Field Performance Testing of Centrifugal Compressors

Total Page:16

File Type:pdf, Size:1020Kb

Field Performance Testing of Centrifugal Compressors FIELD PERFORMANCE TESTING OF CENTRIFUGAL COMPRESSORS by Roy B. Pais and Gerald J. Jacobik Dresser Industries, Inc. Dresser Clark Division Olean, New York Roy B. Pais is a Head Product Engi­ (flow to speed ratio) . Techniques for varying the � ratio neer at the Clark Division of Dresser for both fixed and variable speed drives are discussed. Industries, Inc., Olean, N.Y., where he has worked since 1970. He has A method of calculating horsepower consumed and the responsibility for the design and de­ capacity of the compressor is shown. Limitations of a field velopment of centrifugal compressors performance test are also commented upon. as well as associated instrumentation and control systems. Field Performance testing of Centrifugal compressors He graduated from the University with meaningful results is an area of considerable interest of Bombay with a B.S. in Mechanical to the process and gas industry. Although much time and Engineering in 1968. In 1970 he ob­ money are spent on a field test, one must remember that tained an M.S. in Mechanical Engineering from the State the accuracy of the results is not always in proportion to University of New York at Buffalo. the amount of effort put into the test. The preferred meth­ He is an active member of the A.S.M.E. and is currently od, of course, is to perform the test in the Manufacturer's Chairman of the Olean Section. Shop where facilities are designed for accurate data ac­ quisition, and subsequent performance computations. Gerald].]acobik is the Test Super· visor of the Dresser-Clark Division Proper planning is essential for conducting a meaning· Test Department, Dresser Industries, ful test. A test agenda must be drawn up to cover the Inc., Olean, New York. He is respon­ scope of the test. It should discuss the kind of test to be sible for the supervision of required performed and also define the basic objectives. The agen· personnel to test assigned equipment da should describe the instrumentation to be used and manufactured by Dresser-Clark in­ also list the data required. When the compressor manu· cluding centrifugal compressors, pipe· facturer gets involved in a field test, it is essential that the line boosters, Pacific pumps, Clark test conditions be discussed and an agreement on the I sopac compressors and ensure that acceptance of the test agenda by both the manufacturer they meet contractual requirements and user be made prior to the test. and customer specifications, both in house and in the field. His main concern is to establish mechanical and aerody­ DATA REQU IRED TO DETERMINE namic suitability of equipment by test set-up methods, COMPRESSOR PERFORMANCE instrumentation, data acquisition and analyzation. Mr. ]acobik received an A.A.S. degree in mechanical Evaluation of compressor performance involves the de­ technology from Erie Count)' Community College, Wil­ termination of the inlet capacity, pressure ratio and horse­ liamsville, New York in 1962 and has been associated power consumed for the specific conditions of the test, with Dresser Industries, Inc. for 12 years. which include inlet pressure and temperature, discharge pressure, compressor speed and gas properties. The fol­ Symbols listed at the end of the paper. lowing observations and measurements are required: ABSTRACT 1) Inlet Temperature The paper describes the type of data that must be rt'· 2) Discharge Temperature corded in order to performance test a centrifugal com­ pressor in the field. The instrumentation required to 3) Inlet Pressure measure different test parameters is also discussed. The 4) Discharge Pressure need for accurate measurements, as well as the effect errors in the data have on the calculated performance, is 5) Barometric Pressure explained. 6) Compressor Speed In order to obtain the characteristics of the compressor 7) Differential Pressure across flowmeter. Temperature and Pressure at the flow measuring device are also it is necessary to record data for different values of Q N required. 84 FIELD PERFORMANCE TESTING OF CENTRIFUGAL COMPRESSORS 85 8) Specific Gravity, thermodynamic properties and poles and line frequency. For other drives, speed can be analysis of the test gas measured by an electric counter actuated by a magnetic pulse generator or a 60 tooth gear. The latter method is TEMPERATURE MEASUREMENT preferred and most driver manufacturers install a gear on the driver shaft for this purpose. Accurate temperature measurements are very necessary in evaluating performance. Unfortunately, accurate meas­ urement is not easily achieved. Different kinds of instru­ FLOW MEASUREMENT mentation are available to measure temperature and the choice of any one particular kind depends on the accu­ The following are the various ways by which flow can racy desired and accessibility at the point of measure­ be measured: ment. Thermocouple and glass thermometers are common­ ly used devices. Thermocouples