Intravenous Volume Replacement: Which Fluid and Why?

Total Page:16

File Type:pdf, Size:1020Kb

Intravenous Volume Replacement: Which Fluid and Why? A,vchives ofDisease in Childhood 1992; 67: 649-653 649 ;URRENT TOPIC Arch Dis Child: first published as 10.1136/adc.67.5.649 on 1 May 1992. Downloaded from Intravenous volume replacement: which fluid and why? Lucinda Huskisson Fluids available for intravenous volume replace- The interstitial space fills more readily after ment may be either crystalloid or colloid. The crystalloid resuscitation. Because of this, the fundamental differences between these fluids volume of fluid required is two to three times are their effects on the Starling equation (table greater than when using colloids, resulting in an 1) which describes fluid flux between the increased risk of tissue oedema. Sponsors of the intravascular and interstitial spaces. Starling crystalloid school maintain that this is not stated that the rate of fluid movement into or harmful despite the fact that tissue oedema has out of a capillary is related to the net hydrostatic been associated with tissue hypoxia and has pressure minus the net colloid osmotic pressure.1 been implicated in delayed healing of bowel The Starling equation has been modified to anastomoses." Despite the increased volumes include coefficients which represent the per- required, crystalloid resuscitation is cheaper meability of the capillary membrane to small than the colloid equivalent (table 2). solutes (Kfc) and its ability to prevent large Velanovich analysed the mortality data from a molecules such as plasma proteins from crossing number of clinical trials and concluded that it (oc).' Colloids may be used to replenish the after trauma, or in instances when the capillaries oncotic strength of the blood, thereby enhanc- are likely to have increased permeability, resus- ing its water retaining capacity. citation is best achieved with crystalloids.12 In other circumstances-such as during major Crystalloid versus colloid controversy elective surgery-mortality rates may be re- Colloids are widely used in Europe for volume duced by using colloids. replacement, while crystalloids are the fluids of The most appropriate resuscitation regimens choice in many centres in the USA,3 but the undoubtedly involve the use of both crystalloids relative merits of the two methods of manage- and colloids. Criteria for volume administration ment remain controversial.4 5 include tachycardia, hypotension, low filling http://adc.bmj.com/ Workers in favour of colloids insist that the pressures, reduced urine output, metabolic intravascular colloid osmotic pressure must be acidosis and increasing core-peripheral temper- kept either above the capillary hydrostatic ature gradient, although it should be remem- pressure or at least greater than 10 mm Hg in bered that a child can maintain a normal heart critically ill patients to avoid a poor rate and systemic blood pressure despite a 25% prognosis.' 7 Proponents of crystalloids main- loss of circulating volume. Volume administra- tain that colloids leak out of the capillaries, tion should not be based on reflex prescribing- on September 29, 2021 by guest. Protected copyright. increasing interstitial colloid osmotic pressure 'He looks volume depleted, therefore give 10 which has a detrimental effect by increasing ml/kg of plasma'. An individual patient's fluid fluid flux out of the capillary.8 This is more requirements should be based on the aetiology likely to occur if oic is reduced, as happens after of the volume depletion, and the most appropri- burns, severe sepsis, and cardiopulmonary ate fluids should be used in adequate volumes. bypass.' Colloid solutions expand the intravascular space more effectively than crystalloids, with Intravenous fluids available the same increase in cardiac output being CRYSTALLOIDS achieved by smaller volumes and with less (1) Dextrose haemodilution. The crystalloid proponents Because dextrose is rapidly metabolised after argue that