CM

CO tv , «-l ro O CO CM o> ^ .* CT> N. N. -D >0 V0 kD JD >0 rv t4 o O CO CO rv V0 in i-l i-l

m rv o ro 0- ro CM ro o 1-1 ro ro C3 fv CM CM rv >0 CD rv rv i0 fO i-i i-l J- «o o A w4 <0 J- in iH 9> i-l ro m r» <0 >0 m m in V0 >0 >0 <0 *4 o 0">

tv CO ro (O cm CO CM r>- 1-< i-« CM cr >0 o IM in O CM CM O CM w »-i CM rv. >0 i0 • o CM in CO

0 m * ^ * -f t in m m in 10 1-« o o CO rv -0 A 1-1 H

01 V0 CO in o i-) i-i r» CM in in V0 CM iH i-l ro * to i-» rv o rv 10 O >0 CM (0 r- CM o o o CM ro 10 CD ^ rv •o rv 0> cm in CM CM ro ro ro ro ro ro ro to in CO * * * in 1-1 o 0* CO rv rv in H in

in CO ro rv >0 i4 i* CM i-« 0"< ro *4 CM V0 CM o o in ro IM o CM CO i-l CO ro CO ro o o CM -r >0 CO J- ro o ro o <0

* m CM CM CM ro ro to -r * J- 1* o 0> CO i-» 1-1

in CO CO cm o ro to ro CM CM ro m CO CM r— CM CT> rs. V0 rv a ro in CM ro CO o V0 en CM m ro rv

(\i J- V0 CO — CO CT> cr 0* o o a i4 -i i-< CM CM CM ro ro * O o-> en CO r-l

CO 0> o CO in rv CO o CM in CO CM r» CM CO in CM o o o CM O rv o ro O ro 10 o ro o s CO CM V0 00

CT> 0* Of a O 14 •4 -c CM CM » r»» ro i-l o tr> o» —

O CO CM i-< i0 V0 i4 ro a r«. ro i4 -l CM * 10 CM (M tv ro o> -1 CO in 0» CM <0 o J- CO (M >0 o J-

in vO kO vO rv N. r>. CO CO CO a< CT> 0> o o ~t W -H CM CM ro ro t4

a:

o o o a o o a 9 o o o £3 o o o O a O o o o CO m rv en ro in ro m CJ< iH ro in i4 ro m •v t— ro ro n ro 3- J- in in in m in >0 \0 V0 t0 *0 rv rv rv

26 in ro r^ o CD CO CO o J- V0 CM r«- CO \0 rt o r» CM IO •0 CO CO P. en to CO \0 en CO en e rt ro CD rt p. P»

in J- O ro PJ <0 i-l CM p. to en <0 to rt CO in to rt en CO rO o en CO CO P. P- <0 <0 in m .»• ro ro ro to pj CM rt

CVJ CM in T-l 10 P. CD in en CD to CO o in pj in CO ft 10 o in en o in J- PJ O rt i0 p. m m rt CO en \0 a CO o

m en pj (0 o in e m CD in ft p. rt CO J- ft en CO 10 ro •rl en en CO CO p. vO V0 in m to ro ro CM cm CM PJ *4

r4 N. PJ en ro a \0 V0 in CD p. to en J- ro ro o CM CD CO o pj P. r- *4 a V0 ft CM en CM en o en ro v0 CO J3 en

in pj p» in en ro CO CO ro CO in rt CO ro CD r^ in ro ro PJ rt O en CO p. P. vO >0 in in ro ro ro pj CM CM CM CM *4

CVJ P- P» ro en en CO pj CD en ro CO ro ro en CD ro en ro rt ro p- rt m e CM r~ PJ p. ro PJ rt ft ft (M CD 0» CO CO p. J3 vO m in ro ro CM pj PJ CM CM CM CM

10 o ro j) CO CO CD CO en CO CO V0 p. CM en ro T3 o •H •H a CM pj in en m o 0> J- in CM CM CD m rt to en JJ QJ en o ro j> en ro P. «4 m o in en m ft V0 CD 0 ro PJ rt o CD CD *4 O en 00 CO r^ P. «0 vO in ro ro PJ CM CM PJ CM CM CM C * •H •U V) C a. o

i o O ro CD PJ ro N. en pj p. CM pj >0 en CD PJ CO PJ P. •0 H O in en to CM 0"> en v4 in o in PJ CO r>- in m in to vO ro rt ft a. co o M in en M 10 in o en CD to CM rt CD CD CD CD w o CO P. V0 in to CM CM CM CM CM CM CM CM •H r-\

in J' MS -1 en m to V0 rt vO CO P- ft m P> O o cm in 0» in CO en vO ft 10 ro ro rt J- in CD p. vO r«.

P- o N. in m ro ro CM CM CM CM CM rt rt ft ft rt

a a> PJ o j> CM pj (O m CD ft in rt 10 <0 en CO 10 o a ro JJ ro pj n en CM CO m ro rt ft CM

10 o in as PJ J9 O J- en to to CO en JT ft o en en en en en CD en CO CO K. >0 in in ro pj PJ CM pj

*4 tO en rt J- en o CD j> CO in J> PJ en CM in CD to O rt O ro en en O CM <0 P. CM 10 CO j> m in CD N. J3 P> CO

in en m 09 rt in O CO PJ ts. CM in j> CM en en CO ce CO • o o en CO CO p. m m to pj CM CM H

CO •* ro ro P. V0 in Ift jr m PJ CD rt en CM ro in in a CD P. o J) m CO o CD in CO CO CO en jt P» to rt rt CM jr

j> CO in en CO PJ rt ft to a en CO CO CO CO CO CO o o 0» CO CO p. j) J3 m in t ro PJ CM <4 •4

Of o o e O o o CD O o CD CD o O o CD a CD a CD CD o o a ro in P. •rt ro in p. en to in p- en ft ro in en rt ro in p. rO ro ro ro J- -*• in m in in m 10 j> jj K. p> p. 1—

27 t

h o-> •D --t tO CO N. ,H

W .-I W

»H ** -H (M

CM (J> *< CM

o co o *-C CM in CO o CM vO CO CO CM CM

«o in T-l 1-c CD CD r^ o T3 O o CJ> ro O J- CO (M CO o CO >0 r«. co r^ CO 0> CM rO in CO o t4 ro in CM C — •4 cm CM CM CM CM CM ro io ro ro ro ro •H 4-1 C o

-0 in o ro ro in in ro CO in ro J- o o o ro ro CO ro <7< o o *4 CO

-O \0 o o ro ar» •H ro m r^ •H -4 <\J CM CM CM CM CM CM fO ro ro IO ro H HCO 0"> CM ro in CO CO CO o CM O J- J- vO t4 CO ro CO CO in in

* in CO o t4 CM in O CM -* CO CO CM CM CM CM CM CM CM ro ro ro ro -*

o o in 1- o o m o ro cd ro in ro CO o CJ> CO CO CO

CM * in r- CO <7> o CM ro in r^ CO o CM ro m CM CM CM CM CM ro ro ro fO ro ro

•4 CO -1 to in m CM CT> o in o ro -4 Is. ro o CO m ro

»* J Ift tO CO CJ> O CM ro in \0 CD o -c n in K. CM CM CM CM CM CM ro ro ro ro ro ro

CM in m o CM -1 m in o C3> in r«. J- in CM cm o to CO CO •H CO in »0 «4 a in vO 0» e -< rO CD t4 CO m CO t4 CM CM CM CM CM CM CM ro ro ro ro

a:

CD o o CD CD o C9 o o O O o CD o CO o m a in O in O UN CD in o m a in CO m o 00 0> CD o -1 CM CM IO r in in 1

r- in in J- -* CO in \0 cr> CO CO vO CO CO CM o CM m o <0 ro CM CM r«. ro

IT. 10 to r- r>- CO i-l CM J- m r^ iH ro in CO CM CM CM CM CM CM ro ro ro ro ro ro ro

CM 1-| m 10 CM J- CO in ro O ro o ro CO 00 r^ in o J- ro ro in

CO in in m 10 CO ro ro J- vO CO o CM r»- ro CM CM CM CM CM CM ro ro ro ro ro ro

ro O in 10 ro ro m ro >0 m i0 CM in CO o CM co in J- in r*. o o 10 ro ro in CO

in ro CO in >6 or» co CM ro in r- 0"» i4 ro CM CM CM CM CM CM CM CM CM ro ro ro ro ro ro

CM J- CF 10 CM o-> ro ro V0 a i-C in CM i-l CM in J- cr> V0 ro ro CM

e i-« 1"» CM ro -* to ON CO CM i0 eo o CM in CM CM CM CM CM CM CM CM CM ro ro ro ro ro

CM o ro ro «0 m ro CM CO V0 CM CM m J- a CM co co o ro r«- CM rw J- CM i-t CM in o T3 C3 CO 0) o CM ro m •a CM V0 o CM in i-l CM CM CM CM CM CM CM CM ro ro ro ro ro

•HU C o in CM m CM i-l o CO r>- in ro o ro iH o rO «o in H in CM o o ro o CO CM fO 10 CO o CM in CO CM CM CM CM CM CM CM CM CM CM ro ro ro ro •r J-

Ha)

H T-l rv 10 %0 r>- r>- 10 -*• CM a CO o r>- m o m CM ro in co CM ro o CO V0 CO o m

r>- o i-l CM ro in CO o CM ro in CM H CM CM CM CM CM CM CM CM ro ro ro ro ro ro

CM i-l a o CM in in ro i-i CO >0 ro CT> co in i-i a o 1-1 ro 10 a in i-i CO i0 in CO CM

eo i-l CM ro in CO o iH ro in r^ i-i — —1 CM CM CM CM CM CM CM CM ro ro ro ro ro ro

i-l CM m CO iH CM ro ro CM CJ> ro o i-l «o CO o CD ro ro CM CM ro m o

US O -4 CM in 10 CO •4 ro in 9> t4 i-l i-l CM CM CM CM CM CM CM CM ro ro ro ro ro

i-l CM in CJ» O CM CM o CO CM i-4 N. O in in

IS CO CM ro in 10 CO CT> i-i ro m r^ 0> H ro i-t i-l CM CM CM CM CM CM CM CM ro ro ro ro ro

cc O o CO o CO co co eo CD CD a o o o CO

29 Table 6. Saturated Liquid Transport Coefficients for NO

T T n

°F °R lb-mass/f f s BTU/hr«ft«°F

127.03 332.64 .25188E-03 .11312E+00

• 99.99 359.68 .19866E-03 .10210E+00

• 50.0 409.66 .13464E-03 .84157E-01 40.0 419.67 .12516E-03 .80840E-01 22.0 437.67 .10998E-03 .75034E-01

• 4.0 455.67 .96711E-04 •69392E-01 5.0 464.67 •90656E-04 .66617E-01 14.0 473.67 .84921E-04 .63863E-01 23.0 482.67 .79464E-04 .61126E-01 32.0 491.67 .74250E-04 .58405E-01 41.0 500.67 .68980E-04 .55536E-01 50.0 509.67 .63901E-04 .52725E-01

59.0 518.67 58956E-04 .50018E-01 68.0 527.67 ,54078E-04 .47495E-01 77.0 536.67 .49158E-04 .45266E-01 86.0 545.67 .44106E-04 .43498E-01

95.9 555.57 , 38150E-04 .42357E-01

30 6 . MIXTURES

Equations (27) and (28) were used to generate tables for two mixtures of

nitrous oxide with carbon dioxide: compositions C0„ (12%) - N„0 (88%) and

C0„ (6%) - N„0 (0.94%), respectively. The results are tables 7-10. Since carbon dioxide is so similar to nitrous oxide, our accuracy assessments for pure nitrous oxide are probably valid for mixtures. No data are available for comparisons.