are more advantageous to a) Flow Nozzles use because of the following: b) Concentric Orifice Plates a) They are simple in basic design and operation. c) Venturi Tubes b) They can attain a high level of accuracy. d) Elbow Flow Meters c) They are suitable for remote reading. e) Calibrated pressure drops from the inlet flange to d) They are relatively inexpensive. the eye of the first stage impeller. A calibration curve is used for this purpose. When using the e) They can be installed in relatively inaccessible areas curve, it is important to ensure that the Reynold's and can also be inserted into the gas flow. number during the field test is identical to the one Since the output signals of thermocouples are small, during the calibration test. sensitive measuring devices must be used to measure Usually one of the above flow measuring techniques is them. incorporated as a part of plant piping. The choice of any Though glass thermometers are available in wide ranges one system depends on the cost, allowable pressure drops of sensitivity and accuracy, they are not recommended and accuracy required. for field testing. They are fragile and also have the dis­ advantage of not being adaptable for remote reading. Also, thermometers are placed in a fluid bath, and since LOCATION OF INSTRUMENTATION heat transfer losses are difficult to account for, tempera­ Figure l shows the location of the pressure and tem­ tures measured may not be very accurate. perature probes. Instrumentation at the compressor inlet must be placed downstream of any valves, elbows or PRES SURE MEASUREMENT screens. Similarly, instrumentation at the discharge Pressures are generally measured with high quality should be placed upstream of any valves or elbows. Bourdon tube test gauges which must be calibrated against Temperature and Pressure measurements for the pur­ a deadweight tester in their normal operating range. In pose of calculating flow must be measured right at the view of the considerable amount of time involved in read­ flow measuring device and not at some place hundreds of ing different pressures, deadweight gauges are rarely used feet away. for field testing. When selecting a pressure gauge it is im­ portant to note that the measured value is above the mid­ It is recommended that provisions be made right at the point of the scale. If one reads a 2 PSIG pressure with a design stage for location of instrumentation in the process 0-100 PSIG gauge the reading will be very inaccurate. piping. Sometimes a set of different pressures are measured with one gauge by manifolding and valving. This approach eliminates gauge errors. However, reading too many pres­ sures with one gauge has a disadvantage in that flow con­ ditions may vary during the time interval between record­ ing the first and last pressure measurements. DISCHARGE TEMPERATURE INLET TEMPERATURE 4 PROBES - 90° APART Differential pressures and subatmospheric pressures are 4 PROBES - 90° APART generally measured with manometers with suitable gravity fluids to permit easy reading. A fluid that is chemically stable when in contact with the test gas, as well as one which does not attack the materials of the compressor or process piping, should be selected. Precautions should be INLET STATIC PRESSURE - o taken to prevent foreign matter from blocking the sensing 4 TAPS 90 APART DISCHARGE STATIC PRESSURE lines and mercury traps should be used to prevent the 4 TAPS - 90o APART manometer fluid from entering the process piping. t SPEED MEASUREMENT In the case of a synchronous motor drive, the syn­ chronous speed can be calculated from the number of Figure 1. Location of Instrumentation 86 PROCEEDINGS OF THE THIRD TURBOMACHINERY SYMPOSIUM ACTUAL TEST FIG. 2. ALLOWABLE DEPARTURE FROM SPECI­ FIED OPERATING CONDITIONS After selection, calibration and installation of instru­ mentation, the test procedure can get underway. In se­ VARIABLE DEPARTURE % lecting a particular procedure, consideration is given to plant operation and the kind of variables available. 1. Inlet Pressure, psia 5 2. Inlet Temperature, oR 8 In order to obtain the characteristics of the compressor, 3. Specific Gravity 2 it is necessary to record data for different values of Q/N 4. Speed, rpm 2 (flow to speed ratio). The different techniques used for 5. Capacity, cfm 4 varying the Q/N ratio are dependent on the flexibility of the process and whether or not the compressor has a fixed NOTE: or variable speed driver. 1. The combined effect of 1, 2, and 3 shall not produce more than 8% departure in inlet gas density. For fixed speed drives the compressor is run near its 2. See paragraph on Care Required in Taking Test Data. overload condition. By throttling either the suction or dis­ charge valve the flow is decreased in increments and measurements are made at each value of flow until a FIG. 3. ALLOWABLE FLUCTUATION OF TEST minimum flow operating point is reached. READINGS DURING A TEST RUN For variable speed drives, the flow can be varied by MEASUREMENT FLUCTUATION% changing the speed of the compressor.