the interstitial space is depleted in intravenous administration, 5% or 10% dextrose conditions of hypovolaemia because of fluid solutions act as free water, quickly equilibrating shift into intravascular and intracellular com- partments.'0 Table 2 Cost of volume replacement by various agents Fluid Cost in £ per 500 ml Table I Starling equation 4 5% Albumin 33 00 J,= Kf,[(P, - P,) - a., -Jr,)] 20% Albumin (100 ml) (37-00) Where Hespan 16-72 Nuffield Department of J, =rate of fluid movement into/out of capillary Pentaspan 15 70 Paediatric Surgery, K,, =capillary filtration coefficient Gelofusine 3-56 Institute of Child Health, P, =capillary hydrostatic pressure Haemaccel 3 81 30 Guilford Street, P, =tissue fluid hydrostatic pressure Rheomacrodex 6 51 'London WC1N 1EH (j, =reflection coefficient Macrodex 4-11 jT, =capillary colloid osmotic pressure Normal saline 0-78 Correspondence to: T, =tissue colloid osmotic pressure Hartmann's solution 0-88 Miss Huskisson. 650 Huskisson Table 3 Chemical basis and source of clinically important colloids Table 5 Molecular weight definitions Natural Hydroxyethyl Gelatins Dextrans Weight average molecular weight (M,,,) starches sum of each molecule's weight Arch Dis Child: first published as 10.1136/adc.67.5.649 on 1 May 1992. Downloaded from Chemical basis Protein Carbohydrate Protein Carbohydrate Source Blood Amylopectin Bovine collagen Bacterial synthesis total mixture's weightxweight of the molecule Examples Albumin Hespan Gelofusine Dextran 40 FFP Pentastarch Haemaccel Dextran 70 Number average molecular weight (M) Pentafraction Excretion Liver/ Amylase/RES/ Kidneys M -mass of the sample in grams kidneys kidneys Proteases n total number of chains FFP, fresh frozen plasma; RES, reticuloendothelial system. After Hulse and Yacobi.'5 between the intracellular and extracellular fluid table 4 summarises the pharmacology. The two compartments. For every 100 ml infused, only molecular weights quoted for synthetic colloids 7-5 ml will remain in the intravascular space for are defined in table 5. The weight average a useful period of time, so dextrose solutions molecular weight (Mw) determines the viscosity, are inappropriate for intravascular fluid resusci- while the number average molecular weight tation. (M ) gives an indication of the osmotic pressure exerted by the fluid. Albumin is monodisperse- that is, all of the molecules within a solution are (2) Isotonic crystalloid solutions the same size and both M, and M are 69 000. Isotonic crystalloids (for example, normal saline All of the synthetic colloids are polydisperse, and Hartmann's solution) equilibrate rapidly and have different values for Mw and M (table throughout both the interstitial and intravascular 4). spaces, so approximately one quarter of the administered volume will remain within the intravascular space. PHARMACOLOGY OF INDIVIDUAL COLLOIDS Natural colloids (A) Fresh frozen plasma-fresh frozen plasma is (3) Hypertonic saline solutions extracted from donated blood and because it is These have shown a resurgence of popularity. unpasteurised it has the potential to transmit Small volumes of 7-5% saline have successfully blood borne infections. The Consensus Con- maintained the circulation after hypovolaemic ference held at the National Institutes of Health shock.13 14 Their role in paediatrics has not yet has laid down strict guidelines for the adminis- been assessed, and hypertonic saline may prove tration of fresh frozen plasma, concluding that inappropriate for neonates with immature there is no justification for its use as a volume sodium handling.'5 expander. 