7. CONCLUSION

We have predicted the transport coefficients of nitrous oxide, and of

nitrous oxide/carbon dioxide mixtures using a significant modification of the corresponding states procedure. Tabular values have been listed. Data available

for comparisons are scanty. More, and more reliable, data will be required if

the accuracy of the tables is to be improved.

8 . ACKNOWLEDGMENTS

We are very grateful to R. D. McCarty for his help with the PVT calculations,

to P. M. Holland for valuable discussions on the statistical mechanical

calculations reported in the Appendix, and to Karen Bowie for her help in preparing the manuscript.

This work was supported by the Air Force Weapons Laboratory, Kirtland Air Force Base, New Mexico, Contract No. 76-258. Also (in part) by the Office of Standard Reference Data.

31 1 1 1 « 1 i

j- 00 vO fs 10 \0 10 u> CO 10 in J- OJ

.?

fO is. fo is CD CO oromcM«-*iMfO.-r-<0 in CM co *-i »H in OJ CD O- vX> v£> *£> *£> vD (D <£) J3 M co vO KO OJ CD (T> fs

to is, .-i

CM H r-1 .H -1 -I

o-> OJ .» * »H rs CO CD j- CM in a* CD vO ** CO Cf> o> J- fs *H CO in in CO cd •H is 0> * CD n CO .» * in •H o> o» CD IM J- IT> to .»• o 10 o CO CT> CD fs m i»> IS. in in J- J- m in in *0 CO J3 W O CT> Is C0 in -H T-t »-( •r* —

CO C0 in in in CO CD CO o H 0 >o CO 0» i-< j- fs o< 00 »J CO in co IT" fO f«> fO l*> f> ^ * * J- in m <0 •H CO in »o T») CD) is -*• ^-1 * •I— CO kO — -^ — »H »H •H * T-l — -1 CO OJ IM -( «* •H t-I t-I CD.

1o I— fs cr in IS. CO vO -» -4 CD m in c> -»• (T« fs vO vO fs a< OJ m a>

• .» CM io CO IS 1 a. H in \0 vO W >-t CM ^ 03 CO »H J Is CD fO fs f»> fO o ifl a- 10 o -» o o o n a * * * in in *H CO fO T-1 m o CO fs tO »^ •J .-i W ~« W 1-t »^ M T-1 -i oj CM *H tri r-4 »» T-l

S-i a

~S> f> in in CO CM -»• ^-» u J- * CT> m o CD • -c CO CM in CO ^ m CO tH in CO OJ m IT i0 .»• -»• * T-f -t "> CO * CD a CD) -« t4 *-l OJ OJ OJ fO fO f»> J- -» j- »H CO in to t-i IT CO •M T-C ^t H H T-t >-« ^H t4 T-l »H tH »-l -i Tl

0) «H V0 ,C C in KO i»> IT t-i * is. O -»• a< * £T> m CJ CO in OJ CO in OJ o< 10 H 13 CD • Is. in XI CM -h —« * CO in CO -> m CD CM J} o> fO Is CD ^ CO T-l in U< o CD CD -i »-l »H OJ IM f> i»l fO J- j- —* IS. in to — IM

in IS, CM v0 »^ J> J3 * t4 IT CD • vO in is fO -0 CD * IS. •H in ao IM vO CD ro fs w in CO OJ 10 CD fO •4 f»> IS. a< O O •4 •^ •J IM OJ OJ f> l*» Jf * in IS. in IM CM -1

-1 »H CO D J- CM CD CT IS i0 .* fO CM CD CO .O in f*> W to Is — J- CO CM a CD * CO T-l in CT> n IS W * CO OJ CM >-D c0 vO IS. fs CO CO CO CJ< T« CD CD O -H •-• H CM IM f»> l"> f»J j- in CM

O CD O CD o CD CD CD CD CD CD CD CD CD n O CD CD o CD CD CD CD) CD IS. t-I l»> IS. i-t , m m a> u> o» ro in fs a> W n in fs 0> -1 fO in Is r- ro to to fl * .* * J * in in in in in JJ 0 V0 vO vO fs fs IS. IS

32 »-t c» w

n. r^ cm

o 00 J- m »-» t* vO O D o J- * K> N N IM

* h» -t

CM N.

CJ» ~i N. n. in

in 00 yO o 00 0"< T* in f^ * in N. ,4 >£> » «I> as o> -i vT) .» CM tH

00 »l *H T3 r- •4 <« 0O CM in vO W 3 •J3 •4 N. in in <7> J- CM cm (M «4 <7> 00 r«- cm CM CM C cm •HU C oo

CT> vO -T O fO 0O ro kO » £> O iD (T> vO * CM fl a<

CM a ao *H cvt fl »h *h ro N- *o Ift ^ » fO CM a> vO

f> CM «« t* ao N- vD in

o .#

CM t-( w N. »4 .* CM *> CM «4 CT> *£> j rj

-» e> ro .» US It. o fO -t CM N. ao n. K *. K- N. <7> J3 -» CM a

n. o> w w * in tO tO N. K.

33 t

r*- tO * o> N. 10 r^ ON ro CO in in >0 (VI (O (VI *

• N. J- »-l CO V0 J- cvj a cr> r^ V0 in -T -» .» in 0"» r>- CO a> o •H (VJ to w * m i0 K. CO o> (vi CVI (vj M (VI (VJ (VI (VI CVI (VJ CVJ PO to

i0 *£> o N. vO ^- CT> 0 (VI o> CO (J" m in rn m

• J- *-l cj> 10 -* (VJ CD r- j- o «H (VI (VJ n J- m £> r* CO ov o t4 (NJ <\l CVJ (VJ (VJ (VJ (VJ (VJ (VI (\l CVI fO w

N. J3 in o V0 CO »4 in a» in (VI ^ (VI r-» V0 f»> (VJ

• * (7> 10 CVJ 0< l»> -t o N. in * (VJ T-l o o *-l to T-* r>. f^ CO a> o -4 »-» IVJ CO -» in V0 N. CO a< CD -t CVJ (VJ

C* UV J- m r** o fO CO fO \D o * in CT> r» o a< • co vo J- (NJ o o» h» in * (VJ •4 CD o> CO co a< o -i cvj CVJ (VJ (VJ (VJ (VJ M (VI (VI (VI (VJ (VI to

K CO ~4 CJ» * in -i »~* ro -H o m o V0 n a> to • to »« CD eo •0 m CO (VJ •H OV CO r. T3 <0 m ^ m >0 o -H (VJ fO n J- in \0 N. CO ov o 0) M VJ (VJ (VJ (VI (VJ (VJ CVI (VJ to 3 a 3. •HU c 3 o o o in CVJ CO * H h> w CT> m «H cr> N- *. o CO -» L # h- -D * »•> (VI CD 0> p. vO m m (VJ o

(H

CO co p. •J) -J? CVI (T> .0 ro -* o 10 n CD o (VI H o CM • .* w CVJ w o CO f^ <0 V0 -» m V0 N. CO a> 0> o •4 (VJ M> -r in in 10 K. CO

*-» (VJ fO to CVI o p« * a in o t CO f0 s. CO o> (VI (VJ (M (VJ (VI (VI (VJ CVI (VI (VJ M

J- h. CO o CO o * o> V0 o * CO w fO £> Cjv O * • CT< CO t>- r» in -» CM o CO r> «4 .» in t0 *» • o» (3 •4 (VJ (VI •O .» m <0 s. *» co (NJ (VI (VJ (SJ (VI (VJ CVI (VJ (VJ CVI (VI

»H -*• >0 V0 & m (VJ CO # CO »4 * ^0 h» p» f^ |0 CVJ • IS w 03 m .* IO l\J o o» r- <0 * (VI CD CO V0 J- # in vO N. CO o> CD «4 »4 (VJ It * in 10 >0 K- CO

a. o a o o O CD O o o CD CD o a a o a o o o in a in CD m C3 m o in CD in a m CD in a t— 00 CO a* cjv o CD ~* ~< (VI (VI f> n .» J- in m i0

34 »

o -» -» in CM 00 It. •H CK J- J- *4 V0 CO i0 CO o O • CM H is. is. CO * en in —1 h. in CO CM iH CM IO >o in Is. 10 in in CO •ri CM IO ^ in IO CVJ (M CM CM CM CM CM CM CM CM CM CO CO IO IO IO CO

CO (T> CO is. H is. -1 CO •4 * CO 1*. 10 IO ao J- V0 o • X) t4 iH j- CO CM GO J- »4 ao •£> r CO co IO m CO s o -T -0 * j- J- in in tt) fs. r^ ao C7> CO «H CM CO J- CO (M CM CM CM CM CM CM CM CM CM CM CM CO CO IO IO CO

tH io CM CT> CO U5 o CT CO r4 CO a •»* (T> CO -4 a * • -»• t VO * ro Cs. co T< CJ> f>- 10 in * in IS. CO in CM CM CM CM CO * -» in v0 •O IS. ao on CO *-i CM -» fM CM CM CM CM CM CM CM CM CM CM CM CM CM IO IO CO IO

*-l CT» in *-4 -» CM » CD a> o in CO X) ao IO CM o * • CO in o lO CM o> «o * 1-1 o CO is. 10 vO XI ao •H co 13 a «4 H CM CM CO .* m 10 vO is. ao o> a H IO CM (M CM CM CM «M CM CM CM CM CM CM CM CM CM IO co IO

