Vapor-Liquid Equilibrium Measurements of the Binary Mixtures Nitrogen + Acetone and Oxygen + Acetone
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Exploring Physical Properties and Thermodynamic Relationships with the Help of the Dortmund Data Bank (DDB) and DDB Software Package (DDBSP)
Exploring Physical Properties and Thermodynamic Relationships with the Help of the Dortmund Data Bank (DDB) and DDB Software Package (DDBSP) Jürgen Gmehling, Jürgen Rarey, University of Oldenburg, Industrial Chemistry (FB 9), D-26111 Oldenburg, Germany; DDBST GmbH, D-26121 Oldenburg, Germany Since 2001 a special educational version of the Dortmund Data Bank is available as single data sets data points references Critical Data 469 469 268 PC or classroom license containing the greater part of the software plus approx. 33 000 Vapor Pressure 3703 18658 2226 Enthalpy of Vaporization 398 1634 200 Melting Point 744 843 450 data sets for 30 common components. Enthalpy of Fusion 124 125 87 Density 5744 40197 1800 This package allows the student to easily explore a large variety of phenomena in pure 2. Virial Coefficient 208 949 121 Ideal Gas Heat Capacity 145 2065 100 component and mixture behavior and to gain experience with the applicability and Molar Heat Capacity 1854 13145 330 Entropy 136 224 96 reliability of a broad range of estimation methods (Joback, Benson, UNIFAC, mod. Dielectric Constant 13 109 7 Viscosity 3771 19250 1033 UNIFAC, PSRK, …). Kinematic Viscosity 355 1090 86 Surface Tension 526 2395 206 Thermal Conductivity 1852 14994 385 ... ... ... ... The package is especially valuable to: sum 20369 118524 - incorporate modern methods and data into teaching Phase Equilibria Vapor-Liquid Equilibria normal boiling 2942 data sets -have the students examine real world experimental data substances Vapor-Liquid Equilibria low boiling 1898 -
Field Performance Testing of Centrifugal Compressors
FIELD PERFORMANCE TESTING OF CENTRIFUGAL COMPRESSORS by Roy B. Pais and Gerald J. Jacobik Dresser Industries, Inc. Dresser Clark Division Olean, New York Roy B. Pais is a Head Product Engi (flow to speed ratio) . Techniques for varying the � ratio neer at the Clark Division of Dresser for both fixed and variable speed drives are discussed. Industries, Inc., Olean, N.Y., where he has worked since 1970. He has A method of calculating horsepower consumed and the responsibility for the design and de capacity of the compressor is shown. Limitations of a field velopment of centrifugal compressors performance test are also commented upon. as well as associated instrumentation and control systems. Field Performance testing of Centrifugal compressors He graduated from the University with meaningful results is an area of considerable interest of Bombay with a B.S. in Mechanical to the process and gas industry. Although much time and Engineering in 1968. In 1970 he ob money are spent on a field test, one must remember that tained an M.S. in Mechanical Engineering from the State the accuracy of the results is not always in proportion to University of New York at Buffalo. the amount of effort put into the test. The preferred meth He is an active member of the A.S.M.E. and is currently od, of course, is to perform the test in the Manufacturer's Chairman of the Olean Section. Shop where facilities are designed for accurate data ac quisition, and subsequent performance computations. Gerald].]acobik is the Test Super· visor of the Dresser-Clark Division Proper planning is essential for conducting a meaning· Test Department, Dresser Industries, ful test. -
PHYSICAL PROPERTIES User's Guide
PHYSICAL PROPERTIES User’s Guide LICENSE AGREEMENT LICENSOR: Chemstations Inc. 2901 Wilcrest Drive, Suite 305 Houston, Texas 77042 U.S.A. ACCEPTANCE OF TERMS OF AGREEMENT BY THE USER YOU SHOULD CAREFULLY READ THE FOLLOWING TERMS AND CONDITIONS BEFORE USING THIS PACKAGE. USING THIS PACKAGE INDICATES YOUR ACCEPTANCE OF THESE TERMS AND CONDITIONS. The enclosed proprietary encoded materials, hereinafter referred to as the Licensed Program(s), are the property of Chemstations Inc. and are provided to you under the terms and conditions of this License Agreement. Included with some Chemstations Inc. Licensed Programs are copyrighted materials owned by the Microsoft Corporation, Rainbow Technologies Inc., and InstallShield Software Corporation. Where such materials are included, they are licensed by Microsoft Corporation, Rainbow Technologies Inc., and InstallShield Software Corporation to you under this License Agreement. You assume responsibility for the selection of the appropriate Licensed Program(s) to achieve the intended results, and for the installation, use and results obtained from the selected Licensed Program(s). LICENSE GRANT In return for the payment of the license fee associated with the acquisition of the Licensed Program(s) from Chemstations Inc., Chemstations Inc. hereby grants you the following non-exclusive rights with regard to the Licensed Program(s): Use of the Licensed Program(s) on more than one machine. Under no circumstance is the Licensed Program to be executed without either a Chemstations Inc. dongle (hardware key) or system authorization code. You agree to reproduce and include the copyright notice as it appears on the Licensed Program(s) on any copy, modification or merged portion of the Licensed Program(s). -