19 (B) Albumin-Human albumin solution is http://adc.bmj.com/ COLLOID SOLUTIONS derived from donated blood by fractionation Colloid solutions, both natural (for example, and/or plasmapheresis. It is produced as a 4-5% human albumin solutions) and the synthetic solution (iso-oncotic with plasma) or as more macromolecules (for example, the gelatins, concentrated (hyperoncotic) 10% or 20% solu- hydroxyethyl starches, and dextrans), theor- tions of 'salt poor' albumin.20 etically remain within the intravascular space. Albumin persists within the body for about Thus, volume for volume, they provide a 20 days, although its duration of action within on September 29, 2021 by guest. Protected copyright. greater and more sustained haemodynamic the intravascular compartment varies from less response than crystalloids. In the UK, standard than two hours to more than a day.2' paediatric practice is to use natural colloids for Although freely donated, the processing of resuscitation. Although synthetic colloids are human albumin is expensive (table 2). used sporadically, there has been a reluctance to use them routinely because of a lack of clinical trials concerning their use in children. Synthetic colloids (A) Gelatins-The gelatins tend to be considered as a homogeneous group but, because of dif- BASIC STRUCTURE OF COLLOIDS ferent manufacturing processes,22 the individual The chemical basis and source of the clinically solutions have differing properties, particularly important colloids are shown in table 3, and in the incidence of adverse reactions. The new Table 4 Characteristics of various colloids"' 1617 Albumin Gelofusine Haemaccel Hetastarch Tentastarch Dextran 40 Dextran 70 M,, (kDa) 69 30 35 450 200 40 70 M (kDa) 69 22 5 24 5 71 35 25 39 Soziium (mmol/l) 130-160 154 145 154 154 154 154 Potassium (mmol/l) 1 <04 5-1 0 0 0 0 Calcium (mmol/l) 0 <0 4 12-5 0 0 0 0 Duration of action (hours) 6 3-4 3-4 >8 6-8 3-4 6-8 Survival in body (days) 21 7 7 2-65 7 6 2842 Water binding (ml H20/g colloid) 18 42-8 41 7 20 30 37 29 Intravenous volume replacement: which fluid and why? 651 generation gelatins are widely used within 0-05% respectively) and the former has been Europe. In the UK the two most commonly associated with free di-isocyanate, which causes used solutions are: (1) Gelofusine (B Braun) histamine release; and secondly, the incidence Arch Dis Child: first published as 10.1136/adc.67.5.649 on 1 May 1992. Downloaded from which is a 'modified fluid' or succinylated gela- of allergic reactions can be reduced by pre- tin and (2) Haemaccel (Hoechst) which is a treatment with HI and H2 blockers.33 polygeline, or urea-linked gelatin.
Recommended publications
  • Intravenous And/Or Peripheral Saline Lock Insertion and Maintenance
    Policies & Procedures Title: INTRAVENOUS AND/OR PERIPHERAL SALINE LOCK INSERTION AND MAINTENANCE ID Number: 1118 Authorization Source: Nursing Date Revised: September 2013 [X] SHR Nursing Practice Committee Date Effective: May 1999 Date Reaffirmed: May 2015 Scope: SHR & Affiliates Any PRINTED version of this document is only accurate up to the date of printing 22-Jul-15. Saskatoon Health Region (SHR) cannot guarantee the currency or accuracy of any printed policy. Always refer to the Policies and Procedures site for the most current versions of documents in effect. SHR accepts no responsibility for use of this material by any person or organization not associated with SHR. No part of this document may be reproduced in any form for publication without permission of SHR. DEFINITIONS Flushing – Injection of a solution into the intravenous (IV) catheter/cap to prevent mixing of incompatible solutions and clean the catheter of blood or fibrin buildup. Turbulent flush technique – A method of flushing using a “stop-start” technique which “scrubs” the inside of the catheter lumen, preventing the build-up of fibrin or medication residue. 1. PURPOSE 1.1 To minimize the risks of infection and other complications associated with the insertion and maintenance of intravenous catheters. 2. POLICY 2.1 Who may start IV • RN/RPN/GN competent in IV starts (NICU-Level 2 orientated RN only) • Nursing Students under direct RN/GN/RPN/LPN/GPN supervision • LPN/GPN who have successfully completed the IV/Blood Administration Course • Home Intravenous Therapy Program (HITP) – RN’s only 2.2 A prescriber order is required to start an IV except in an emergency situation or for restarts.
