The Use of Multiple Sensory Modalities by the Antillean Manatee (Trichechus Manatus Manatus) to Locate Food in Their Natural Environments

Total Page:16

File Type:pdf, Size:1020Kb

The Use of Multiple Sensory Modalities by the Antillean Manatee (Trichechus Manatus Manatus) to Locate Food in Their Natural Environments Andrews University Digital Commons @ Andrews University Master's Theses Graduate Research 2020 The Use of Multiple Sensory Modalities by the Antillean Manatee (Trichechus Manatus Manatus) To Locate Food in Their Natural Environments Amanda Marie Moore Andrews University, [email protected] Follow this and additional works at: https://digitalcommons.andrews.edu/theses Part of the Biology Commons Recommended Citation Moore, Amanda Marie, "The Use of Multiple Sensory Modalities by the Antillean Manatee (Trichechus Manatus Manatus) To Locate Food in Their Natural Environments" (2020). Master's Theses. 183. https://digitalcommons.andrews.edu/theses/183 This Thesis is brought to you for free and open access by the Graduate Research at Digital Commons @ Andrews University. It has been accepted for inclusion in Master's Theses by an authorized administrator of Digital Commons @ Andrews University. For more information, please contact [email protected]. ABSTRACT THE USE OF MULTIPLE SENSORY MODALITIES BY THE ANTILLEAN MANATEE (TRICHECHUS MANATUS MANATUS) TO LOCATE FOOD IN THEIR NATURAL ENVIRONMENTS By AMANDA MOORE Chair: Daniel Gonzalez-Socoloske, Ph.D. ABSTRACT OF GRADUATE STUDENT RESEARCH Thesis Andrews University College of Arts and Sciences Title: THE USE OF MULTIPLE SENSORY MODALITIES BY THE ANTILLEAN MANATEE (TRICHECHUS MANATUS MANATUS) TO LOCATE FOOD IN THEIR NATURAL ENVIRONMENTS Name of researcher: Amanda Marie Moore Name and degree of faculty chair: Daniel Gonzalez-Socoloske, Ph.D. Date completed: July 2020 Manatees are herbivorous aquatic mammals found in the coastal and inland waters of the Atlantic Ocean. All three manatee species are currently listed as vulnerable on the IUCN red list and there still remains much unknown about their ecology. It is currently unknown what sensory modalities manatees use to locate their food in the wild. A literature review of the Paenungulata clade (sirenians, proboscideans, and hyracoideans) was conducted in order to compare and contrast what is known about the sensory modalities of the clade, to better understand the sensory modalities of manatees, particularly the ones they use to locate their food. Manatees have a higher frequency range for hearing than elephants, who have the best low-frequency hearing range known to mammals; hearing range of hyrax is unknown. All members of Paenungulata have vibrissae assisting in tactile abilities and potentially compensate for other senses such as hearing or vision. The ability to smell in manatees and hyrax is unknown, but elephants have been found to have an excellent sense of smell. Manatees, elephants, and hyrax have dichromatic vision. A preliminary experiment was designed to test manatee feeding modalities in the wild. The objectives of this study were to determine if the proposed methodology, modified for an aquatic environment from Renda & Roux (2017), was capable of testing manatee sensory use by limiting the sensory cues provided. Sensory modalities used in locating food were tested in two ways: when they know where the food is located, within a short distance, and when the food is placed randomly throughout their habitat, at long distances. In this study, we were able to show that the experimental design works, and provide preliminary data. In the short distance dichotomous choice trials, the percent of correct choices were 67% for the chemoreception + vision, 60% for chemoreception only, and 60% for vision only, with 50% being the rate of chance. For long distance experiments, the mean minimum time in hours it took manatees to consume the food placed randomly along their habitat of San San-Pond Sak River, Panama