Recommended publications
  • Vapor-Liquid Equilibrium Measurements of the Binary Mixtures Nitrogen + Acetone and Oxygen + Acetone
    Vapor-liquid equilibrium measurements of the binary mixtures nitrogen + acetone and oxygen + acetone Thorsten Windmann1, Andreas K¨oster1, Jadran Vrabec∗1 1 Lehrstuhl f¨urThermodynamik und Energietechnik, Universit¨atPaderborn, Warburger Straße 100, 33098 Paderborn, Germany Abstract Vapor-liquid equilibrium data of the binary mixtures nitrogen + acetone and of oxygen + acetone are measured and compared to available experimental data from the literature. The saturated liquid line is determined for both systems at specified temperature and liquid phase composition in a high-pressure view cell with a synthetic method. For nitrogen + acetone, eight isotherms between 223 and 400 K up to a pressure of 12 MPa are measured. For oxygen + acetone, two isotherms at 253 and 283 K up to a pressure of 0.75 MPa are measured. Thereby, the maximum content of the gaseous component in the saturated liquid phase is 0.06 mol/mol (nitrogen) and 0.006 mol/mol (oxygen), respectively. Based on this data, the Henry's law constant is calculated. In addition, the saturated vapor line of nitrogen + acetone is studied at specified temperature and pressure with an analytical method. Three isotherms between 303 and 343 K up to a pressure of 1.8 MPa are measured. All present data are compared to the available experimental data. Finally, the Peng-Robinson equation of state with the quadratic mixing rule and the Huron-Vidal mixing rule is adjusted to the present experimental data for both systems. Keywords: Henry's law constant; gas solubility; vapor-liquid equilibrium; acetone; nitrogen; oxygen ∗corresponding author, tel.: +49-5251/60-2421, fax: +49-5251/60-3522, email: [email protected] 1 1 Introduction The present work is motivated by a cooperation with the Collaborative Research Center Tran- sregio 75 "Droplet Dynamics Under Extreme Ambient Conditions" (SFB-TRR75),1 which is funded by the Deutsche Forschungsgemeinschaft (DFG).
    [Show full text]
  • PHYSICAL PROPERTIES User's Guide
    PHYSICAL PROPERTIES User’s Guide LICENSE AGREEMENT LICENSOR: Chemstations Inc. 2901 Wilcrest Drive, Suite 305 Houston, Texas 77042 U.S.A. ACCEPTANCE OF TERMS OF AGREEMENT BY THE USER YOU SHOULD CAREFULLY READ THE FOLLOWING TERMS AND CONDITIONS BEFORE USING THIS PACKAGE. USING THIS PACKAGE INDICATES YOUR ACCEPTANCE OF THESE TERMS AND CONDITIONS. The enclosed proprietary encoded materials, hereinafter referred to as the Licensed Program(s), are the property of Chemstations Inc. and are provided to you under the terms and conditions of this License Agreement. Included with some Chemstations Inc. Licensed Programs are copyrighted materials owned by the Microsoft Corporation, Rainbow Technologies Inc., and InstallShield Software Corporation. Where such materials are included, they are licensed by Microsoft Corporation, Rainbow Technologies Inc., and InstallShield Software Corporation to you under this License Agreement. You assume responsibility for the selection of the appropriate Licensed Program(s) to achieve the intended results, and for the installation, use and results obtained from the selected Licensed Program(s). LICENSE GRANT In return for the payment of the license fee associated with the acquisition of the Licensed Program(s) from Chemstations Inc., Chemstations Inc. hereby grants you the following non-exclusive rights with regard to the Licensed Program(s): Use of the Licensed Program(s) on more than one machine. Under no circumstance is the Licensed Program to be executed without either a Chemstations Inc. dongle (hardware key) or system authorization code. You agree to reproduce and include the copyright notice as it appears on the Licensed Program(s) on any copy, modification or merged portion of the Licensed Program(s).