    [Show full text]
  • The National Drugs List
    ^ ^ ^ ^ ^[ ^ The National Drugs List Of Syrian Arab Republic Sexth Edition 2006 ! " # "$ % &'() " # * +$, -. / & 0 /+12 3 4" 5 "$ . "$ 67"5,) 0 " /! !2 4? @ % 88 9 3: " # "$ ;+<=2 – G# H H2 I) – 6( – 65 : A B C "5 : , D )* . J!* HK"3 H"$ T ) 4 B K<) +$ LMA N O 3 4P<B &Q / RS ) H< C4VH /430 / 1988 V W* < C A GQ ") 4V / 1000 / C4VH /820 / 2001 V XX K<# C ,V /500 / 1992 V "!X V /946 / 2004 V Z < C V /914 / 2003 V ) < ] +$, [2 / ,) @# @ S%Q2 J"= [ &<\ @ +$ LMA 1 O \ . S X '( ^ & M_ `AB @ &' 3 4" + @ V= 4 )\ " : N " # "$ 6 ) G" 3Q + a C G /<"B d3: C K7 e , fM 4 Q b"$ " < $\ c"7: 5) G . HHH3Q J # Hg ' V"h 6< G* H5 !" # $%" & $' ,* ( )* + 2 ا اوا ادو +% 5 j 2 i1 6 B J' 6<X " 6"[ i2 "$ "< * i3 10 6 i4 11 6! ^ i5 13 6<X "!# * i6 15 7 G!, 6 - k 24"$d dl ?K V *4V h 63[46 ' i8 19 Adl 20 "( 2 i9 20 G Q) 6 i10 20 a 6 m[, 6 i11 21 ?K V $n i12 21 "% * i13 23 b+ 6 i14 23 oe C * i15 24 !, 2 6\ i16 25 C V pq * i17 26 ( S 6) 1, ++ &"r i19 3 +% 27 G 6 ""% i19 28 ^ Ks 2 i20 31 % Ks 2 i21 32 s * i22 35 " " * i23 37 "$ * i24 38 6" i25 39 V t h Gu* v!* 2 i26 39 ( 2 i27 40 B w< Ks 2 i28 40 d C &"r i29 42 "' 6 i30 42 " * i31 42 ":< * i32 5 ./ 0" -33 4 : ANAESTHETICS $ 1 2 -1 :GENERAL ANAESTHETICS AND OXYGEN 4 $1 2 2- ATRACURIUM BESYLATE DROPERIDOL ETHER FENTANYL HALOTHANE ISOFLURANE KETAMINE HCL NITROUS OXIDE OXYGEN PROPOFOL REMIFENTANIL SEVOFLURANE SUFENTANIL THIOPENTAL :LOCAL ANAESTHETICS !67$1 2 -5 AMYLEINE HCL=AMYLOCAINE ARTICAINE BENZOCAINE BUPIVACAINE CINCHOCAINE LIDOCAINE MEPIVACAINE OXETHAZAINE PRAMOXINE PRILOCAINE PREOPERATIVE MEDICATION & SEDATION FOR 9*: ;< " 2 -8 : : SHORT -TERM PROCEDURES ATROPINE DIAZEPAM INJ.
    [Show full text]
  • Intravenous Fluids
    See also IV fluid guidelines at www.rch.org.au/clinicalguide/cpg.cfm?doc_id=5203, contact email: [email protected] or [email protected] Intravenous fluids Hourly maintenance intravenous fluid requirements [Resuscitation bolus (Normal saline): 10-20 ml/kg] Weight (kg) 4 6 8 10 12 14 16 20 30 40 50 60 70 ml/hr 16 24 32 40 44 48 52 60 70 80 90 100 100 Reminders 1. Check weight of patient 2. Check maintenance fluids infusion rate according to weight. Remember that the maintenance fluid volume will need to be reduced in many unwell children, especially children with meningitis, bronchiolitis, pneumonia, some surgical problems and many children with hyponatraemia. 3. Consider why the patient needs IV fluid. If a child is prescribed anything other than a 0.9% or 0.45% NaCl solution, ask why. 4. Check the written order 5. If in doubt about fluids please ask, call a paediatric registrar, a consultant or the ICU Type of fluid Comment Na+ Cl- K+ Lactate Ca++ Glucose See also Clinical Practice Guidelines Intravenous Fluids (mmol/L) (mmol/L) (mmol/L) (mmol/L) (mmol/L) (gram/L) Monitor 0.9% NaCl Isotonic, contains no glucose 150 150 - - - - Clinical signs of (Normal Saline) Use for initial volume resuscitation, e.g. dehydration and over- septic shock, trauma. hydration 0.9% NaCl with 5% dextrose Use as maintenance fluid for suspected 150 150 50 (Normal saline with glucose) meningitis, acute neurological conditions, Weigh prior to where IV fluids are used for gastroenteritis or commencement of IV when the serum sodium is low.