Extended Corresponding States Expressions for the Changes in Enthalpy, Compressibility Factor and Constant-Volume Heat Capacity at Vaporization ⇑ S
J. Chem. Thermodynamics 85 (2015) 68–76 Contents lists available at ScienceDirect J. Chem. Thermodynamics journal homepage: www.elsevier.com/locate/jct Extended corresponding states expressions for the changes in enthalpy, compressibility factor and constant-volume heat capacity at vaporization ⇑ S. Velasco a,b, M.J. Santos a, J.A. White a,b, a Departamento de Física Aplicada, Universidad de Salamanca, 37008 Salamanca, Spain b IUFFyM, Universidad de Salamanca, 37008 Salamanca, Spain article info abstract Article history: By analyzing data for the vapor pressure curve of 121 fluids considered by the National Institute of Received 2 October 2014 Standards and Technology (NIST) program RefProp 9.1, we find that the first and the second derivatives Received in revised form 19 December 2014 with respect to reduced temperature (Tr) of the natural logarithm of the reduced vapor pressure at the Accepted 16 January 2015 acentric point (T ¼ 0:7) show a well defined behavior with the acentric factor x. This fact is used for Available online 31 January 2015 r checking some well-known vapor pressure equations in the extended Pitzer corresponding states scheme. In this scheme, we then obtain analytical expressions for the temperature dependence of the Keywords: enthalpy of vaporization and the changes in the compressibility factor and the constant-volume heat Vapor pressure curve capacity along the liquid–vapor coexistence curve. Comparisons with RefProp 9.1 results are presented Saturation properties Acentric factor for argon, propane and water. Furthermore, very good agreement is obtained when comparing with Enthalpy of vaporization experimental data of perfluorobenzene and perfluoro-n-heptane. -
Dortmund Data Bank Retrieval, Display, Plot, and Calculation
Dortmund Data Bank Retrieval, Display, Plot, and Calculation Tutorial and Documentation DDBSP – Dortmund Data Bank Software Package DDBST - Dortmund Data Bank Software & Separation Technology GmbH Marie-Curie-Straße 10 D-26129 Oldenburg Tel.: +49 441 361819 0 [email protected] www.ddbst.com DDBSP – Dortmund Data Bank Software Package 2019 Content 1 Introduction.....................................................................................................................................................................6 1.1 The XDDB (Extended Data)..................................................................................................................................7 2 Starting the Dortmund Data Bank Retrieval Program....................................................................................................8 3 Searching.......................................................................................................................................................................10 3.1 Building a Simple Systems Query........................................................................................................................10 3.2 Building a Query with Component Lists..............................................................................................................11 3.3 Examining Further Query List Functionality.......................................................................................................11 3.4 Import Aspen Components...................................................................................................................................14 -
Release Notes
DDB and DDBSP Version 2020 Release Notes DDBST - Dortmund Data Bank Software & Separation Technology GmbH Marie-Curie-Straße 10 D-26129 Oldenburg Phone: +49 441 361819 0 [email protected] www.ddbst.com DDBSP – Dortmund Data Bank Software Package 2020 Contents 1 Installation notes ............................................................................................................................................. 3 2 License management system ........................................................................................................................... 3 3 Extended Antoine (Aspen) .............................................................................................................................. 3 4 Binary interaction parameter regression ......................................................................................................... 3 4.1 New optimization method ......................................................................................................................... 3 4.2 Improved access to the objective functions .............................................................................................. 3 4.3 Improvements for cubic equations of state ............................................................................................... 3 4.4 Improvements for LLE data fitting ........................................................................................................... 3 4.5 Start parameters dialog ............................................................................................................................ -