    [Show full text]
  • Extended Corresponding States Expressions for the Changes in Enthalpy, Compressibility Factor and Constant-Volume Heat Capacity at Vaporization ⇑ S
    J. Chem. Thermodynamics 85 (2015) 68–76 Contents lists available at ScienceDirect J. Chem. Thermodynamics journal homepage: www.elsevier.com/locate/jct Extended corresponding states expressions for the changes in enthalpy, compressibility factor and constant-volume heat capacity at vaporization ⇑ S. Velasco a,b, M.J. Santos a, J.A. White a,b, a Departamento de Física Aplicada, Universidad de Salamanca, 37008 Salamanca, Spain b IUFFyM, Universidad de Salamanca, 37008 Salamanca, Spain article info abstract Article history: By analyzing data for the vapor pressure curve of 121 fluids considered by the National Institute of Received 2 October 2014 Standards and Technology (NIST) program RefProp 9.1, we find that the first and the second derivatives Received in revised form 19 December 2014 with respect to reduced temperature (Tr) of the natural logarithm of the reduced vapor pressure at the Accepted 16 January 2015 acentric point (T ¼ 0:7) show a well defined behavior with the acentric factor x. This fact is used for Available online 31 January 2015 r checking some well-known vapor pressure equations in the extended Pitzer corresponding states scheme. In this scheme, we then obtain analytical expressions for the temperature dependence of the Keywords: enthalpy of vaporization and the changes in the compressibility factor and the constant-volume heat Vapor pressure curve capacity along the liquid–vapor coexistence curve. Comparisons with RefProp 9.1 results are presented Saturation properties Acentric factor for argon, propane and water. Furthermore, very good agreement is obtained when comparing with Enthalpy of vaporization experimental data of perfluorobenzene and perfluoro-n-heptane.
    [Show full text]
  • Equation of State
    Supercritical Fluid Extraction: A Study of Binary and Multicomponent Solid-Fluid Equilibria by Ronald Ted Kurnik ~ B.S.Ch.E. Syracuse University (1976) M.S.Ch.E. Washington University (1977) SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF SCIENCE at the MASSACHUSETTS INSTITUT.E OF TECHNOLOGY May, 1981 @Massachusetts Institute of Technology, 1981 Signature of Author Signature redacted -------""="--------,------------Department of Chemical Engineering May, 1981 Certified by Signature redacted Robert C. Reid i:cnesis Supervisor / Signature redacted Accepted by ARC~J\'ES (_ ;- . _ . = . _ . .. _ MASSACHUSEIT . Chairman, Departmental OFTECHN&&is7rrurE Committee on Graduate Students OCT 2 8 1981 UBRARlES SUPERCRITICAL FLUID EXTRACTION: A STUDY OF BINARY AND MULTICOMPONENT SOLID-FLUID EQUILIBRIA by RONALD TED KURNIK Submitted to the Department of Chemical Engineering on May 1981, in partial fulfillment of the requirements for the degree of Doctor of Science ABSTRACT Solid-fluid equilibrium data for binary and multicom- ponent systems were determined experimentally using two supercritical fluids -- carbon dioxide and ethylene, and six solid solutes. The data were taken for temperatures between the upper and lower critical end points and for pressures from 120 to 280 bar. The existence of very large (106) enhancement (over the ideal gas value) of solubilities of the solutes in the fluid phase was.observed with these systems. In addition, it was found that the solubility of a species in a multicomponent mixture could be significantly greater (as much as 300 per- cent) than the solubility of that same pure species in the given supercritical fluid (at the same temperature and pressure).
    [Show full text]
  • Investigation of Correlations for Prediction of Critical Properties of Pure Components
    Investigation of Correlations for Prediction of Critical Properties of Pure Components A Thesis Submitted to the College of Engineering of Nahrain University in Partial Fulfillment of the Requirements for the Degree of Master of Science in Chemical Engineering by Eba'a Kareem Jassim B.Sc. in Chemical Engineering 2003 Rabia Al-Awal 1428 November 2007 ABSTRACT Prediction of accurate values of critical properties of any pure component is very important because they are often utilized in estimating the physical properties for chemical process design. Experimental measurements of critical properties for components are very difficult. So, in order to obtain accurate critical property values, attention has been turned to calculate it using mostly a group contribution method which is difficult. To overcome this problem efforts where directed to modify or improve equations to calculate critical properties using relatively simple method. In this method, critical temperature, critical volume and critical pressure can be estimated solely from data of the normal boiling point and molecular weight of pure substance by means of successive approximations that are repeated until calculation of critical pressure (PC) converges. The procedure can be summarized as follows: 1. Calculation of critical temperature. 2. Assuming suitable value of critical pressure and calculating critical volume. 3. Calculation of critical compressibility factor. 4. Calculation of critical pressure from the following equation ; Ζ TR P = cc c Vc If PC obtained is different than PC assumed , the procedure repeated until PC -4 obtained is the same as PC assumed with tolerance of 10 . 1. A statistical program was used to obtained the following equation to estimate critical temperature for non – polar and polar compounds using the normal boiling point and molecular weight of pure substance ; I I Tc = −11.5565 − 1.03586Mwt + 2.075167Tb − 0.000281Mwt2 − 0.00131Tb2 + 0.001827MwtTb The AAD% for estimation of critical temperature is 0.9878 % for 114 non- polar compounds and 1.3525 % for 16 polar compounds.