»« vO in o *H o CO CO 10 CO X> in IO o * a * H CD • 0» CM is- n o f*. .» CM o ao x> m St * in X) a» 3 a> a» a o ~t CM CM io * in in vO fs. CO o» CO h CM w h CM CM CM CM CM CM CM CM CM CM CM CM CM IO CO CO PI « •H a. +J C o io t— CM io N. o» <& CO CO •H CM in CO 0» CM o< CO i0 * °- . in en .» o N. -* CM o m IO CO CM IO -* fs. ao o> o» O •H H CM CO * * in vO is. ao o» CO r-i CM »4 H w CM CM CM (M CM CM CM CM CM CM CM CM CO CO CO

HCO w CT« Is. .»• CO c- co CM in CM in ao in O * * * * • •H 10 -I CO m CM o CO v£> ^ CO CM •H •H w CM in K o» CJ» O co »4 CM to CO * in \0 is. ao cn o -H CM H H w CM CM CM CM CM CM CM CM CM CM CM CM co CO co

00 co •H o» m CO in ao o in a • K. io CT» in IO O CO vO « CO w4 CO o» CT< o» ^ w >o ao CJ< CJ> o «4 CM CM CO ^ in 10 IS. is. CO

CO co in in 0< £> in in CO fO CT> ao K CO •H in a H • * o jj CO o 00 XI -» CM •H CK ~x> ao Cs. ao cx •4 1ft

9 CT *4 o» CM CO 10 XI Cs. •rt m CM H J- o CM CM in • a Is. co t-l 00 vO * CM W o> CO hs iO 10 XI is. o» * 00 as ej> CO a »4 CM CO * -» in 10 Is. CO c» CO 1H H •H W «H CM CM CM CM CM CM CM CM CM CM CM CM co CO

Of O O o O o o o o co o CO CO CO CO CO a CO o •» o m CO m CO in CO in e in CO m o m o in o (- CO CO 0> a< o a tH H CM CM CO CO J- .* in in 10

35 t 1 1

in CD lO ~4 eo pj ao P5 J3 00 J3 in pj CD o J3 eo r>- to o O eo PJ 00 s p- PJ eo iC >0 p.

CD 9 J- P- PJ in J- p. CD o> OO P- p. p. p. p. oo t-I CT- 00 00 o O p. \0 \0 in J- J- to PJ PJ »-l H •H H T-l •H t-I

CD in PJ 00 P- tA in J3 PJ J3 J) ao ro P. 9 UV CD 9 in a GO PI ro \0 pj 4- J- in PJ CD 0> »-l »-l •H PI m p. CD ro eo vO en to p- in eo 00 tH o-> p. P- p. P- P. P- p. p. tH t-1 CD CD en P- j} in J- J- PJ PJ T »-l »-l T-l TT •H tt t-I o

O ro p- ro CD in in p. P- in ro in p. CP p. CD CD in o rO t-i to CD in in ro J} J3 in in J) 00 ro

— vD O ro CP p. vl -* 00 pj (\i 00 p- •o J3 jj J3 J3 J3 p. p^ t-I CO o CO P- J3 in tt tH

OD PJ PJ CO to CD P. o 00 T-l PJ in eo ro 9 CO CD 00 CD CO PJ 0> P> J- PJ in CM CD 9 PJ Jf P- CO vo o in en PJ CD to p. in 00 P. >c U> in m •-O *D J3 \0 r^ t-i CD o en CO p» P. <0 JJ m -* pj T-l

vD CP m <\J CP in P. CD PJ pj w in pj PJ T-l p. ro in o p» PJ t-| (M in to to ri p. JJ P- ao o to <0 pj 00 in P. m eo in a* m in m J- J- * JT * m in m m V0 t* CD eo K. P. in

in t-i in 00 ao to in r4 pj j) in pj J} in 00 ro in os TT o pj p. in m

J) IT. JJ H •4 09 a to to w to fO to ro ro * # » in in o 00 P. J} in m to TO

PJ TO in in p. PJ oo p. CD in 9 oo j> J3 p. u o PJ ro en *4 in 00 o •H pj *4 H CO T-l in

-» -* <0 o to r. CD PI ~4 -i *H w tH — PJ pj pj ro ro ro * .* -» t4 CD or> 00 t4 o

o p. P. t CD P. PJ p. P. p. in in PJ oo 00 TO o CM p. to PJ «4 to j} 0^ pj in pj ro CD jr 00 ro

PJ IT. p. o to vD 00 a> 0> a> O^ o CD CD »< »4 «4 (M PJ to ro fO J> tt o> T-l

-* CO 00 00 o^ pj p. CD 00 J} ro pj t4 -> pj ro V0 a J- ^-1 p. a p» o p. -< in ro P. in o> t* ro in p. o r- N. 00 eo • CT» a> a> 9 O a •4 •4 •H IM (Vi to to ro to o t-i

•4 PJ in CD in o in p. J> PJ »4 •H — PJ p» 9 M P. p. CD eo •H in ao pj in 0> P5 •r. in C7< ro r>- t4 <0

PO in JJ 03 h. p. p. eo 00 00 o">

a. > 9 43 a CD O CD o CD CD o o o o O 9 9 CD CD o CD CD 9 fO in p» (5> t0 to m P. to in p. <-l to in P. ro in K. r- ro ro po ro in in in in in J> j} J3 J3 p. p> P>

36 in CM o 0O 0O CO a CO o CO a* o CO as c^ in e CM in ro C3 CM co (T cm 00 ap (M c^ in CO CO o m N. J- m J- vO 0"» CO >0 «4 in CO 10 (M m CO a CM CO CO ro w o a* 0D oo V0 in in J- J- CO CO CO CO CM CM »4 t4

in a* CM J- CO ao CV OO c^ in CO CM in J- ro o 0» IO c\i c^ in c«. eg (M C-- <0 CO as t4 t4 \0 i0

CM in 00 »4 in a* J- CO CO «0 CO CO CO t4 0> «0 in ro t4 co en 00 C-. C-. vO in in J- J- co CO CO CM CM CM CM »4 *4

CM in in CM 00 r- in in oo 00 cv OS CM c«- >0 as •H r4 CM O o CO CO H in OO CM cv C^ V0 ro as

in «4 o 0O t0 J- CO CM CJ> V0 in ro ro cm o 00 C^ V0 m in J- CO CO CM CM CM CM CM (M «4

J- 0O OO in CO v4 in V0 in 10 00 CO as in V0 CO J- in 0O in in in t4 O ao J- eo <0 ao (M »4

o a in «o (VI vO C3 in in * t-l m CO >0 J- CM •4 »4 1-1 CM t4 o oo 00 to in in J- ^ CO CO (M CM CM (M tM CM CM t4 •H

CO .0 o -* CO CO CM vO (M 10 as CO CO) CM o •H CO m 1NJ (SI in CO (M c^. t4 o ao CM (7> -3 a CM in ao (M O to ao J- oo in co ~4 t4 o o a H *4 o oo 0O in in J- CO CM CM CM CM (M CM (M (M »4 HC •H e oO CM o cm <\l J- (Vi in CO 10 in m m CM CM CO ro CO •a o CM o CM ao ro o a CO OO o •H V0 ro CM CM

cm in oo t4 in -*• ao CO c^ CO CM CO CM t4 e O CO »4 CO co 00 00 c<- V0 in in J- CO CO CM CM CM CM CM CM CM (M oo t4 t4

at r-i x>

H 10 ro o -4 CD CO in in as c*. V0 (T> >0 "4 co a> CO vO in vO CO J- CM m a •H in t4 CO (T> 00

t4 00 »4 in co CO (M (M o m CM ^4 o •H o CO a* aO ao c*. in in CO co (M CM CM CM »4 t4 »4 t4 -c

O J3 oO •4 CM cs V0 CO >0 CO cv. in m J- V0 00 a v0 CM PJ V0 0O in •r4 in m CO CM CO CM CM ro

-* in CO <0 CM m CO »4 O (T> c»> a CO OS oo J3 in in CO CM (M CM CM •4 *4 «4 •r4 ^4

33 00 in CO V0 as V0 CM a in CO t4 ro t4 Cn. 00 CO -4 ao CM CO ao CM co

•> -4 o ^ 00 (M c*. -4 in •4

CO CM IT" CO CO IT as CM ao 4- CM CO CO ro in O 00 t4 as ao as as as CO H a o 00 ao l>- (0 10 m in CM CM CM

a. o a o eo a o CD o a CO CO CO CO o CO CO CO o r3 lA K. t4 co m c«. co m H ro m -4 ro in w» ro CO CO -*• in in in in in 10 <0 V0 vO r^ rw

37 in CJ> iD iD r». e'- r*. i0 -4 CM in 10 CO o UN ro CO er ro CO J- •4 CO N. 10 c^ cn ro en

00 o -4 CM ro in >0 00 CD in cn CM «4 H CM CM CM CM CM CM CM to CO CO rO CO PO J-

C7> r— en w4 ro CO CM CT> en o o 10 O t4 o o 4 V0 CM CO in CD >0

CM «3 en o «4 CM cO in CO CO »4 CO in cn CM t4 »4 »4 CM CM CM CM CM CM CM CM CO CO CO PO CO J-

in iD CO lO en O »4 10 CM 10 CD in CO CO m cd en H CM CM CM r*. CO

^4 ts. CD CT CD CM co J- r- en -4 CO in cn »4 r4 »4 rJ -4 CM CM cm CM CM CM CM CO CO CO ro CO

CD in CD cO -I in r*. ao cs. CM

CD r>. CO en o *4 cO rs. -4 CO 4t P~- en •4 -4 •4 CM CM CM CM CM CM CM CO CO ro ro

J- ro -r4 O CM -4 CO CO 10 CO o 10 PO O CD en *4 CM CO en m 4T 00 ro 13 «> iD P^ CO o t4 CM m CO CD) CM >0 CO co CM C- CM eo in CM o cn cn CD CM in

iO o r» CO CJ> CD CMJ ro in i0 CD CM CO in CO O CM -4 «4 -< -4 CM CM CM CM CM CM CO CO CO ro 00 rH

CO in »4 CD iD 0O 10 10 CM V0 CO o r». H o in CO o CO CM ro a in ro PO in rs.