    [Show full text]
  • (Haemagel) Versus 6% Hydroxyethyl Starch 200/0.5 (Haes-Steril) for Plasma Volume Expansion in Critically-Ill Patients Magdy Ali Omera, MD* , Salah A
    Alexandria Journal of Anaesthesia and Intensive Care 44 Autoclaved Gelatin (Haemagel) Versus 6% Hydroxyethyl Starch 200/0.5 (Haes-steril) For Plasma Volume Expansion In Critically-ill Patients Magdy Ali Omera, MD* , Salah A. Ismail, MD* * Assistant Prof. of Anaesthesia, Faculty of Medicine, Suez Canal University. ABSTRACT Synthetic colloids are used to optimize hemodynamics in the critically ill patients and a debate about the most suitable one is still present. The influence of short term infusion of autoclaved gelatin (Haemagel) and 6% hydroxyethyl starch 200/0.5 (Haes-steril) on hemodynamic, respiratory, coagulation, renal and oncotic parameters were examined in a prospective randomized study. Method: Thirty patients suffering from systemic hypoperfusion due to sepsis in ICU of Suez Canal University Hospital were assigned into 2 equal groups. In GEL group: 1000 ml of Haemagel was infused within an hour, while in HES group: 1000 ml of 6% Haes-steril 200/0.5 was given within an hour. The hemodynamic, respiratory, hematological, coagulation, renal and colloidal osmotic pressure parameters were recorded before and after infusion of both colloids. Results: There was a significant similar increase in hemodynamic variables (Mean arterial pressure, central venous pressure, cardiac index, stroke volume index and left ventricular stroke work index) in both groups. Also, a significant improvement in tissue perfusion as judged by decreased arterial lactate was found. There were no significant differences in any of the measured respiratory parameters (respiratory rate, arterial oxygen saturation, arterial blood gases and intrapulmonary shunt) in the studied groups. No significant intergroup difference in any haemodynamic or respiratory variable was demonstrated.
    [Show full text]
  • Clinical Pharmacology of Infusion Fluids
    Clinical pharmacology of infusion fluids Robert G. Hahn Linköping University Post Print N.B.: When citing this work, cite the original article. Original Publication: Robert G. Hahn , Clinical pharmacology of infusion fluids, 2012, Acta Medica Lituanica, (19), 3. Licencee: Lithuanian Academy of Sciences http://www.lmaleidykla.lt/ojs/index.php/actamedicalituanica/index Postprint available at: Linköping University Electronic Press http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-91319 ACTA MEDICA LITUANICA. 2012. Vol. 19. No. 3. P. 210–212 © Lietuvos mokslų akademija, 2012 Clinical pharmacology of infusion fluids Robert G. Hahn Fluids are used for intravenous infusion during practically all surgeries, but several different compositions are available on the market. Södertälje Hospital, Crystalloid fluids comprise lactated or acetated Ringer solutions, nor- Södertälje, Sweden; mal saline, Plasma-Lyte, hypertonic saline, and glucose. They lack allergic Anaesthesia and properties but are prone to cause peripheral tissue oedema. Their turn- Intensive Care, over is governed by physiological factors such as dehydration and drug Linköping University, effects. Sweden Colloid fluids include hydroxyethyl starch, albumin, dextran, and gela- tin. These fluids have various degrees of allergic properties and do not promote peripheral oedema. Their half-life is usually about hours. Factors increasing the turnover rate are poorly known but might include inflam- matory states. Current debates include the widespread use of normal saline, which should be replaced by Ringer’s or Plasma-Lyte in most situations, and the kidney damage associated with the use of starch in septic patients. New studies show that hypertonic saline does not improve survival or neuro- logical damage in prehospital care.