    [Show full text]
  • Phase Equilibria of Methanol–Triolein System at Elevated Temperature And
    Fluid Phase Equilibria 239 (2006) 8–11 Phase equilibria of methanol–triolein system at elevated temperature and pressure Zhong Tang a,∗, Zexue Du a, Enze Min a, Liang Gao b, Tao Jiang b, Buxing Han b a Research Institute of Petroleum Processing, Sinopec, Beijing 100083, China b Institute of Chemistry, Chinese Academy of Science, Beijing 100080, China Received 21 January 2005; received in revised form 12 September 2005; accepted 9 October 2005 Available online 21 November 2005 Abstract The phase behavior of methnol–triolein system was determined experimentally at 6.0, 8.0 and 10.0 MPa in the temperature range of 353.2–463.2 K. The results demonstrated that the miscibility of the system was rather poor at low temperature, and the miscibility could be improved by increasing temperature. At a higher pressure, the miscibility was more sensitive to temperature as pressure was fixed. The critical temperature, critical pressure, and acentric factor of triolein were estimated and the experimental data were correlated using the Peng–Robinson equation of state. The calculated data agreed reasonably with the experimental results. © 2005 Elsevier B.V. All rights reserved. Keywords: Phase equilibrium; Methanol; Triolein; Equation of state; Calculation; High pressure 1. Introduction triglycerides and methanol reported are very limited, especially at elevated pressures. Study on the alcholysis of oils with simple alcohols to pro- Triolein, one of the typical triglycerides, is the most abun- duce fatty acid esters, which are important intermediates, sur- dant component in many plant oils, such as canola, soybean, factants, lubricants as well as an alternative fuel derived from sunflower seed, etc.
    [Show full text]
  • Experimental Investigation of N2O/O2 Mixtures As Volumetrically Efficient Oxidizers for Small Spacecraft Hybrid Propulsion Systems
    Utah State University DigitalCommons@USU All Graduate Theses and Dissertations Graduate Studies 12-2019 Experimental Investigation of N2O/O2 Mixtures as Volumetrically Efficient Oxidizers for Small Spacecraft Hybrid Propulsion Systems Rob L. Stoddard Utah State University Follow this and additional works at: https://digitalcommons.usu.edu/etd Part of the Mechanical Engineering Commons Recommended Citation Stoddard, Rob L., "Experimental Investigation of N2O/O2 Mixtures as Volumetrically Efficient Oxidizers for Small Spacecraft Hybrid Propulsion Systems" (2019). All Graduate Theses and Dissertations. 7690. https://digitalcommons.usu.edu/etd/7690 This Thesis is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Theses and Dissertations by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. EXPERIMENTAL INVESTIGATION OF N2O/O2 MIXTURES AS VOLUMETRICALLY EFFICIENT OXIDIZERS FOR SMALL SPACECRAFT HYBRID PROPULSION SYSTEMS by Rob L. Stoddard A thesis submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE in Mechanical Engineering Approved: Stephen A. Whitmore, Ph.D. David Geller, Ph.D. Major Professor Committee Member Geordie Richards, Ph.D. Richard S. Inouye, Ph.D. Committee Member Vice Provost for Graduate Studies UTAH STATE UNIVERSITY Logan, Utah 2019 ii Copyright c Rob L. Stoddard 2019 All Rights Reserved iii ABSTRACT Experimental Investigation of N2O/O2 Mixtures as Volumetrically Efficient Oxidizers for Small Spacecraft Hybrid Propulsion Systems by Rob L. Stoddard, Master of Science Utah State University, 2019 Major Professor: Stephen A. Whitmore, Ph.D. Department: Mechanical and Aerospace Engineering Hydrazine has been a widely used primary propellant for small spacecraft systems.