was 12.0 hours for chemoreception + vision, more than 22 hours for chemoreception only, and 6.89 hours for the control (no box). Due to the small sample size, no definitive conclusion could be made as to which sensory modality manatees use to find food, but our results support the idea that manatees use multiple modalities, chemoreception + vision, to locate food. Additional trials are needed in order to perform statistical analysis on the data. Andrews University College of Arts and Sciences THE USE OF MULTIPLE SENSORY MODALITIES BY THE ANTILLEAN MANATEE (TRICHECHUS MANATUS MANATUS) TO LOCATE FOOD IN THEIR NATURAL ENVIRONMENTS A Thesis Presented in Partial Fulfillment of the Requirements for the Degree Master of Science by Amanda Marie Moore July 2020 ©Copyright by Amanda M. Moore 2020 All Rights Reserved THE USE OF MULTIPLE SENSORY MODALITIES BY THE ANTILLEAN MANATEE (TRICHECHUS MANATUS MANATUS) TO LOCATE FOOD IN THEIR NATURAL ENVIRONMENTS A thesis presented in partial fulfillment of the requirements for the degree Master of Science by Amanda Marie Moore APPROVAL BY THE COMMITTEE: _______________________________ Daniel Gonzalez-Socoloske, Ph.D., Chair __________________________________ Benjamin Navia, Ph.D. __________________________________ June 18, 2020 Robert E. Zdor, Ph.D. Date approved vii TABLE OF CONTENTS LIST OF FIGURES …………………………………………………………………………… x LIST OF TABLES ……………………………………………………………………………. xi LIST OF ABBREVIATIONS ………………………………………………………………… xii ACKNOWLEDGMENTS ……………………………………………………………………. xiii CHAPTERS 1. INTRODUCTION ………………………………………………………………… 1 2. REVIEW OF SENSORY MODALITIES OF THE EXTANT PAENGULATA CLADE……………………………………………………………………………….. 5 a. BRIEF HISTORY OF EVOLUTIONARY DIVERGENCE OF PAENUNGULATA…………………………………………………………. 5 b. HEARING………………………………………………………………… 6 i. Hearing Anatomy of Sirenians……………………………………. 6 ii. Hearing Physiology of Sirenians…………………………………. 9 iii. Hearing Anatomy of Proboscidea……………………………….. 11 iv. Hearing Physiology of Proboscidea……………………………... 12 v. Hearing Anatomy & Physiology of Hyracoidea…………………. 13 c. TOUCH…………………………………………………………………… 13 i. Tactile Anatomy of Sirenia……………………………………….. 13 ii. Tactile Physiology of Sirenia…………………………………….. 18 iii. Tactile Anatomy & Physiology of Proboscidea…………………. 20 iv. Tactile Anatomy & Physiology of Hyracoidea………………….. 22 d. CHEMORECEPTION (TASTE AND SMELL)………………………….. 23 i. Chemoreception Anatomy & Physiology of Sirenia……………… 23 ii. Chemoreception Anatomy & Physiology of Proboscidea………... 26 iii. Chemoreception Anatomy & Physiology of Hyracoidea………... 29 e. VISION……………………………………………………………………. 30 i. Visual Anatomy of Sirenians……………………………………… 30 viii ii. Visual Physiology of Sirenians…………………………………… 31 iii. Visual Anatomy & Physiology of Proboscidea………………….. 32 iv. Visual Anatomy & Physiology of Hyracoidea…………………... 33 f. VESTIBULAR (BALANCE AND SPATIAL ORIENTATION)…………. 33 i. Vestibular Anatomy & Physiology of Sirenia…………………….. 33 ii. Vestibular Anatomy & Physiology of Proboscidea and Hyracoidea……………………………………………………….. 34 g. CONCLUSION……………………………………………………………. 34 3. PRELIMINARY ASSESSMENT FOR HOW MANATEES (TRICHECHUS MANATUS MANATUS) USE SENSORY MODALITIES TO FIND FOOD…………………..…. 39 a. INTRODUCTION…………………………………………………………. 39 b. METHODS………………………………………………………………… 43 i. Study Site…………………………………………………………... 43 ii. Design……………………………………………………………... 44 iii. Trials……………………………………………………………... 46 c. RESULTS………………………………………………………………….. 49 d. DISCUSSION……………………………………………………………… 54 i. Short Distance Dichotomous Choice Trials: Chemoreception + Vision………………………………………….. 59 ii. Short Distance Dichotomous Choice Trials: Chemoreception Only……………………………………………………………….. 59 iii. Short Distance Dichotomous Choice Trials: Vision Only……………………………………………………………….. 60 iv. Long Distance Trials……………………………………………… 61 4. CONCLUSION………………………………………………..……………………. 64 REFERENCES ………………………………………………………………………………… 69 APPENDIX ……………………………………………………………………………………. 