    [Show full text]
  • High Volume Sinonasal Budesonide Irrigations for Chronic Rhinosinusitis
    oepidem ac io m lo Rudmik, Adv Pharmacoepidemiol Drug Saf 2014, 3:2 r g a y h & P Advances in Pharmacoepidemiology & DOI: 10.4172/2167-1052.1000148 D n i r u s g e c ISSN: 2167-1052 S n a a f v e t d y A Drug Safety Review Article Open Access High Volume Sinonasal Budesonide Irrigations for Chronic Rhinosinusitis: An Update on the Safety and Effectiveness Luke Rudmik* Division of Otolaryngology–Head and Neck Surgery, Department of Surgery, University of Calgary, Calgary, Alberta, Canada Abstract Chronic rhinosinusitis (CRS) is a common inflammatory disease of the paranasal sinuses associated with severe impairments in patient quality of life, sleep, and productivity. Topical corticosteroid therapy is a key component to a successful management plan for patients with CRS. Delivering topical medical therapies using high-volume sinonasal irrigations are commonly used following endoscopic sinus surgery (ESS) due to its proven efficacy for improving drug delivery into the paranasal sinuses. Topical high volume budesonide irrigations have become a popular off- label management strategy for CRS with the purpose to improve topical steroid delivery into the sinonasal cavities. Early evidence outlined in this review suggests that high volume sinonasal budesonide irrigations are an effective treatment modality in patients with CRS following ESS. Overall it appears that short-term use of this therapy is likely safe, however, future studies will need to assess the safety of higher doses and longer-term therapy of budesonide irrigations in patients with CRS. Keywords: Chronic rhinosinusitis; Sinusitis; Sinonasal; Nasal; mixing an active topical medical agent with an isotonic saline solution Budesonide; Topical Steroid; Safety; Irrigations; Corticosteroid; followed by a low-pressure delivery into the nasal cavity using either a Effectiveness squeeze bottle or neti pot.
    [Show full text]
  • The Effect of Dexamethasone on Chronic Pulmonary Oxygen Toxicity in Infant Mice
    003 1-399818912504-0353$02.00/0 PEDIATRIC RESEARCH Vol. 25, No. 4, 1989 Copyright 0 1989 International Pediatric Research Foundation, Inc Printrd in G.S A The Effect of Dexamethasone on Chronic Pulmonary Oxygen Toxicity in Infant Mice N. OHTSU. R. L. ARIAGNO, T. E. SWEENEY, L. DAVIS, L. MOSES, R. PETRICEKS, I. DAEHNE, K. BENSCH, AND W. H. NORTHWAY, JK. De~~urtmcntsofRadiology, Pathology, Pediatrics, Stanfird University Medical Center, Stanbrd, Califhrnia 94305 ABSTRACT. The effect of dexamethasone (0.1, 1, and 5 ported in the clinical studies of Mammel et al. (1, 2) and Avery mg/kg/d given subcutaneously from d 14-18) was tested in et al. (3). infant mice continuously exposed from birth to either hu- midified air or 80% oxygen. Dexamethasone significantly decreased lung wet wt (p < 0.01), lung water (p < 0.021), METHODS lung dry wt, protein, and DNA (p < 0.001) in both air- Animal selection, environment, and drug administrution. In and oxygen-exposed animals. Dexamethasone, however, each experiment, two litters of naturally born C57BL mice were had no effect on lung compliance measured after animals weighed and sex identified within 24 h of birth. Natural litter were killed on d 18. It also had no effect on the increase in size was reduced to five by selecting the five animals with the the blood-air barrier thickness or decrease in the blood-air highest birth wt. Each of the five newborn mice was marked and exchange surface area seen in the 80% oxygen-exposed assigned a serial number which determined the treatment assign- mice.