    [Show full text]
  • D 1.2.8 Investigation of Models for Prediction of Transport Properties for CO2 Mixtures
    IMPACTS Project no.: 308809 Project acronym: IMPACTS Project full title: The impact of the quality of CO2 on transport and storage behaviour Collaborative large-scale integrating project FP7 - ENERGY.2012-1-2STAGE Start date of project: 2013-01-01 Duration: 3 years D 1.2.8 Investigation of models for prediction of transport properties for CO2 mixtures Due delivery date: 2013-12-31 Actual delivery date: 2013-12-31 Organisation name of lead participant for this deliverable: SINTEF Energy Research Project co-funded by the European Commission within the Seventh Framework Programme (2012-2015) Dissemination Level PU Public X PP Restricted to other programme participants (including the Commission Services) RE Restricted to a group specified by the consortium (including the Commission Services) CO Confidential , only for members of the consortium (including the Commission Services) IMPACTS Page iii Deliverable number: D 1.2.8 Deliverable name: Investigation of models for transport properties, prediction of CO2 mixtures Work package: WP 1.2 Thermophysical behaviour of CO2 mixtures Lead participant: SINTEF ER Author(s) Name Organisation E-mail Anders Austegard SINTEF Energy research [email protected] Jacob Stang SINTEF Energy research [email protected] Geir Skaugen SINTEF Energy research [email protected] Abstract Several models for transport properties that are suggested in the literature are investigated and compared with collected experimental data on mixtures of CO2. Binary mixtures of CO2 with the impurities Ar, CH4, CO, H2, N2, N2O, O2 or SO2 in temperature, pressure and concentration range relevant for transport, capture and storage. Models for viscosity, thermal conductivity and diffusivity are compared.
    [Show full text]
  • University Microfilms, Inc., Ann Arbor, Michigan the UNIVERSITY of OKLAHOMA
    This dissertation has been 65—9741 microfilmed exactly as received BUXTON, Thomas Stanley, 1931— THE PREDICTION OF THE COMPRESSIBILITY FACTOR FOR LEAN NATURAL GAS-CARBON DIOXIDE MIXTURES AT HIGH PRESSURE. The University of Oklahoma, Ph.D., 1965 Engineering, chemical University Microfilms, Inc., Ann Arbor, Michigan THE UNIVERSITY OF OKLAHOMA GRADUATE COLLEGE THE PREDICTION OF THE COMPRESSIBILITY FACTOR FOR LEAN NATURAL GAS - CARBON DIOXIDE MIXTURES AT HIGH PRESSURE A DISSERTATION SUBMITTED TO THE GRADUATE FACULTY in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY BY THOMAS s ’. BUXTON Norman, Oklahoma 1965 THE PREDICTION OF THE COMPRESSIBILITY FACTOR FOR LEAN NATURAL GAS - CARBON DIOXIDE MIXTURES AT HIGH PRESSURE DISSERTATION COMMITTEE ACKNOWLEDGMENT The author wishes to express his sincere appreciation to the following persons and organizations: Professor J. M. Campbell, who directed this study. Mr. G. F. Kingelin, who assisted with the computer calculations. Phillips Petroleum Company for analysing the gas mixtures. Gulf Research and Development Company for providing financial support. Pan American Petroleum Corporation for printing this dissertation. Ill TABLE OF CONTENTS Page LIST OF TABLES tfcsooso«oooe« = euccco V î X LIST OF ILLUSTRATIONS.............................. viii Chapter I. INTRODUCTION.................................... 1 II. THEORETICAL BACKGROUND - PURE GASES .......... 5 A. Equations of State .................. 5 B. The Principle of Corresponding States. 8 C. Third Parameters ....................... 15 1. A Parameter to Account for Quantum Effects ............... I5 2. Parameters for Nonspherically Shaped and Globular Molecules . 19 3. Polar Moment Parameters ......... 21 4. General Parameters............ 23 III. CHARACTERIZATION OF GAS MIXTURES.............. 33 A. Third Parameters for Mixtures....... 39 B. Pseudocritical Constants from Two Parameter Equations of State ........