* in cn o rO V0 ao en -< CO in r^ en t4 •H •4 CM CM CM CM CM CM CM CO PO fO PO CO

10 en .0 Cn Cn >0 en CO in CM in o ro io a en o CM in CD CM r». CM CO in CM CD CO Is.

cm * <0 f>- cn »4 CM in en -4 CM 10 CO e CM CM CM CVJ CM CM CO CO CO ro ro

CM r». »4 »4 00 •H CM CD CM o in a 41 <7» CM v0 O O iO CM en m ro ro ro

•4 -r to 10 «D C* -4 CM in CO CD CM 10 CD CM CM CM CM CM CM CO CO CO ro ro

CO * •4 CM CD PO CM CM CM iD in 10 cm CM -» CO CM rs. cn CM CD en CO CO

J- m •D O. o CM •n >0 CO CD CM in P». en CM CM CM CM CM CM CO CO PO CO ro ro

ex o CD o o CD o CD o o a a a o a o > CD in a in o in a in O m in a in o m o 1- CD CO en en CD CD •4 •4 CM CM ro CO 4t in in i0 CM OS ro i-4 r^ CM o o ro ro o v0 o in ro in CM r^ ro CM J- ro i-4

in .0 r>- oo 0"> O ro oo a CM O ro (M CM CM CM CM CM CO ro ro ro ro ro J- J- in

CM O CM 10 r» 10 0"> in in r^ ro CM r>- CD m o -*• CM 10 ro t4 iH ro ro ro 00 ro i-i

o UN U\ m vO CO o cm ro m »-4 ro V0 ro CM CM CM CM CM CM to ro ro ro ro ro

to SO in i-4 ro CO in CM i-4 in i-4 €3 CO in CD CO as r4 in o r>» ro ro CM 1-4

in to ro in vO CO i-4 CM i0 CO CD CM in CO M CM CM CM CM CM CM CM CM ro ro ro ro J- J-

CD i* CO in H OS CT> 1-4 in CT r^ in 0O o CM r- J- 10 O CJ> CM CM ro (A •H

o i-t 1-4 CM ro in ao cr« ro in rs. o"> »H * >0 CM cm CM CM CM CM CM CM CM CM ro ro ro ro to ^

XI vO o r^ CM CM CO CM N. ro OS in in ro CD in CD o 00 J- CM J- CM f^ J- i-4 o i-4 a* i0 P o i-4 CM m V0 CO

- r4 ro \0 C i-t CM CM CM CM CM CM CM t\J CM ro ro ro ro ro •HU d uo

*0 in vO -* o in >-< r>. ro CM ro 0> vO cr 1 o J o 00 00 i-t in o in CM CO CO iH ro

00 *> 1-4 i-4 CM ro in as en 1-1 CM •A CO i-4 ro >0 H CVJ CM CM CM CM CM CM CM CM ro ro ro ro ro J- J- H01 Hcrj 10 vO 10 m *4 r^ ro in CM CD i-4 CM CD o in in ro ro r«- in r^ i-4

r^ o O i-t CM IO lO rw o CM CO o ro 10 i-4 CM CM CM CM CM CM CM CM CM ro ro ro ro ro J-

r~ in CO r^ «4 r^ ro C3 r%. r^ 1-1 m in O •a ro CM CM -* r>. o m r^ ro r^ i-4 CO

o 1-4 CM ro CT> o CM -* V0 00 CD ro in 1 T-t i-4 CM CM CM CM CM CM CM CM ro ro ro ro IO J

CT> r in i-4 CO -0 J- CM in ro r^ O i-4 00 ro 00 in ro i^ i-4 tM CO in in 0» o o CM ro in CO C3 fM as o CM in i-4 i* CM CM CM CM CM CM CM CM ro ro ro ro ro * -*•

CM 10 ro CM CM IT r- ro in ~4 CM CO o 0} r^ CM 10 ro (7> o-> i\)

OD o CM J- in CO <\J ro m r^ CD CM in 1* H CM CM CM CM CM CM CM ro ro ro ro ro

o CD O CD CD CD r3 C3 a CD CD o C3 r-3 o in O in CD in CD in CD in in o in CD in -D I— ao CO O o 1-4 CM CM ro ro J- n in 10

39 i i

»h <\j ps.

-n CD C3 O rs. ro to ro ro PO CO OJ H CO Ps. CD -H ~D • cd •H in JD m J- OJ J1 ~V in o "J PO *-* Ps. m in X) xt CD oj -» Ps. lT> >\j CD oj r3 -t PO ^J CO "O fs> >0 iri m m in in o i-« JD (\l to J" \J o o> CO a J\ OJ ^1

&-5

CD t\l -» ro Ps. ro rs. -t> •11 -r PO CD ro OJ >o ^o CD OJ sD CD • CD in ps. Ps. OJ PO »-« oj C s> * -0 OJ OJ J- O T~ en CD J- JD CO •H JP oj 1 CD O TO »H n> tH m *H CT> Ps. in CO in in * j m in in ir* in j: J3 n ro r\l -1 OJ O JD o (T> ps. vO m *4 t4 -H >-< -H ^H w4 -I ^ OJ CN o

£s8 sO •X) oj in in in ro OJ OJ iT> OJ r4 CD J- J3 Ps. J- o ID D 4 ro ro tt CD IH • rs. CJ> oj 4- in o o JD co cr> CO CO J3 O Ps. CP> -H ^ 03 CT< OJ in CO CD CD co PO ps. O •r- *> ro O en in ^ H »H t4 H •r-t .H -t •^ «4 ^ •rH OJ r-t -« -4 »H (U Q. CM "

4-1 X o •H a rs. CP r\l D OJ T> PO -J» CT> Ps. -* ro Tk H O «o M oj -o in Ps. CD ro a. o in m ro -* T> o W fs. J3 -H 1-1 w ^ H ^ H ^t rH ^ •4 ^ tH CvJ OJ

•H

CO 03 OJ l\J JD a ro T> iT> o C3 m PO OJ PO J\ Ps. ^ in m j- cn j- CT> o o o • "5 o 00 ps. ro IO ^H J- Ps. OJ in TO «H J- CO H j> CO H •j\ to »• o •o o C3 O CD CD T* r-l .H OJ oj r^ •o PO PO j- to o ^ » TO in ro t-4 C3 to •H OJ oj > &OJ H -t in *H jr CO ro OJ m » OJ J3 iH J3 OJ CO JP ^4 CO -t rt J> jp T* r-3 • *-4 o n (T> O D •» -h ^ CO •-* >n to ^J n 7^ ro CD * Ps. ^ in oj rs. * t ro J- o ji a* CT> _D CD ^ ~» —4 OJ -\J PO PO ro J- 4 in n in ro oj

J> a ' 3 © ps. *o CT> n \J -O n oj 3» Ps. * oj PO Ps. C3 4> ao OJ m fj> PO W JD •-D J1 Ps. co c CD CD CD -< OJ oj OJ PO PO PO jr CO m oj —

CD CD Ps. J> OJ 3 CO ps. in PO OJ CD 7^ Ps. o J PO CT> Ps. in OJ CD OJ • -H M in ro Ps. C3 j- o OJ J3 ID PO Ps. ~4 in IT> ro *o (D ^ CO OJ in JD D o Ps. hs. « -o to 07> T tD CD CD -4 •H •4 oj ^ >0 PO ro JT ITS

a; o

40 J- t 'D -H ro .0 cr> rH o JD ro N. rH CO 'JD JD o> ro oO ro CO in

CO to m rv O JD o t OJ 'VJ rH rv !\J ro OJ CO ^ OJ oO CD m j- JD CD *H 00 o-i ro C3 CO CO en rH ro r^ rH JD rH CO in 0J rH CP CO J- »H CO in ro OJ rH U< CO N. IN JD in in J- J- ro ro ro ro OJ OJ OJ OJ rH W rH rH

CD CO JD in l» c~n r-- ij> in JJ in co co CO J- IN oj H rN CO o-> ro

CD OJ i3> CD rH OJ r*- -1 oO IN ro IN. cr> CO m CD in CO IN OJ rH J- C\J JD n. LA JD o J3 in 4- in in. o> OJ JD rH IN, ro CD CO N- JD in J- o rN n ro OJ ^D o> CO IN. lO Lf\ in -T J ro ro ro OJ 0J 0J 0J oj OJ rH rH rH

'.n ro o> -\j oo rH rH TO OJ oj CD iO * TO JD in ro ro o IN -rH m

-H CT* T* ro 'p. TO ro m OJ CO rH rH T5- -H J- <-D o> co * ir> CD JD r^- rH ~> w OJ o ro rH rH rH ro in r^ -H in rH IN in r ro ro OJ ro CD rN in ro -H iD rr> CO IN. J3 in * f ~D PO 0J OJ OJ OJ OJ 0J oj OJ --I r-l rH

cj> D JD OJ 'VJ CD IN. ro J3 in rH in jj CO u> J- rN. in ro in OJ J-

oj in CT> n en OJ J3 CO OJ ro rH ro |N- r^ CD CO rH OJ rN -» ro OJ OJ r*. rT» in. CO ro rr> h» r^ r^ CO m CD oj N- ro OJ rH CD CD CD CD ro o IN. J3 j> J- -t ro OJ OJ OJ OJ oj 0J 0J 0J oj rH rH rH

T3 OJ CO J- ip. rN JD OJ » -H X> CO ro -t CO 4 CD 0J* CO •D rH o rN CP rj -* ro CT» (T1 CO t rH in rH -» rH cr> ao N. rH JD U> JD J5 OJ CO tv O •S) JD N. CO CD in rvj rH CD CD o> o> CT> fl ro cd»- JD * OJ rH o> IN. J3 in -» ro ro OJ OJ OJ OJ 0J rH rH rH H rH T-* rH rH -H u M Pi Uo

J> CD ro CO OJ •H o cT in IN. IT> 00 CD in rH co rN rH ;n CD ro

ro CO ro (T< J* |N rH oj in ro |N ro JD T> ro oj 0J rN in ro ro ro CD in -o IR r*. rH •o O in in m o JD IN. ro -H -"D 7> a*. rx> 0> ro o> JD J- OJ rH 0> » IN. J3 in J- ro oj OJ OJ 0J OJ rH rH rH rH rH rH rO H JD OJ rH -3 rN JD o> ro J3 ro OJ ro r- CO JD CO N. rH CD OJ ro CD

ro tf> U"\ OJ JD CT> ro 4- JD ro in o CO OJ o rH J" rH T> CO TD o» -t IV m O CD IN. m j- J- J- i- ro in rH CD CT> <7> CO CO OO CO OJ 3> JD or OJ rH J> TO fN. J3 in s ro OJ OJ OJ Ai rH •H rH -H -4

cr J- >T> ro rH O rH rH oj J JD ro J- in J rH rj m ro OJ CO

ro -3 lO -t iT> OJ o J3 IN. oj *H o -t N. OJ oj rN ^ ro ro ro Jf CO J- JD J- in D O t o ro ro OJ CD oj CD o?> CO CO CO CO CO CO f\J 'T> O 3- i\j -* -T* r» rN *a in » ro rj OJ rH rH rH rH rH -H rH CM

j- -H 01 N. * ro N) n ^ o i7> in ro oj J

J- rH CO J3 rH 1- CO r^ IN. H JD rH OJ JD CD ro tr> o CO CO o> CD in -o in ro in CT< in rO OJ OJ -H CD JD "D 0"> OO IN. rs. fN. fN fN CO OJ CT> JD J- OJ O o> CO f- JJ S\ J- l\J 0J rH rH rH rH rH H rH •H rj

rN <"» ro rN in -0 u> rH CD -f CD in J OJ N. rr> ro ro IN -D J- OJ

J- OJ o =o ro J} o cr IN. IT> CD J> r-i CT< (T J\ ro OJ ro J- m fN JD "\j in OJ ^t TO m oj rH CD CD o PJ CO OJ T> jd -»• OJ o o-> CO fN Jl in ro OJ C\J H •h -H rH rH