88 A. Right/Left Preference Towards Boxes Chosen Versus Where Food was placed…. 88 B. Long Distance Experiments Raw Data……………………………………………. 89 C. Still Shots of Manatees Participating in Experiments……………………………... 91 ix LIST OF FIGURES 1. Manatee Perioral Bristle Fields……………………………………………… 15 2. Box Design………………………………………………………………………….. 46 3. Constructed Boxes…………………………………………………………………... 47 4. Choice Trial Set-Up…………………………………………………………………. 50 5. Choice Trial Results…………………………………………………………………. 52 6. Long Distance Experimental Results………………………………………………… 53 7. Manatee Eating Banana Leaves……………………………………………………… 54 x LIST OF TABLES 1. Summary of Sensory Modalities Between the Members of the Paenungulata Clade…… 38 2. Box Design and Sensory Cues…………………………………………………………... 45 xi LIST OF ABBREVIATIONS ABR Auditory Brainstem Response AEP Auditory Evoked Potential dB Decibel FSC Follicle Sinus Complex GPS Global Positioning System IACUC Institutional Animal Care and Use Committee IUCN International Union for Conservation of Nature kHz Kilohertz re 1 µPa Reference Pressure in Water TNT Trinitrotoluene UV Ultraviolet xii ACKNOWLEDGEMENTS I would like to thank my advisor, Dr. Daniel Gonzalez-Socoloske, for his mentorship during my graduate program. I am grateful for the opportunities he provided and time and sacrifices he made for research to be conducted in Panama, which included the need for him to translate for me in-country and teaching me the skills and flexibility of conducting field research. I appreciate his patience and dedication to conducting this research and helping me complete my thesis. I would like to thank Dr. Benjamin Navia and Dr. Robert Zdor for their time and contributions to the completion of my thesis. I would additionally like to thank the faculty of the Department of Biology at Andrews University for the opportunity to study here and the support they have provided while completing my master’s degree. A special thanks to Sixto Herrera and Juan McDonald
Recommended publications
  • Hydrodamalis Gigas, Steller's Sea Cow
    The IUCN Red List of Threatened Species™ ISSN 2307-8235 (online) IUCN 2008: T10303A43792683 Hydrodamalis gigas, Steller's Sea Cow Assessment by: Domning, D. View on www.iucnredlist.org Citation: Domning, D. 2016. Hydrodamalis gigas. The IUCN Red List of Threatened Species 2016: e.T10303A43792683. http://dx.doi.org/10.2305/IUCN.UK.2016-2.RLTS.T10303A43792683.en Copyright: © 2016 International Union for Conservation of Nature and Natural Resources Reproduction of this publication for educational or other non-commercial purposes is authorized without prior written permission from the copyright holder provided the source is fully acknowledged. Reproduction of this publication for resale, reposting or other commercial purposes is prohibited without prior written permission from the copyright holder. For further details see Terms of Use. The IUCN Red List of Threatened Species™ is produced and managed by the IUCN Global Species Programme, the IUCN Species Survival Commission (SSC) and The IUCN Red List Partnership. The IUCN Red List Partners are: Arizona State University; BirdLife International; Botanic Gardens Conservation International; Conservation International; NatureServe; Royal Botanic Gardens, Kew; Sapienza University of Rome; Texas A&M University; and Zoological Society of London. If you see any errors or have any questions or suggestions on what is shown in this document, please provide us with feedback so that we can correct or extend the information provided. THE IUCN RED LIST OF THREATENED SPECIES™ Taxonomy Kingdom Phylum Class Order Family Animalia Chordata Mammalia Sirenia Dugongidae Taxon Name: Hydrodamalis gigas (Zimmermann, 1780) Common Name(s): • English: Steller's Sea Cow Assessment Information Red List Category & Criteria: Extinct ver 3.1 Year Published: 2016 Date Assessed: April 4, 2016 Justification: The last population of Steller's Sea Cow was discovered by a Russian expedition wrecked on Bering Island in 1741.