Dortmund Data Bank (DDB) Status, Accessibility and Future Plans
Dortmund Data Bank (DDB) Status, Accessibility and Future Plans Jürgen Rarey and Jürgen Gmehling University of Oldenburg, Industrial Chemistry (FB 9) D-26111 Oldenburg, Germany DDBST GmbH, 26121 Oldenburg, Germany Short History of nearly 30 Years of DDB • Started 1973 at the University of Dortmund for the development of a group contribution gE-model (VLE) E ? E • Extended to LLE, h , ? , azeotropic data, cP and SLE for the development of mod. UNIFAC • Extended to VLE of low boiling components for the development of group contribution EOS (PSRK, VTPR) • Extended to VLE, GLE of electrolyte systems and salt solubilities (ESLE) for the development of electrolyte models (LIQUAC, LIFAC) • Extended to PURE for the development of estimation methods for pure component properties (in cooperation with groups in Prague, Tallinn, Berlin and Graz) (Cordes/Rarey, …) • ..... In 1989 DDBST GmbH took over the further development of the DDB. DDBST also supplies a software package for data handling, retrieval, correlation, estimation, and visualization as well as process synthesis tools. Status of DDB-MIX Phase Equilibria Phase Equilibria Abbreviation Vapor-Liquid Equilibria normal boiling VLE*** 22 900 data sets substances Vapor-Liquid Equilibria low boiling HPV*** 19 400 data sets substances Vapor-Liquid Equilibria electrolyte systems ELE 2 920 data sets Liquid-Liquid Equilibria LLE 12 950 data sets Activity Coefficients infinite dilution ( in ACT 40 750 data points pure solvents ) Activity Coefficients infinite dilution ( in ACM 885 data sets mixtures) -
Equation of State
Supercritical Fluid Extraction: A Study of Binary and Multicomponent Solid-Fluid Equilibria by Ronald Ted Kurnik ~ B.S.Ch.E. Syracuse University (1976) M.S.Ch.E. Washington University (1977) SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF SCIENCE at the MASSACHUSETTS INSTITUT.E OF TECHNOLOGY May, 1981 @Massachusetts Institute of Technology, 1981 Signature of Author Signature redacted -------""="--------,------------Department of Chemical Engineering May, 1981 Certified by Signature redacted Robert C. Reid i:cnesis Supervisor / Signature redacted Accepted by ARC~J\'ES (_ ;- . _ . = . _ . .. _ MASSACHUSEIT . Chairman, Departmental OFTECHN&&is7rrurE Committee on Graduate Students OCT 2 8 1981 UBRARlES SUPERCRITICAL FLUID EXTRACTION: A STUDY OF BINARY AND MULTICOMPONENT SOLID-FLUID EQUILIBRIA by RONALD TED KURNIK Submitted to the Department of Chemical Engineering on May 1981, in partial fulfillment of the requirements for the degree of Doctor of Science ABSTRACT Solid-fluid equilibrium data for binary and multicom- ponent systems were determined experimentally using two supercritical fluids -- carbon dioxide and ethylene, and six solid solutes. The data were taken for temperatures between the upper and lower critical end points and for pressures from 120 to 280 bar. The existence of very large (106) enhancement (over the ideal gas value) of solubilities of the solutes in the fluid phase was.observed with these systems. In addition, it was found that the solubility of a species in a multicomponent mixture could be significantly greater (as much as 300 per- cent) than the solubility of that same pure species in the given supercritical fluid (at the same temperature and pressure). -
Residue Curves Contour Lines Azeotropic Points
Residue Curves Contour Lines Azeotropic Points Calculation of Residue Curves, Border Lines, Singular Points, Contour Lines, Azeotropic Points DDBSP - Dortmund Data Bank Software Package DDBST – Dortmund Data Bank Software & Separation Technology GmbH Marie-Curie-Straße 10 D-26129 Oldenburg Tel.: +49 441 36 18 19 0 Fax: +49 441 36 18 19 10 [email protected] www.ddbst.com DDBSP - Dortmund Data Bank Software Package 2021 Contents Introduction ............................................................................................................................................. 3 Topology Maps.................................................................................................................................... 3 Border Lines ........................................................................................................................................ 3 Residue Curves .................................................................................................................................... 3 Contour Lines ...................................................................................................................................... 3 Azeotropic Points ................................................................................................................................ 3 Overview ................................................................................................................................................. 4 Short Tutorial – Step by Step to First Results ........................................................................................ -
Dortmund Data Bank Online Search Checking for the Availability of Thermophysical Data