CD CD cd o CD C3 ra CD t-y CD C3 CD CD CD CD CD CD CD CD CD CD CD ro in r*» <7> rH ro in rv rr» rH ro m rv rr> *H ro in IN (y rH ro m rN ro ro ro rO J- J- j- J- J- in m ji in in O JD JD JD JD rN rN r*. rN

41 « 1

H to ^ H r~ cO >o p^ CD * 3 P^ p^ •3 to PO cr> o • N. PO o *5 in PO — T» o IM IM PO -r in <& f>- CO (T 3 ,-< CM CM CM IM CM IM CM CM C^ CM CM PO PO

P~ C3 cr> CM di r*. 00 O PO to ro •H 13 ro t3 J- CO O • ^ i3 CO 10 J- PO CM •-« C3 CD ^ <\l hw - to CT> o «H *-l ^ H tH CM

»H PO cr p*. P-. to o PO p-~ rH p^ r -» o CM in to C3 • H to in to —t- to lO t PO •H 3 rn to to •o a» rH p— r^. >o CT> 3 o ^ •M O t m .o D p«. to T> 3 r cm tM

po oo cO lO n -3 PO >o a m -t p^ cr> 4- •0 P^

. PO co in W o< to >£> ct PO ^ o •o p^ & lO p» ce o *-* IM PO J- in in tO r^ to t3 t\J tM IM IM CM CM IM CM CM CM tM PO

<~4 w J- fs. ** m o> PO to PO (J- » -» P^ -£> PO •v 3 to c\ m * PO CM CM f> 3 » p^ r^ o H IM IM PO J- m vO p- CO on 3 C -t H -t -t —* (M tM IM IM IM IM IM CM CM CM IM PO •H •u C uo

-r J> in o cO CM f^. IM p*- ^J to t ^ T> t3 m vD

. CO tO in -t t\l -^ o< O in PO IM *-i CT< CT> o tO o in N. -o T 9 C3 --4 nj PO r t\ o D P^ o cr> <\J tM IM IM CM IM tM IM IM CM "M CM HCD H CM H CT> J3 * 3 N ^J O CM P^ IM P^ J- *H CM p^

. » ro »-l 3 CJ< to in PO IM 3 J> P^ J3 n -» PO T j> JO r- to o c* C3 H IM PO * J- m tO rw o

a i£ cO >d J- H X> -r CT> J- P*. H -» O a -*

. 3 rji O i^ D >n PO IM '3 T> P*» D ct tM _, (y O :\j m in o r-. CO CT> o T-t tM OJ PO t in Ps- p*- to *-l — -» -4 ~H H (\J %l .M ^J 'M 'M -M M fM %j IM

o< ^ •\J -<• 3 O 111 -> in T PO in o J> ** PO D

. O -o ,s_ in PO r\J ^^ CT> p^. D * CM 3 cy ^ in ^ .» m •o p^ to tf> rs T^ -* CM PO t in *o o p-. to f\J M IM (SI IM IM CM IM CM IM tM

vO t3 T> 3> J p^ :3 M PO •O O CM -t

. r^ in J- PO t\J H iT -O a in o -H cn P>* m "O tf m o p.* o m 'S tu -1 CM «o r in >n p^ to >si i\l M IM IM IM IM M M IM 'M

J 3 3 -» 3 3 o ~-> 3 in to m --3 in -3 n <3 in C3 n 3 in 3 (— -O to J> Ti O •3 IM CM PO o J- i~ n in X)

4 2 i

- :n "O CD CO ro Is. -J -O in PJ t PJ JD CO Is. p. ^

PJ -I rO CO vO CT> IT pj Is. J3 in in in JO J3 p. CO a* CD CD PJ ro in PJ (M pj pj PJ PJ pj pj PJ pj ~0 fO ro ro ro ro

CJI in CO cvi X) cr CT> J3 r- .» in CM m J> rs. w

o ro is. i-4 jj pj IT J) oj CD CD i-t J- J- J- -J- J- in in CO CD PJ PO t CM cm CM pj M (NJ rj pj pj pj pj pj PO ro ro ro ro

cO rs. J cd CO m -to >0 CO n in rr> aO "O .* J- CO

ro rO in IO 7> in PJ in ro PJ pj pj ro in

CM >m »M co ro -t in in • p. CO CD pj PO

j- JO *o p~ cm -T i-4 pj N- in CO J- J- rr CD CT i-i

<\J m in t4 CO m PJ o CO j} in J- ro st Ps CD CD CD PJ PJ PO in in J3 p. CO CD PJ PJ IM pj cj PJ PJ M PJ pj pj PJ CM CM pj ro ro ro

in 0> rs. JO CD PJ CO J3 p» <-l P» Is. CM ro CM PO 0) 3 i-« J3 rj in n CO J} in ro PJ pj CM ro in C ri pj n in J7 p. CO

o O a< CD |S. CO pj J< CO a> PO o ^ m J3 * J-

t CO ro o n CO J) ro pj >-4 CD CD — PO CD pj * in CD -» PJ CM PJ pj PJ pj PJ pj pj CM PJ PJ PO ro PO rH H

15 J- »H in J- r. PJ C3 '3 pj p. J- T CO CO S3 J}

CD is. J- cr P. in o CO CO 1-1 O o 1-t tvj pj fO J- in Is. ts. CO CD PJ rH PJ PJ PJ pj pj PJ pj pj PJ PJ PJ PJ pj PO ro

CM CO J- C3 IVI J3 PO r-4 pj in 13 Is. Is- rH »H CO rs

Ps. CO in PJ OT> C3 CO fs. Is. Ps. Is. CT> CO CT* CD m J3 JTJ Is. CO ^D i-( -H —1 CM PJ PJ PJ rj pj pj PJ CM PJ M CM »o ro

rs. PO Ps. rs. 3 m "> ~> m CO PO o CD J' ro CD CO

ro in cm CD p. m "5 H a* CO Ps. J3 in in J~) rs. CO pj in .0 Is. CO CD t-4 1-t pj PJ pj oj PJ PJ pj pj PJ PJ PJ PJ ro ro

ro -»• •H po t> D in in rs. •H JJ -» -» Ps. J) CM CO

a ro o in CO j} m J- ro PO in CO o CD i-4 pj "0 PO in is. CO 7* o i-t i-« PJ PJ PJ pj i\l PJ PJ rj pj PJ PJ ro CO

CD 13 CD CD O (3 CD o CD CD CD o CD CD O in CD in CD in a in in CD in CD in CD in CD CO CO 3 C3 ^4 PJ pj PO PO in in J>

43 in CD CO r^ o t -J in v0 * r^ J3 0> CO ro r^ CD o ao t-4 CM fs. in in cD CO (M CD CM ro 13 vO r^ CO CD ro CD 00 •H ro rs. CD CO CD in CT> CO r^ r-- r*. r^ N. ao tH o CD en CO CO lO in in ro (M CM t-4 t-4

fs- rs. CO CD ro in J3 in X) J- r- r^- CO CM in -3> o a IT. CO l\J T-l CD r- l\l CM CD CD T-* CM J- iC

CM CD ro s0 CD CO O" J- CO rv r^ r- t-4 CD CO CO r>. in ro * CM -* T-4 H •H t-4

t* fO CD 4- CD ro r^ J- ro J- CM CM CM ro CD ro CD rs. ro CD .0 ro in CO D ro ^\J CM CM CD 0 ON in lf> O -o CD ro -4 i£> CO ro rD ro r»» in ro ro T> r^ r^ X) o O o 03 N. re tH •H CD •D en ao CO T3 O) in t '\J C t-I CO oCM U iD rs. t-4 CO rD ro r^ r- ro an i\j J- t-< ro CD TO ro CD CD ro T-4 r^ ro 10 M ro in vH CT* CD T-4 ro cr>

MO CD iO ro rv- CO CD ro CD CT> .O in in O CO iO iO tH t-» CD CD rr> CO r^ vO in t ro -1 •H H *4 T-4 t-4 tH t-4 O

3 CO ro •u J- CO CD in r-. CD CO J- r>. CO CM 0> in rs» in CD o a INJ C\J CD H rs. ifl ao CD CM in CO HX CM CO ts. cm in in -D CD ro o D t J- J- in in in cO B CD o-> CJ> CO o in t •H T-4 T-4

u-t o

>s ro r4 J- co a* ro "O -t CM J- CD CO »M -* 4-J CD CD CM ro 0> CD CD CM J- id CT> t CO T-4 in •H > o IT* is. cj> in 13 CO ~o ro ro •*> rO ro ro T t in in tH CD) <7> co r*. in •H in r-i t4 t-I T-4 4-1 O 3 C O H CO rs. J- r<- CD (NJ •^ in ro n in J- J- O D CM CD CJ ro ro • 03 ro o in CD m O CO J- r*- J- r*. t-4 in

J- J- lO CO CM CM CM ro ro ro J- T-4 01 en r^ N. tH T-4 o * vD -t •H ^ tH -i T-4 H 1 tH U CU

+->

CD '-D 01 J- t-4 J- cm ro in JN -J in x) CO 09 r^ ro CM (M CD J- in rs. rs. tC ro J3

H C\J J/ 1ft CO ro a x> CT> cr (T< CT CD D 'J5 >H -H CM »M ro ro ro -» CD 7> en 0D -4 -4 O rH

0) rs. co .-H CM rs. no 4 r^ ft D O fM r>- O m Ti 3 -4 CO J- .D O ro D 1- o CM D 3 J- O

-4 *• in rs, fs. CO CD r>- •c •o a» cr* CT> D CD CD »-< •H -( CM CM ro ro O H T-4 CD -4

o T o -1 r~ D r^ O CD CM fs. 3 ro fs. r*. CO in cr r0 n CD J- CO CM -4 in

lft •0 iD •*» rr* <~3 r- K r^ t» t) T» IT* -D —1 *H CM <\J ro *»o T-4 ^

r-D -D CD CD CD CD CD JD CD CD rD D CD CD CD D CD CD ro rs. in t-4 'O m r*. ro m ro 1ft r^ —4 -O in rs. ro ro ro ro t— J- -1- m n m in in D O X) rc r- rs.