    [Show full text]
  • Maintenance Fluid Therapy with Saline, Dextrose-Supplemented Saline Or Lactated Ringer in Childhood: Short-Term Metabolic Effect
    nutrients Article Maintenance Fluid Therapy with Saline, Dextrose-Supplemented Saline or Lactated Ringer in Childhood: Short-Term Metabolic Effects 1, 1,2,3, , 1 1 Alessandra Ricciuti y, Gregorio P. Milani * y , Silvia Tarantino , Roberta Ghilardi , Sebastiano A.G. Lava 4, Marco Alberzoni 2, Mario G. Bianchetti 5 and Carlo Agostoni 1,2,3 1 Pediatric Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; [email protected] (A.R.); [email protected] (S.T.); [email protected] (R.G.); [email protected] (C.A.) 2 Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy; [email protected] 3 Italian Society for Pediatric Gastroenterology Hepatology and Nutrition (SIGENP), 20126 Milan, Italy 4 Pediatric Cardiology Unit, Department of Pediatrics, Centre Hospitalier Universitaire Vaudois, and University of Lausanne, 1010 Lausanne, Switzerland; [email protected] 5 Università della Svizzera Italiana, 6900 Lugano, Switzerland; [email protected] * Correspondence: [email protected]; Tel.: +39-025-503-2266 These two authors equally contributed to the study. y Received: 29 March 2020; Accepted: 14 May 2020; Published: 17 May 2020 Abstract: Maintenance with isotonic fluids is recommended in children with gastroenteritis and failure of oral rehydration therapy. However, little is known on the short-term effects of the commonly prescribed intravenous solutions on metabolic balance in children. The aim of this study is to report on our experience with normal saline, dextrose-supplemented saline and lactated Ringer solution. Methods: A retrospective analysis from the charts of all previously apparently healthy children with acute gastroenteritis, mild to moderate dehydration and failure of oral rehydration, evaluated between January 2016 and December 2019 at our institution, was performed.
    [Show full text]
  • Coagulation Effects of Mannitol in Combination with 0.9% Normal Saline Or Hydroxyethyl Starch in Patients Undergoing Supratentorial Craniotomy: a Preliminary Report
    Original Article Coagulation effects of mannitol in combination with 0.9% normal saline or hydroxyethyl starch in patients undergoing supratentorial craniotomy: A preliminary report Hemanshu Prabhakar, Gyaninder Pal Singh, Parmod Kumar Bithal, Mani Kalaivani1 Abstract Background: Neurosurgical patients often require administration of both, mannitol and hydroxyethyl starch (HES). A recent in vitro study demonstrated that HES in combination with mannitol could disturb coagulation parameters and should be avoided in neurosurgical practice. The aim of our study was to evaluate coagulation abnormalities due to mannitol when administered alone and in combination with HES in patients undergoing craniotomy for various intracranial brain tumours. Materials and Methods: We enrolled 30 adult patients undergoing craniotomy. Patients were randomised into two groups using a computer generated randomisation chart. Interventions: Group A: Patients received 10 ml/kg 0.9% normal saline and 1 g/kg mannitol and Group B: Patients received 10 ml/kg, HES 130/0.4, and 1 gm/kg mannitol; immediately after induction of general anaesthesia. Rotational thromboelastography was done immediately after induction of general anaesthesia and 5 min after administration of mannitol. Measured parameters of blood coagulation were clotting time (CT) and clot formation time (CFT) with EXTEM and maximum clot firmness (MCF) with EXTEM and (FIBTEM). Results: Fourteen patients in each group completed the study. Insignificant change was noted in CT; CFT altered significantly from the baseline in both the groups (P < 0.05). MCF with FIBTEM did not change significantly from baseline (P > 0.05), but significantly differed between groups (P = 0.001). However, all values were in normal range.