    [Show full text]
  • Thermodynamic Models & Physical Properties
    Thermodynamic Models & Physical Properties When building a simulation, it is important to ensure that the properties of pure components and mixtures are being estimated appropriately. In fact, selecting the proper method for estimating properties is one of the most important steps that will affect the rest of the simulation. There for, it is important to carefully consider our choice of methods to estimate the different properties. In Aspen Plus, the estimation methods are stored in what is called a “Property Method”. A property method is a collection of estimation methods to calculate several thermodynamic (fugacity, enthalpy, entropy, Gibbs free energy, and volume) and transport (viscosity, thermal conductivity, diffusion coefficient, and surface tension). In addition, Aspen Plus stores a large database of interaction parameters that are used with mixing rules to estimate mixtures properties. Property Method Selection Property methods can be selected from the Data Browser, under the Properties folder as shown in Figure 13. To assist you in the selection process, the Specifications sheet (under the Properties folder) groups the different methods into groups according to Process type. For example, if you select the OIL-GAS process type, you will be given three options for the Base method: Peng-Robinson, Soave-Redlich-Kwong, and Perturbed Chain methods. These are the most commonly used methods with hydrocarbon systems such as those involved in the oil and gas industries. When you select a property method, you are in effect selecting a number of estimation equations for the different properties. You can see for example, to the right hand side of the Property methods & models box, what equations are being used.
    [Show full text]
  • Field Performance Testing of Centrifugal Compressors
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Texas A&M University FIELD PERFORMANCE TESTING OF CENTRIFUGAL COMPRESSORS by Roy B. Pais and Gerald J. Jacobik Dresser Industries, Inc. Dresser Clark Division Olean, New York Roy B. Pais is a Head Product Engi­ (flow to speed ratio) . Techniques for varying the � ratio neer at the Clark Division of Dresser for both fixed and variable speed drives are discussed. Industries, Inc., Olean, N.Y., where he has worked since 1970. He has A method of calculating horsepower consumed and the responsibility for the design and de­ capacity of the compressor is shown. Limitations of a field velopment of centrifugal compressors performance test are also commented upon. as well as associated instrumentation and control systems. Field Performance testing of Centrifugal compressors He graduated from the University with meaningful results is an area of considerable interest of Bombay with a B.S. in Mechanical to the process and gas industry. Although much time and Engineering in 1968. In 1970 he ob­ money are spent on a field test, one must remember that tained an M.S. in Mechanical Engineering from the State the accuracy of the results is not always in proportion to University of New York at Buffalo. the amount of effort put into the test. The preferred meth­ He is an active member of the A.S.M.E. and is currently od, of course, is to perform the test in the Manufacturer's Chairman of the Olean Section. Shop where facilities are designed for accurate data ac­ quisition, and subsequent performance computations.
    [Show full text]
  • Vapor Pressure of Pure Substances from Acentric Factor
    1 Vapor Pressures from Acentric Factor Omega plus Corresponding States Principle. Published 6 July 2019 (updated 24 Oct 2019) by A.E. for mychemengmusings.com The vapor pressure as function of temperature can be estimated for a wide range of different, pure substances with the help of a simple equation. This post is divided in three parts, Part I, II and III. Part I presents the equation in corresponding state format as well as an expression of the actual vapor pressure for a given substance that employs three parameters characterizing a substance: the Acentric Factor Omega plus critical pressure and critical temperature. Part II gives numerical examples. Part III discusses the basis for this equation. Note that the formula’s are shown in ‘excel’ style format in which multiplication is symbolized by ‘*’ and the Acentric Factor is symbolized by the capital letter ‘W’ standing for the Greek letter Omega. Part I. The basic equation is stated in a corresponding states type formula with the reduced Pressure and Temperatures as variables and the Acentric Factor W as parameter. It reads as follows: Ln (Pr) = 5.3727 * ( 1 + W) * ( 1 - 1 / Tr) (Eq. 1.) In which the symbol ‘Ln’ stands for the natural logarithm; ‘Pr’ is the reduced (saturated) vapor pressure, ‘W’ is Pitzer’s Acentric Factor Omega for a particular substance and ‘Tr’ is the reduced temperature. This equation is valid for the following reduced temperature range: 0.70 = < Tr = < 1.0 The actual (saturated) vapor pressure as function of the absolute temperature can be expressed as: P = Pcrit * Exp ( 5.3727 * (1+W) * (1 – Tcrit / T ) ) (Eq.1a) Discussion.
    [Show full text]