44 ro X> y H in in r^ in t in t i-l CVI CP rvi CD -1- CO CO PO X> PO rvj CD PO in

ro i-l 03 XI H iO ro CD CVI CD en CO .-1 0"> p>- o cj> CO CO vD in in J- J" PO ro PO PO CVI CVI -I

'D r>. in IV. CO IT> PO CD CD ro P~ •-I -O CVI CD iH 0J in o cr> i-l J- J- P^ CD OO CD in CVI in ro CO P-. CD

PO in CO CVI in CD J- in CD J- CD w-t U3 10 iH CD CO CO P^ in m in J- -J- ro ro ro (VI (VI CVI rvl —1 -1

ro IV. (VI "O CD in • O PO o irs CD r^ CO CO in CO rO CVJ D -O

*-l J- CD CO PO P^ p^ * r~- ro 0> in ro PO i-l CD CT CO rv. o m n J- * J- ro o CVI rvl CVI (VI CVI CVI —1

CD CO (VJ H r- p>- p«- (SJ in in m M J- •O J- J3 CD (VJ CT> CD CM PO 00 p- p~ ro co CJ^ CVI

ro m o> CVJ Pv. in CD in >o CVI T-l «-4 cd -o CO n r * PO ro CVI CVI (VI CVI CVI CVI CVI i-l i-l

T3 CD J- CO no Pv. CD CD in CVI in rji CD 1-1 IV. - vO a CD CVJ in •o rvl k0 CD 0« 0"> J- CD in m PO ~4 CD CD o •H i-l CD CO pv. o m in t PO CVI CVI CVI CVI CVI CVJ CVI CVI 4J i-l iH c oO

-J- CO a O PO p^ 17» PO PO r4 CO in o D r- CD ro "VJ CD iH ro U3 ro PO in CO PO in CO PO in CVI (VI ro CVI CVI

O CVJ o -a * PO CO PO -J- CVI H CD CD CD CD CD rn CO CO rv. N. in in J- J- PO ro CVJ CVI CVI (VI CVI CVI CVI CVI i-l

J3 H CT> (VI CT< en in en Jt J3 CO -4 m CO in CD •X) CVI O ro CD J- CO CO n ,o CD p^ CO (VI r>» P*. rv.

0"> CVJ in CO CVI in CO PO PO in rvl •H CD o> y (T> CD CD CO CO p^ ^0 in in -t J- PO ro CVI (VJ CVI T-l T-l •H i-l

ro in CD CVi PO CD o IV) 00 CD in rvl CVI 03 CO r4 r>- '-D to in pw CO CO in PO ro CVI 'VI PO

Ol o i-l i(\ J- 00 CM -O CO ro H CD m 0> rj> CJV o> CD CD o -o ^0 ir\ f -t ro ivi CVI CVI 1-1

CO PO CD p«. in CM ro CO m m CJ» ro m CO PO in a J- CD r^ * J- (T> rs. o r— CO

CT» in PO ~4 v4 -* in CVI D 0> 00 CO op CO CO o CD CO in in ro (VJ CVI CVI H J-

0"< i-« in CD CD PO (\i r in O CO CJ> •-D CVI in D •7> H ~4 Ps. CD CO rvj o PO o ro ro *

*4 i-l CO PO K. in •H PO CD T> CO oo CO 00 CO CO O CD CO CO p^. J3 m in r\J CVI H

o CD o CD CD CD CD CD CD CD CD CD CD CD *D CD CD CD CD CD CD in w ro n o> PO in ro in PO in Pi. ro ro PO PO -*• -r J- in in in in in J3 **> l>- r-- N. Pv.

45 <

r*. 31 T M *-4 '0 M r^. ro n *4 ro CD J- CM CM ro m 03 CO in ro CM rM S rs. CM

rO in CT> O CM "O in 03 J3 ro in CJ> D- CM CM CM

03 IP lA ro O in •-* CM IM ro 03

13 CT iD CM in Cn -» in ro CD CD -J- cj-

CM CO CM ro D ro in f>- ro r4 CM CM CM (M

r*- CD 'D 1^ ro r^ (Ti a- -> rs- ro o 03 r*~ -3 n r*. ro rs. •0

•H 7< -y fM * O »M 03 20 ro -1 CM

CM in ^M in r- in 03 r- in J- 33 CM C3 J- ro ro in r~- CD CT< in *4 CO 03 m in 13 CO ro

CD CO H rO in CD 03 CO CD ro H --4 (M CM CM

03 ro CD in CD 0^ O '3 .-1 CD hs. r3 O T3 CD CO CD

r*» t3 "M o n o ro n f»- -1 r-4 CM

rJ3 CO H CD J- 03 X) ro 03 rs» ro r^ ro 03 in ro CD CD CD ITS o"i 3"> CM 03 in J- CD CD CM

4- n 03 N. o CD "O J- rji *4 ro o o-< M

o CO ro -r r*. J1 ro CM >M ro

00 J- id r*> -» o> fM .n rs- CD (M O CO tD IM CM (M CM fM ro ro ro ro ro

in CO S * 03 in CD r^ D rO CM r>- CD in 03 J- rO CO ro ID 03 M CD CO o

*4 -f in 03 CO CD CM ro in •JD CD rM in

o in ro 03 fj> -1 <7> CJi CD 03 -4 CM CM ro lf\ CO in CD o ro — 01

.* in O s. CW o rM rO in CO CD ro

o Q CD cd CD o *c» CD rD CD CD CD CD CD CD CD in CD in CD m in CD in CD m m CD in CD r- CO CO en CD CM CM ro rO J- in in o

46 PO ro ro o 4- k£l o tH en r-4 •o L'N r^ in o x> p^ CD X en m ro «H "-1 PJ in oo J- CD CO N. TO ** m pj

U> p- X> XI r~ co '.T> CD *-i pj .» o P^ CT t-4 J- x> cr> to PJ PJ CM PJ PJ PJ m ro ro fO PO PO PO J- J- -t -t

3 D TO r- (O r^ pj PJ in CD 00 en I J J in ai - D o J- •^ JT tH ir> CP "-1 J- 0D J- CD oo 00 d"> sH in PO

o in in m X) X> r^* a> CD *-* PO in Jj CO CD ro in O0 ro PJ PJ PJ PJ pj rj pj ro P0 ro PO PO PO J J- j- -t

j- TO T 1*. H ro o •H cr> N. pw (T> PO -< * X) J- O >\l * CT r~ X) p* en ~1 r^ ro -D CO OO

in ro ro ro t in vO p- T> —y PJ * iPi p^ 0> pj -t p» PJ ~j PJ PJ CM pj pj pj PJ ro ro 'O ro ro PO j- 3> S

CD •H in P- XI r-< 'T> a> -( PJ 4 J3 P7> in u0 in

CD H •r-4 PJ PO jr in kD 00 rr< T-4 ro J-

en o in 00 in m £> p. a> pj in o rj in a> j> •* as 03 in x> 00 pj 00 -a a> cr> o tH pj PJ jr \I\ J3 p. en •H PJ j- jj JO CD PO in •H PJ PJ PJ PJ PJ pj PJ pj pj ro ro PO PO PO J- t -» C •H +J C o

o UN t

TO <-i -3 ~4 PJ f> l(\ p* m CD pj J- £> t> CD PJ in «-l pj PJ PJ PJ <\J PJ pj pj PJ O PO PO PO PO -t of 4-

pO 00 H JT pj O o m pj in TO CD PJ m en 00 -t PO H a O J- Jt in r*. CD m CD o J- PJ »H H PO p* PO

p. fj» o •rJ PJ PO j- J5 p- CJ» ^J PJ J- o TO CD CJ in »-4 H rj pj PJ pj pj PJ pj PJ TO PO ro ro PO J- J- J-

CT> p. rO JT p» h J) CD ro 10 t> o PO P- J- CP X) o in PJ *-i -H r\i in

* X) 'T» CD »-< PJ o ^ in N» oo CD PJ J in fs. 1* OJ in j- •r* *-l "0 ^ PJ PJ pj pj PJ pj PO PO PO rO PO t J-

H or ro r^ PJ N. pj N. H 4> P» TO o Jt 'J P0 O pj d> CO TO CD PJ a O J3 M Ji p^ r^ f^. o> PJ p»

in OJN C7> cd »-< ~» -f m N. as C3J -4 PO in P*. cn PJ -*• »-• *H •H PJ PJ CM PJ CJ PJ PJ PO PO PO PO PO PO -» -t

-t r* jr rr< v0 fO in in PO in Pv 50 *-l XT CO H o «J X> in in r^ CD l»> 00 ro CD p- m J- in x> cn in

-t TO CK o •h pj J> in J3 o PD «4 !•> m PW -H * -1 -I •H PJ pj PJ PJ pj PJ pj ro PO ro ro PO PO 0» j-

OCT O cd O a o CD CD CD CD fS CD o CD CD CD CD CD CD * •3 in o in CD in CD .n CD in CD in CD in O in *-D 1— o CO cr> m CD CD -^ •H PJ pj ro -o t * in in X)

47 9. REFERENCES

I] Hanley, H. J. M. , Cryogenics 16, 643 (1976).

2] Fisher, W. J., Phys. Rev. 28^ 73 (1909).

3] Smith, C. J., Proc. Phys. Soc. (London) 34_, 155 (1922).

4] Ishida, Y., Phys. Rev. 21, 550 (1923).

5] Gregory, H. and Archer, C. T., Proc. Roy. Soc. A121, 285 (1928).

6] Trautz, M. and Kurtz, F., Ann. Phys. 9_, 981 (1931).

7] Johnston, H. L. and McClosky, K. E. , J. Phys. Chem. 44, 1038 (1940).

8] Ellis, C. P. and Raw, C. J. G. , J. Chem. Phys. 20, 574 (1959).

9] Winkelman, A., Ann. Phys. 156, 497 (1875).

10] Eucken, A., Physik. Z. 14, 324 (1913).

II] Bruche E. and Littman, W. , Z. Phys. 67, 362 (1931).

12] Dickins, B. G. , Proc. Roy. Soc. A143 , 517 (1934).

13] Kannuluick, W. G. and Martin L. H. , Proc. Roy. Soc. A144 , 496 (1934).

14] Johnston, H. L. and Grilly, E. R. , J. Chem. Phys. 14, 233 (1946).