    [Show full text]
  • Atypicat Molecular Evolution of Afrotherian and Xenarthran B-Globin
    Atypicat molecular evolution of afrotherian and xenarthran B-globin cluster genes with insights into the B-globin cluster gene organization of stem eutherians. By ANGELA M. SLOAN A thesis submitted to the Faculty of Graduate Studies in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Department of Zoology University of Manitoba Winnipeg, Manitoba, Canada @ Angela M. Sloan, July 2005 TIIE I]MVERSITY OF' MANITOBA FACULTY OF GRADUATE STT]DIES ***** - COPYRIGHTPERMISSION ] . Atypical molecular evolution of afrotherian and xenarthran fslobin cluster genes with insights into thefglobin cluster gene organization òf stem eutherians. BY Angela M. Sloan A ThesislPracticum submitted to the Faculty of Graduate Studies of The University of Manitoba in partial fulfill¡nent of the requirement of the degree of Master of Science Angela M. Sloan @ 2005 Permission has been granted to the Library of the University of Manitoba to lend or sell copies of this thesis/practicum, to the National Library of Canada to microfilm this thesis and to lend or sell copies of the fiIm, and to University Microfïlms Inc. to publish an abstract of this thesis/practicum. This reproduction or copy of this thesis has been made available by authority of the copyright owner solely for the purpose of private study and research, and may only be reproduced and copied as permitted by copyright laws or with express written authorization from the copyright ownér. ABSTRACT Our understanding of p-globin gene cluster evolutionlwithin eutherian mammals .is based solely upon data collected from species in the two most derived eutherian superorders, Laurasiatheria and Euarchontoglires. Ifence, nothing is known regarding_the gene composition and evolution of this cluster within afrotherian (elephants, sea cows, hyraxes, aardvarks, elephant shrews, tenrecs and golden moles) and xenarthran (sloths, anteaters and armadillos) mammals.
    [Show full text]
  • University of Florida Thesis Or Dissertation Formatting
    TRACE METAL CONCENTRATIONS AND THE PHYSIOLOGICAL ROLE OF ZINC IN THE WEST INDIAN MANATEE (Trichechus manatus) By NOEL YOKO TAKEUCHI A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2012 1 © 2012 Noel Yoko Takeuchi 2 To my parents, for without them, I would not be where I am today. As first generation Japanese immigrants, they continue to inspire me to live the “American Dream”. 3 ACKNOWLEDGMENTS I want to first, and foremost, thank my amazing advisor, Dr. David Barber, for his dedication to his students, his great insight to science, life and family, and for being encouraging when times were tough. I want to also give a huge thank you to my committee members: Drs. Roger Reep, Robert Bonde, Robert Cousins and Michael Walsh. This could not have been accomplished without their support, advice and expertise. The greatest part of science is working together to answer a common question. As a result, I have a number of collaborators and organizations to thank for being a part of this project. The magnificent United States Geological Survey (Sirenia Project), Florida Fish and Wildlife Commission (Dr. Charles Deutsch), Nicole Auil Gomez and Dr. James Powell (Sea to Shore Alliance), Dr. Ramiro Isaza, Carla Bernal, Natalie Hall (UF) and Dr. Ellen Wiedner (Ringling Brothers) for elephant samples, the Marine Mammal Pathobiology Laboratory (Dr. Martine deWit and staff), Mote Marine Laboratory and Aquarium (Joseph Gaspard), Dr. Dean Bass (Doctor’s Data, Inc.), Dr. Iske Larkin (UF) and Joyce Kleen (Crystal River National Wildlife Refuge) for plant surveys, Dr.