DDB 201 9 Dortmund Data Bank Online Search Checking for the Availability of Thermophysical Data the Gas Processors Association (GPA) are also included in The Dortmund Data Bank DETHERM (i-systems.dechema.de ). The Dortmund Data Bank (DDB) is a factual data bank for thermodynamic and thermophysical data compiled from primary The Online DDB Search sources like scientific publications, theses, company reports, deposited documents, and private communications. Only Online DDB Search has been developed to enable a world-wide experimental data from the original publications are stored and access to the contents of the Dortmund Data Bank. The site all sources are available at DDBST GmbH. allows checking for the availability of thermophysical data free of charge and in addition it offers qualified consulting beyond just Besides the easily accessible thermophysical properties from data delivery upon request. scientific literature (J. Chem. Eng. Data, J. Chem. Thermodyn., Fluid Phase Equilib., Thermochim. Acta, and Int. J. Thermophys.) DDB contains a great part of data not available via the open literature (systematic measurements for the development of predictive tools, private communications, confidential data from industry, BSc., MSc and Ph.D. theses, … from all over the world). These data will not be provided by online services and are not made available to competitors of DDBST GmbH. The DDB offers vast amounts of information for a wide variety of applications in chemical engineering, environmental protection, and plant safety. It is especially valuable for the design of separation processes, e.g. distillation, extraction, absorption, crystallization, evaporation, ... Besides covering the most common components the DDB contains data for e. -
Analytically Approximate Solution to the VLE Problem with the SRK Equation of State
Analytically approximate solution to the VLE problem with the SRK equation of state Hongqin Liu* Integrated High Performance Computing Branch, Shared Services Canada, Montreal, QC, Canada Abstract Since a transcendental equation is involved in vapor liquid equilibrium (VLE) calculations with a cubic equation of state (EoS), any exact solution has to be carried out numerically with an iterative approach [1,2]. This causes significant wastes of repetitive human efforts and computing resources. Based on a recent study [3] on the Maxwell construction [4] and the van der Waals EoS [5], here we propose a procedure for developing analytically approximate solutions to the VLE calculation with the Soave-Redlich-Kwong (SRK) EoS [6] for the entire coexistence curve. This procedure can be applied to any cubic EoS and thus opens a new area for the EoS study. For industrial applications, a simple databank can be built containing only the coefficients of a newly defined function and other thermodynamic properties will be obtained with analytical forms. For each system there is only a one-time effort, and therefore, the wastes caused by the repetitive efforts can be avoided. By the way, we also show that for exact solutions, the VLE problem with any cubic EoS can be reduced to solving a transcendental equation with one unknown, which can significantly simplify the methods currently employed [2,7]. *Emails: [email protected]; [email protected]. 1 Introduction contrast to the volumes of saturated liquid and vapor phases. By taking advantages of special features of the Vapor-liquid equilibrium (VLE) calculation plays a M-line, we will propose a procedure for developing central role in thermodynamics and process simulations analytically approximate solutions to the VLE problem [1,7]. -
Component Management
Component Management Adding/Modifying/Searching Components DDBSP – Dortmund Data Bank Software Package DDBST - Dortmund Data Bank Software & Separation Technology GmbH Marie-Curie-Straße 10 D-26129 Oldenburg Tel.: +49 441 361819 0 E-Mail: [email protected] Web: www.ddbst.com DDBSP – Dortmund Data Bank Software Package 2021 Content 1. Introduction ......................................................................................................................................... 4 A. Content ........................................................................................................................................................ 4 B. Usage ........................................................................................................................................................... 5 2. Editing the Main Component List ......................................................................................................... 6 A. The Tool Bar ................................................................................................................................................. 7 a. “More” Functions .................................................................................................................................................................. 11 B. Private and Public Compound Files .............................................................................................................. 15 a. Copy Public Components to the Private Component List ....................................................................................................