15] Kannuluick, W. G. and Donald, H. B., Aust. J. Sci. Res. A3, 417 (1950).

16] Bromley, L. A., Calif. Univ. Radiation Lab. (Berkeley) Rept. No. 1852 (1952)

17] Frank, E. V., Z. Phys. Chem. 201, 16 (1952).

18] Keys, F. G. , Trans. ASME 76, 809 (1954).

19] Richter, G. N. and Sage, B. H. , J. Chem. Eng. Data 8, 221 (1963).

20] Pereira, A. N. G. and Raw, C. J. G., Phys. Fluids 6^, 1091 (1963).

21] Mukhopadhyay, P. and Barua, A. K. , Trans. Fara. Soc. 63, 2379 (1967).

22] Maczek, A. 0. S. and Gray, P., Trans. Fara. Soc. 66, 127 (1970).

23] Bilyk, A. A., Gladkii, N. F., Kotelevskii, Yu. G. and Timofeev, B. D.,

Inv. Akad. Nauk. Belarusk SSR 1, 102 (1973).

24] Hanley, H. J. M. , McCarty, R. D. and Haynes, W. M. , J. Phys. Chem. Ref.

Data 2> 979 (1974): In press (1976).

25] Mo, K. C. and Gubbins, K. E., Chem. Eng. Comm. 1_, 281 (1974).

26] Leland, T. W. , Chappelear, P. S. and Gamson, B. W. , A.I.Ch.E. Journal 8^,

482 (1962).

27] Mollerup, J. and Rowlinson, J. S., Chem. Eng. Sci. _29, 1373 (1974).

28] Hanley, H. J. M. , McCarty, R. D. and Cohen, E. G. D. , Physica 6JD, 322 (1972)

Hanley, H. J. M. and Cohen, E. G. D. , Physica 83A, 215 (1976).

48 [29] Goodwin, R. D. , Nat. Bur. Stand. (U.S.), Tech. Note 653 (1974).

[30] Couch, E. J. and Kobe, K. A., J. Chem. Eng. Data 6, 229 (1961): Hirth, L. J.

and Kobe, K. A., J. Chem. Eng. Data 6, 233 (1961).

[31] McCarty, R. D. , Nat. Bur. Stand. (U.S.) Internal Report (1977) (in review).

[32] Hanley, H. J. M. , J. Phys. Chem. Ref. Data 2, 619 (1973).

[33] Hanley, H. J. M. and Ely, J. F., J. Phys. Chem. Ref. Data 2, 735 (1973).

[34] Ely, J. F. and Hanley, H. J. M. , Mol. Phys. 30, 565 (1975).

[35] Hanley, H. J. M. , Sengers, J. V. and Ely, J. F. , Proc. 14th Thermal

Conductivity Conference (Plenum Press, 1976), Eds. Klemens, P. G. and

Chu, T. K. , page 383.

[36] Klein, M. , Hanley, H. J. M. , Smith, F. J. and Holland, P., NSRDS-NBS Monograph No. 47 (1974).

[37] Pople, J. A., Proc. Roy. Soc. A221 , 498, 508 (1954).

[38] Buckingham, A. D., Disch, R. L. and Dunmur, D. A., J. Am. Chem. Soc. 90 ,

3107 (1968).

[39] Stroud, A. H. , Calculation of Multiple Integrals (Prentice-Hall, New York, 1972).

[40] Sweet, J. R. and Steele, W. A., J. Chem. Phys. 50, 668 (1969).

49 : ,

APPENDIX. Application of Statistical Mechanics

The dilute gas coefficients, n and X , have been correlated by the empirical equation (31). An alternative, however, is to consider the kinetic theory, statistical mechanical, expressions such as

1/2 (TTm— kT) ° - n " — (1A) 16 2 n (2,2)* to 9.

where m is the molecular mass, k is Boltzmann's constant and a is a length

parameter, characteristic of the intermolecular pair potential function, (J).

(2 2 ) * 0, The collision integral, , is a function of 4> and the temperature. Clearly

one requires an expression for c}) to use equation (1A) in practice.

The potential for a nonspherical molecule such as nitrous oxide can be

written as the sum of a spherical contribution, if> (i.e., 4> depends on the intermolecular separation between molecules but not on their relative orientations)

and a nonspherical contribution, , which incorporates the appropriate (J) ns electrostatic moments and molecular polarizabilities . Hence

) + (2A) s ns

In previous work we have represented the spherical part by the m-6-8 potential

function [ 32-34]

/a 8 = 6±§X - _ P-Yfa-8) M 6 V cj, /e UX d d d s s m-6 \r m-6 \r \r J J J

= = and where d r . /a, with a and r . being defined by the conditions (J) (o) min mm s (r ) = - e, respectively. The parameter m represents the 'hardness' of the repulsive term while Y represents the 'strength' of the inverse eighth attraction term.

50 It turns out that the viscosity coefficient is only weakly dependent on the nonspherical contribution so a fit of viscosity data with equation (1A)

will determine the potential parameters of . Possible errors in making this (J) simplication are discussed in reference [34].

Nitrous Oxide . Viscosity data, [6,7], of nitrous oxide was fitted to equation

(1A) using the m-6-8 collision integrals from reference [36], The parameters thus determined are

m = 11 Y = 3 10 _1 a = 3.65 x 10~ m r = 4.068 x 10 °m (4A) m e/k = 288.0 K

A deviation curve comparing calculated with experimental viscosity coefficients, as represented by the function (31), is shown as figure 3a. The deviation is systematic above 300 K, but well within the experimental uncertainty of the data.

The thermal conductivity coefficient was also determined from the corresponding kinetic theory expression. The result agreeded with experiment to within the estimated error of 6%. Details will not be given in this report.

The Second Virial Coefficient of Nitrous Oxide . It is often instructive to calculate the second virial coefficient, B, of a gas using the potential found suitable for the viscosity. The calculation is worthwhile in itself. Further, however, the second virial statistical mechanical expression and the second virial data are independent of the viscosity. The calculation is thus a valuable check on the potential, and on the viscosity measurements which led to the potential parameters.

For a polyatomic molecule, the nonspherical contribution to equation (1),

(b , has a significant effect on the second virial coefficient and cannot be ns neglected. In general one has

= (j) (permanent) + (J>(induced) (5A) (J)

51 .

where 4> (permanent) represents interactions between the permanent moments e.g. dipole(u)-dipole, quadrupole(0)-quadrupole, and dipole-quadrupole interactions — while (J) (induced) represents the contributions caused by the induction effects of the permanent moments.

Nitrous oxide is somewhat unusual in that it possesses a small dipole but a large quadrupole. In the brief discussion following, we will consider

these moments but will exclude the effects of . (J) (induced) The potential for nitrous oxide is thus

) + (uu) +

where (j) is the potential (3A) with the parameters of equation (4A) ; (J)(uu), 4>(00)

and 4>(u©) are the dipole-dipole, quadrupole-quadrupole, and dipole-quadrupole terms, respectively.

Writing the equation of state as

= 1 + Bp + .. (7A) pNkT

where N is Avogadro's number, the second virial coefficient is given formally by

B = if [exp(-e)-l] dj^ d^ (8A) | 1 2

where 3 = 1/kT and R and R„ denote the position and angular configuration of 1 molecule 1 and 2, respectively.

Several techniques have been proposed to integrate equation (8A) of which

the most common is the expansion procedure of Pople [37]. One considers the molecules to have point moments and to interact according to the coordinate

system shown in figure 4.

52 I X

Figure 4.

Equation (2A) for (j) is inserted into equation (8A) and the term expanded (J) in powers of 3- The integrations over angles are then carried out to yield;

B*(T*) = B(kT/£)/b = B* „ + B +B^ + B^ (9A) o m-6-8 y y0

3 Here b = 2ttN(J /3 and B* , n is the conventional reduced second virial coefficient o m-6-8 for the spherical potential, as tabulated in reference [36]. For the model shown in figure 4 one has for the dipole-dipole potential;

2 = - ^r- - Cos(j>] (10A) T(J) [2 Cose, Cos0 o SinG, Sin6. yu 3 12 1 2 r

For (j) : 00

2 2 2 2 2 - - - j) = ~ [i 5 cos e 5 cos e 15 cos e cos e Q0 | 1 2 1 2 r (HA)

+ 2 (Sine Sine Costj) - 4 Cos6 Cos6 ) ] 2

And for 6 ,-.: r y0

[(Cos6 - Cos6. Cos6 - 2 Sin6 Sin6 Cost))) y0M IVWB Cose, /w) (3 1 y0 4 "2 l 1 2 1 2 2r„ (12A)

- Cos6 + Cos6 ]

53 Hence expressions for B , B~ and B „ are U y0

n 2 2(j-3) *4iJ 2 192 E U K. I (13A) 6j *2j j = l (2j + 1)! T

*2 2 3 where y = u /ca and

E (2k)!/(k!) (14A) k=o

*6 21 _© 216 X + (15A) 5 *2 10 245 *3 15

*2 2,5 where =0 /ea and finally

*? *2 *2 *2 0^4 3 u - 72 y 5 " I„ X + (16A) y0 *2 11 35 m *3 13

Note that equations (13A) , (15A) and (16A) are expansions for which only the first few terms are considered. The index, j, of equation (13A) is set equal to 4.

The above equations contain integrals I given by

X exp [-B4> (r )] (r ) dr (17A) s

where r = r/a.

The Pople expansion technique has the advantage that the integration over angles only has to be carried out once. Hence the calculation of the second virial using a particular spherical potential reduces to the straightforward

integrations of equation (17A) ; the results of which can be tabulated for a given spherical potential.

54 f Returning to nitrous oxide: values for the moments are [38]

26 = 3.0 x 10 e.s.u.

(18A) —1 8 u = 0. 166 x 10 e. s.u.

Insertion of these parameters into the expression for B , equation (9A) , led to the graph shown as figure 3b. Also included in this figure are the data points of Hirth and Kobe [30].

It can be seen that our prediction of the second virial is not unsatisfac- tory but the predicted values are consistently somewhat higher. Possible J. reasons for the discrepancy are 1) neglect of the induction contribution to B ,

2) lack of convergence of the expansions since the quadrupole moment of nitrous oxide is relatively large and 3) uncertainty in the m-6-8 parameters. Unfortunately, we cannot correct this last factor. We have shown that the m-6-8 parameters should be selected from viscosity data taken over a wide temperature range (see the discussion in reference [32]) but the data is limited for nitrous oxide.

We did, however, investigate 2) as remarked in the next section.