    [Show full text]
  • Karyotype Determination of Rock Hyrax Procavia Capensis in Saudi Arabia
    © 2015 The Japan Mendel Society Cytologia 80(3): 287–293 Karyotype Determination of Rock Hyrax Procavia capensis in Saudi Arabia Saud A. Al-Dakan and Abdulaziz A. Al-Saleh* Zoology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia Received November 1, 2014; accepted May 31, 2015 Summary Procavia capensis is considered as a small mammalian animal which belongs to order Hyracoidea, and it is the only species of the order that has been found in Saudi Arabia. Therefore, karyotype analysis of this species has been carried out and the finding summarized as follows. The diploid chromosome number is 54. In the karyotype analysis, the somatic chromosomes were catego- rized into three groups: 21 pairs of acrocentric, 2 pairs of submetacentric and 3 pairs of metacentric chromosomes. The sex chromosomes are one submetacentric X chromosome and one acrocentric Y chromosome. The lengths of chromosomes varied between 1.6–7.6 µm, and the Y chromosome is the shortest. The FN is 65 in the male and 66 in the female, while the FNa is 62. The karyotype formula of Procavia capensis could be deduced as: a sm a sm a sm m (2=54);Ln 14+ L 1 + M 14 + M 2 ++ S 15 S 2 + S 6 Key words Karyotype, Rock hyrex, Chromosome, Procavia capensis. The rock hyrax (Procavia capensis) is one of small mammalian herbovorous animals that lives in small family groups ranging from 10 to 80 members headed by a dominant adult male which defends and watches over the group (Turner and Watson 1965, Grzimek 1975, Skinner and Smithers 1990, Estes 1991, Kingdon 1991, Manharth and Harris-Gerber 2002).
    [Show full text]
  • City's Limits: Can Verreaux's Eagle Survive Urbanization?
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/289670312 City's limits: Can Verreaux's Eagle survive urbanization? Article · July 2007 CITATIONS READS 0 12 4 authors, including: Robert Simmons University of Cape Town 117 PUBLICATIONS 1,378 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Climate change View project Namibian Red data birds View project All content following this page was uploaded by Robert Simmons on 14 January 2016. The user has requested enhancement of the downloaded file. and bush encroachment, the raptors second pair live on the west side of the which need pristine woodlands rather Cape Peninsula mountain chain, in the than those that have been burnt and Silvermine area of the Table Mountain CITY’S logged, and some, such as the harriers National Park, just north of Chapman’s and the African Fish-Eagle, which live Peak. There they have bred successfully Can Verreaux’s Eagles survive urbanisation? around the fringes of degraded and for three years, monitored weekly by drained wetlands. their finder and eagle-advocate Lucia What of our montane eagles? Can Rodrigues. These pairs share similarities species, such as Verreaux’s (Black) Eagles and differences that allow us to assess Aquila verreauxii, which live along- if Verreaux’s Eagles can survive human side man, continue to thrive in their encroachment. mountain retreats? Two closely studied When the Roodekrans pair began Below An adult Verreaux’s Eagle arrives LIMITS examples, one from Johannesburg and to bring chickens to their nest, it was at its nest on the Roodekrans in the sub- the other from Cape Town, allow an apparent that the dassie (rock hyrax) urbs of Johannesburg.
    [Show full text]
  • Chapter 15 the Mammals of Angola
    Chapter 15 The Mammals of Angola Pedro Beja, Pedro Vaz Pinto, Luís Veríssimo, Elena Bersacola, Ezequiel Fabiano, Jorge M. Palmeirim, Ara Monadjem, Pedro Monterroso, Magdalena S. Svensson, and Peter John Taylor Abstract Scientific investigations on the mammals of Angola started over 150 years ago, but information remains scarce and scattered, with only one recent published account. Here we provide a synthesis of the mammals of Angola based on a thorough survey of primary and grey literature, as well as recent unpublished records. We present a short history of mammal research, and provide brief information on each species known to occur in the country. Particular attention is given to endemic and near endemic species. We also provide a zoogeographic outline and information on the conservation of Angolan mammals. We found confirmed records for 291 native species, most of which from the orders Rodentia (85), Chiroptera (73), Carnivora (39), and Cetartiodactyla (33). There is a large number of endemic and near endemic species, most of which are rodents or bats. The large diversity of species is favoured by the wide P. Beja (*) CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal CEABN-InBio, Centro de Ecologia Aplicada “Professor Baeta Neves”, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal e-mail: [email protected] P. Vaz Pinto Fundação Kissama, Luanda, Angola CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus de Vairão, Vairão, Portugal e-mail: [email protected] L. Veríssimo Fundação Kissama, Luanda, Angola e-mail: [email protected] E.