    [Show full text]
  • Physical Charaterization of Red Blood Cell Aggregation Daniel Amadeus Dominic Flormann
    Physical charaterization of red blood cell aggregation Daniel Amadeus Dominic Flormann To cite this version: Daniel Amadeus Dominic Flormann. Physical charaterization of red blood cell aggregation. Biological Physics [physics.bio-ph]. Universität des Saarlandes, 2017. English. NNT : 2017GREAY002. tel- 01577838 HAL Id: tel-01577838 https://tel.archives-ouvertes.fr/tel-01577838 Submitted on 28 Aug 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE Pour obtenir le grade de DOCTEUR DE LA COMMUNAUTÉ UNIVERSITÉ GRENOBLE ALPES préparée dans le cadre d’une cotutelle entre la Communauté Université Grenoble Alpes et l’Universität des Saarlandes Spécialité : Physique pour les sciences du vivant Arrêté ministériel : 25 mai 2016 Présentée par Daniel Amadeus Dominic Flormann Thèse dirigée par M. Thomas Podgorski et M. Christian Wagner préparée au sein du Laboratoire Interdisciplinaire de Physique, Grenoble et de Experimentalphysik, Saarbrücken dans les Écoles doctorales de Physique de l’Université Grenoble Alpes et de Dekanat der Universität des Saarlandes
    [Show full text]
  • Intravenous Fluid Therapy – Algorithm 1
    CLINICAL PATHWAY INTRAVENOUS FLUID THERAPY – ALGORITHM 1. Assessment of Overall Fluid Status Inclusion criteria: • All inpatients except those listed below • Patients pending admission Exclusion criteria: •Acute kidney injury •Chronic kidney disease •Endocrine or renal abnormalities leading to electrolyte derangements including DKA Patient who meets inclusion criteria •Oncology treatment protocol •Patients less than 30 days of age, and warrants supplemental fluids Including premature infants corrected for gestational age •Increased intracranial pressure •PICU DEFINITIONS •NICU Euvolemic: •Total Parenteral Nutrition dependent • Patient is at their ideal volume status Obtain vital signs •Pyloric Stenosis (neither dehydrated nor volume •Burn patients overloaded). The patient requires •Shock •Codes intravenous fluids to maintain their ideal volume status. Hypovolemic: • Patient is at least mildly dehydrated (see Table 1 for estimating dehydration) Can patient Assess patient’s current tolerate adequate No volume status enteral fluids? ! Yes Volume status assessment is 100% clinical. Do not rely upon Off pathway laboratory values to determine the patient’s volume status. Is patient Is patient Refer to hypovolemic No hypervolemic or Hypovolemic euvolemic? algorithm hypovolemic? ! Prior to starting a patient on Yes Hypervolemic maintenance IV fluids, consider the following: Reassess need for IV fluids and Refer to euvolemic consider issues with oncotic • Risk factors for abnormal ADH algorithm secretion pressure and/or cardiac output • Initial
    [Show full text]
  • Hypertonic Saline (7.2%) in 6% Hydroxyethyl Starch Reduces Intracranial Pressure and Improves Hemodynamics in a Placebo-Controll
    Continuing Medical Education Article Hypertonic saline (7.2%) in 6% hydroxyethyl starch reduces intracranial pressure and improves hemodynamics in a placebo-controlled study involving stable patients with subarachnoid hemorrhage* Gunnar Bentsen, MD; Harald Breivik, MD, DMSc, FRCA; Tryggve Lundar, MD, DMSc; Audun Stubhaug, MD, DMSc LEARNING OBJECTIVES On completion of this article, the reader should be able to: 1. Describe the effects of hypertonic saline (7.2% saline in 6% hydroxyethyl starch 200/0.5) on intracranial pressure. 2. Compare the effects of hypertonic with normal saline on cerebral perfusion pressure. 3. Use this information in a clinical setting. All authors have disclosed that they have no financial relationships with or interests in any commercial companies pertaining to this educational activity. Lippincott CME Institute, Inc., has identified and resolved all faculty conflicts of interest regarding this educational activity. Visit the Critical Care Medicine Web site (www.ccmjournal.org) for information on obtaining continuing medical education credit. Objective: To compare the effects of a bolus infusion of hyper- was ؊5.6 (range, ؊0.8 to ؊12.2) mm Hg after 64 (range, 40 to tonic saline hydroxyethyl starch with the effects of normal saline 115) mins. Mean difference in cerebral perfusion pressure change placebo) on intracranial pressure (ICP) and cerebral perfusion pres- between the groups (HSS ؊ normal saline) was 5.4 mm Hg (95%) and mean difference in ,(002. ؍ sure in patients with spontaneous subarachnoid hemorrhage. confidence interval, 2.2 to 8.6; p Design and Setting: Prospective, randomized, single-blinded, cardiac index change, measured as the area under the curve for placebo-controlled study in a university hospital.
    [Show full text]