Direct Calculation of the Second Virial Coefficient . There are some drawbacks

in the expansion (9A) . For example, all I integrals have to be redetermined if the spherical potential is modified and, of interest here, the arbitrary truncation of the expansions can introduce convergence problems. Several authors have investigated alternative methods to the expansion of the exponential

term in equation (8A) . The most direct is to carry the full integration numerically using, for example, the Monte-carlo approach. This and other integration schemes are discussed by Stroud [39].

Steele and Sweet [40] discuss a procedure in which the potential function,

) , are expande in spherical harmonics and the integrations over angles performed numerically.

U 2 1 e.s.u. = 3.33564 x 10 C m

55 The virial coefficient follows from a straightforward integration over r the intermolecular separation.

Our work with nitrous oxide here, and previously with carbon dioxide [34], suggested another integration technique which avoids the somewhat complex and time consuming calculations alluded to above, but which can eliminate the convergence problems of the expansion method. An outline of our procedure is as follows.

Consider the potential of equations (3A), (10A)-(12A) and the coordinate system of figure 4. The two molecules are set at fixed r apart at some initial relative angular orientation, e.g., 6 = 6 = = 0. The angles are then (J) varied incrementally (say in increments of tt/4, tt/8, etc.) over their range of

integration (0 , tt c}) = 2tt) and the numerical value of the angle dependent part of the potential recorded for each increment. Due, however, to the symmetry of the model, many of the values are identical so only the different, e, values and their weight, wt, (their fraction of the total) are recorded. The second virial coefficient for a given initial configuration follows after integrations over r according to the expression

-4).(r, e , e 4>) 1 2 , kT e (sswt) (1 9 1 1J o 2ttN Z r dr (19A) i=l Z (sswt) i=l where

i = e (20A) (sswt) (Sin©., Sin0 n wt) . 1, 1 2 l

Details of the calculation will be published elsewhere. Values of B for two initial configurations at two temperatures were determined and are shown as triangles in figure 3b. One can conclude that the expansion procedure, shown by the curve, did indeed underestimate slightly the virial.

56 It should be stressed that the calculations of the second virial coefficient

are predictions : one could get better agreement with experiment, without affecting significantly the viscosity fit, by adjusting the potential parameters.

Finally, we conclude from the calculation of the second virial that our assessment of about + 3% accuracy in the viscosity data is reasonable.

57 Figure 3(a). Viscosity coefficient of dilute N„0: comparison between kinetic theory values and equation (31). 3(b). Plot of the second virial,

B, versus temperature. Data, filled circles, from reference [30]. The curve is from equation (9A) , while the triangles are results discussed in the text.

58 200 300 400 500 T, K

59 NBS-114A (REV. 7-73)

U.S. DEPT. OF COMM. 1. PUBLICATION OR RHPORTNO. 2. Gov't Accession 3. Recipient's Accession No. BIBLIOGRAPHIC DATA No. SHEET NBS-TN-693

4. TITLE AND SUBTITLE 5. Publication Hate Predicted Values of the Viscosity and Thermal Conductivity March 1977 Coefficients of Nitrous Oxide 6. Performing Organization Code 275.02

7. AUTHOR(S) 8. Performing Organ. Report No. Howard J. M. Hanley

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. Project/Task/Work Unit No.

NATIONAL BUREAU OF STANDARDS 2750124 DEPARTMENT OF COMMERCE 11. Contract /Grant No. WASHINGTON, D.C. 20234

12. Sponsoring Organization Name and Complete Address (Street, City, State, ZIP) 13. Type of Report & Period Covered Fi nal

Same as i tern 9- 14. Sponsoring Agency Codt

15. SUPPLEMENTARY NOTES

16. ABSTRACT (A 2 00- word or less (actual summary of most significant information. If document includes a significant

bibliography or literature survey, mention it here.) The viscosity and thermal conductivity coefficients of nitrous oxide are calculated for temperatures between 180 and 900 K (330 to 1600°R) for pressures to 23 MPa (y 3500 psi) Tables of values are presented. Two mixtures with carbon dioxide are also discussed. These transport coefficients (for the pure fluid and for the mixtures) were predicted from thermodynamic data. Details of the prediction procedure are presented. Estimates of the accuracy of the tabular values are + 6% for the viscosity and + 8% for the thermal conductivity.

17. KEY WORDS (six to twelve entries; alphabetical order; capitalize only the first letter of the first key word unless a proper name; separated by semicolons) Carbon d i ox i de; corresponding states; mixtures; nitrous oxide; prediction; thermal conductivity; transport property; viscosity.

19. 21. NO. OF 18. AVAILABILITY Unlimited SECURITY CLASS PAGES fjC' (THIS REPORT)

2 For Official Distribution. Do Not Release to NTIS UNCLASSIFIED 64

1 Printine 20. SECURITY CLASS 22. Price | X Order From Sup. of Doc, U.S. Government Office

Washington, D.C. 20402, SD Cat. No. C13 -46 \ 69 3 (THIS PAGE)

] Order From National Technical Information Service (NTIS) Springfield, Virginia 22151 UNCLASSIFIED $1.20 USCOMM-DC 29042-P74

fr U.S. GOVERNMENT PRINTING OFFICE: 1977 - 777 045/1255 REGION NO.8 NBS TECHNICAL PUBLICATIONS

PERIODICALS NOTE: At present the principal publication outlet for these data is the Journal of Physical and Chemical JOURNAL OF RESEARCH reports National Bureau Reference Data (JPCRD) published quarterly for NBS of Standards research and development in physics, by the American Chemical Society (ACS) and the Amer- mathematics, and chemistry. It is published in two ican Institute of Physics (AIP). Subscriptions, reprints, sections, available separately: and supplements available from ACS, 1155 Sixteenth • Physics and Chemistry (Section A) St. N.W., Wash. D. C. 20056. scientists working in Papers of interest primarily to Building Science Series—Disseminates technical infor- these fields. This section covers a broad range of physi- mation developed at the Bureau on building materials, cal and chemical research, with major emphasis on components, systems, and whole structures. The series standards of physical measurement, fundamental con- presents research results, test methods, and perform- of matter. six times year. stants, and properties Issued a ance criteria related to the structural and environmental Annual subscription: Domestic, $17.00; Foreign, $21.25. functions and the durability and safety characteristics • Mathematical Sciences (Section B) of building elements and systems. for math- Studies and compilations designed mainly the Technical Notes— Studies or reports which are complete ematician and theoretical physicist. Topics in mathemat- in themselves but restrictive in their treatment of a ical statistics, theory of experiment design, numerical subject. Analogous to monographs but not so compre- theoretical logical de- analysis, physics and chemistry, hensive in scope or definitive in treatment of the sub- sign of and programming computers and computer sys- ject area. Often serve as a vehicle for final reports of tems. Short numerical tables. Issued quarterly. Annual work performed at NBS under the sponsorship of other subscription: Domestic, $9.00; Foreign, $11.25. government agencies. DIMENSIONS/NBS (formerly Technical News Bulle- Voluntary Product Standards—Developed under proce- tin) This monthly magazine is published to inform — dures published by the Department of Commerce in Part scientists, engineers, businessmen, industry, teachers, 10, Title 15, of the Code of Federal Regulations. The students, and consumers of the latest advances in purpose of the standards is to establish nationally rec- science and technology, with primary emphasis on the ognized requirements for products, and to provide all at magazine highlights and reviews work NBS. The concerned interests with a basis for common under- such issues as energy research, fire protection, building standing of the characteristics of the products. NBS technology, metric conversion, pollution abatement, administers this program as a supplement to the activi- health and safety, and consumer product performance. ties of the private sector standardizing organizations. In addition, it reports the results of Bureau programs Consumer Information Series Practical information, in measurement standards and techniques, properties of — based on NBS research and experience, covering areas matter and materials, engineering standards and serv- of interest to the consumer. Easily understandable lang- ices, instrumentation, and automatic data processing. uage and illustrations provide useful background knowl-

Annual subscription : Domestic, Foreign, $15.65. $12.50; edge for shopping in today's technological marketplace. NONPERIODICALS Order above NBS publications from: Superintendent of Documents, Government Printing Office, Washington, Monographs—Major contributions to the technical liter- D.C. 20402. ature on various subjects related to the Bureau's scien- Order following NBS publications—NBSIR's and FIPS tific and technical activities. from the National Technical Information Services, Handbooks—Recommended codes of engineering and Springfield, Va. 22161. industrial practice (including safety codes) developed Federal Information Processing Standards Publications in cooperation with interested industries, professional (FIPS PUBS) —Publications in this series collectively organizations, and regulatory bodies. constitute the Federal Information Processing Stand- Publications Include proceedings of conferences Special — ards Register. Register serves as the official source of sponsored by NBS, NBS annual reports, and other information in the Federal Government regarding stand- special publications appropriate to this grouping such ards issued by NBS pursuant to the Federal Property as wall charts, pocket cards, and bibliographies. and Administrative Services Act of 1949 as amended, Applied Mathematics Series—Mathematical tables, man- Public Law 89-306 (79 Stat. 1127), and as implemented uals, and studies of special interest to physicists, engi- by Executive Order 11717 (38 FR 12315, dated May 11, neers, chemists, biologists, mathematicians, com- 1973) and Part 6 of Title 15 CFR (Code of Federal puter programmers, and others engaged in scientific Regulations). and technical work. NBS Interagency Reports (NBSIR) —A special series of National Standard Reference Data Series—Provides interim or final reports on work performed by NBS for quantitative data on the physical and chemical proper- outside sponsors (both government and non-govern- ties of materials, compiled from the world's literature ment). In general, initial distribution is handled by the and critically evaluated. Developed under a world-wide sponsor; public distribution is by the National Techni- program coordinated by NBS. Program under authority cal Information Services (Springfield, Va. 22161) in of National Standard Data Act (Public Law 90-396). paper copy or microfiche form. BIBLIOGRAPHIC SUBSCRIPTION SERVICES

The following current-awareness and literature-survey Superconducting Devices and Materials. A literature bibliographies are issued periodically by the Bureau: survey issued quarterly. Annual subscription: $20.00. Center Current Awareness Service. Cryogenic Data A Send subscription orders and remittances for the pre- literature survey issued biweekly. Annual subscrip- ceding bibliographic services to National Bureau of tion: Domestic, $20.00; Foreign, $25.00. Liquified Natural Gas. A literature survey issued quar- Standards, Cryogenic Data Center (275.02) Boulder, terly. Annual subscription: $20.00. Colorado 80302. U.S. DEPARTMENT OF COMMERCE National Bureau of Standards Washington, DC. 20234 POSTAGE AND FEES PAID U.S. DEPARTMENT OF COMMERCE OFFICIAL BUSINESS COM-215

Penalty for Private Use. $300

SPECIAL FOURTH-CLASS RATE BOOK