    [Show full text]
  • Early Eocene Fossils Suggest That the Mammalian Order Perissodactyla Originated in India
    ARTICLE Received 7 Jul 2014 | Accepted 15 Oct 2014 | Published 20 Nov 2014 DOI: 10.1038/ncomms6570 Early Eocene fossils suggest that the mammalian order Perissodactyla originated in India Kenneth D. Rose1, Luke T. Holbrook2, Rajendra S. Rana3, Kishor Kumar4, Katrina E. Jones1, Heather E. Ahrens1, Pieter Missiaen5, Ashok Sahni6 & Thierry Smith7 Cambaytheres (Cambaytherium, Nakusia and Kalitherium) are recently discovered early Eocene placental mammals from the Indo–Pakistan region. They have been assigned to either Perissodactyla (the clade including horses, tapirs and rhinos, which is a member of the superorder Laurasiatheria) or Anthracobunidae, an obscure family that has been variously considered artiodactyls or perissodactyls, but most recently placed at the base of Proboscidea or of Tethytheria (Proboscidea þ Sirenia, superorder Afrotheria). Here we report new dental, cranial and postcranial fossils of Cambaytherium, from the Cambay Shale Formation, Gujarat, India (B54.5 Myr). These fossils demonstrate that cambaytheres occupy a pivotal position as the sister taxon of Perissodactyla, thereby providing insight on the phylogenetic and biogeographic origin of Perissodactyla. The presence of the sister group of perissodactyls in western India near or before the time of collision suggests that Perissodactyla may have originated on the Indian Plate during its final drift toward Asia. 1 Center for Functional Anatomy & Evolution, Johns Hopkins University School of Medicine, 1830 E. Monument Street, Baltimore, Maryland 21205, USA. 2 Department of Biological Sciences, Rowan University, Glassboro, New Jersey 08028, USA. 3 Department of Geology, H.N.B. Garhwal University, Srinagar 246175, Uttarakhand, India. 4 Wadia Institute of Himalayan Geology, Dehradun 248001, Uttarakhand, India. 5 Research Unit Palaeontology, Ghent University, Krijgslaan 281-S8, B-9000 Ghent, Belgium.
    [Show full text]
  • Protein Sequence Signatures Support the African Clade of Mammals
    Protein sequence signatures support the African clade of mammals Marjon A. M. van Dijk*, Ole Madsen*, Franc¸ois Catzeflis†, Michael J. Stanhope‡, Wilfried W. de Jong*§¶, and Mark Pagel¶ʈ *Department of Biochemistry, University of Nijmegen, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands; †Institut des Sciences de l’E´ volution, Universite´Montpellier 2, 34095 Montpellier, France; ‡Queen’s University of Belfast, Biology and Biochemistry, Belfast BT9 7BL, United Kingdom; §Institute for Systematics and Population Biology, University of Amsterdam, 1090 GT Amsterdam, The Netherlands; and ʈSchool of Animal and Microbial Sciences, University of Reading, Whiteknights, Reading RG6 6AJ, United Kingdom Edited by Elwyn L. Simons, Duke University Primate Center, Durham, NC, and approved October 9, 2000 (received for review May 12, 2000) DNA sequence evidence supports a superordinal clade of mammals subfamily living outside of Madagascar. To assess the signifi- that comprises elephants, sea cows, hyraxes, aardvarks, elephant cance of the candidate signatures, we use likelihood methods shrews, golden moles, and tenrecs, which all have their origins in (20) to reconstruct their most probable ancestral states at the Africa, and therefore are dubbed Afrotheria. Morphologically, this basal node of the Afrotherian clade. These calculations use a appears an unlikely assemblage, which challenges—by including phylogeny reconstructed independently of the protein under golden moles and tenrecs—the monophyly of the order Lipotyphla investigation. We further use likelihood and combinatorial meth- (Insectivora). We here identify in three proteins unique combina- ods to estimate the probability of the signatures on three tions of apomorphous amino acid replacements that support this alternative morphology-based trees that are incompatible with clade.
    [Show full text]
  • Evolution of the Sirenia: an Outline
    Caryn Self-Sullivan, Daryl P. Domning, and Jorge Velez-Juarbe Last Updated: 8/1/14 Page 1 of 10 Evolution of the Sirenia: An Outline The order Sirenia is closely associated with a large group of hoofed mammals known as Tethytheria, which includes the extinct orders Desmostylia (hippopotamus-like marine mammals) and Embrithopoda (rhinoceros-like mammals). Sirenians probably split off from these relatives in the Palaeocene (65-54 mya) and quickly took to the water, dispersing to the New World. This outline attempts to order all the species described from the fossil record in chronological order within each of the recognized families of Prorastomidae, Protosirenidae, Dugongidae, and Trichechidae. This outline began as an exercise in preparation for my Ph. D. preliminary exams and is primarily based on decades of research and peer-reviewed literature by Dr. Daryl P. Domning, to whom I am eternally grateful. It has been recently updated with the help of Dr. Jorge Velez-Juarbe. However, this document continues to be a work-in-progress and not a peer reviewed publication! Ancestral line: Eritherium Order Proboscidea Elephantidae (elephants and mammoths) Mastodontidae Deinotheriidae Gomphotheriidae Ancestral line: Behemotops Order Desmostylia (only known extinct Order of marine mammal) Order Sirenia Illiger, 1811 Prorastomidae Protosirenidae Dr. Daryl Domning, Howard University, November 2007 Dugongidae with Metaxytherium skull. Photo © Caryn Self-Sullivan Trichechidae With only 5 species in 2 families known to modern man, you might be surprised to learn that the four extant species represent only a small fraction of the sirenians found in the fossil record. As of 2012, ~60 species have been described and placed in 4 families.
    [Show full text]
  • List of 28 Orders, 129 Families, 598 Genera and 1121 Species in Mammal Images Library 31 December 2013
    What the American Society of Mammalogists has in the images library LIST OF 28 ORDERS, 129 FAMILIES, 598 GENERA AND 1121 SPECIES IN MAMMAL IMAGES LIBRARY 31 DECEMBER 2013 AFROSORICIDA (5 genera, 5 species) – golden moles and tenrecs CHRYSOCHLORIDAE - golden moles Chrysospalax villosus - Rough-haired Golden Mole TENRECIDAE - tenrecs 1. Echinops telfairi - Lesser Hedgehog Tenrec 2. Hemicentetes semispinosus – Lowland Streaked Tenrec 3. Microgale dobsoni - Dobson’s Shrew Tenrec 4. Tenrec ecaudatus – Tailless Tenrec ARTIODACTYLA (83 genera, 142 species) – paraxonic (mostly even-toed) ungulates ANTILOCAPRIDAE - pronghorns Antilocapra americana - Pronghorn BOVIDAE (46 genera) - cattle, sheep, goats, and antelopes 1. Addax nasomaculatus - Addax 2. Aepyceros melampus - Impala 3. Alcelaphus buselaphus - Hartebeest 4. Alcelaphus caama – Red Hartebeest 5. Ammotragus lervia - Barbary Sheep 6. Antidorcas marsupialis - Springbok 7. Antilope cervicapra – Blackbuck 8. Beatragus hunter – Hunter’s Hartebeest 9. Bison bison - American Bison 10. Bison bonasus - European Bison 11. Bos frontalis - Gaur 12. Bos javanicus - Banteng 13. Bos taurus -Auroch 14. Boselaphus tragocamelus - Nilgai 15. Bubalus bubalis - Water Buffalo 16. Bubalus depressicornis - Anoa 17. Bubalus quarlesi - Mountain Anoa 18. Budorcas taxicolor - Takin 19. Capra caucasica - Tur 20. Capra falconeri - Markhor 21. Capra hircus - Goat 22. Capra nubiana – Nubian Ibex 23. Capra pyrenaica – Spanish Ibex 24. Capricornis crispus – Japanese Serow 25. Cephalophus jentinki - Jentink's Duiker 26. Cephalophus natalensis – Red Duiker 1 What the American Society of Mammalogists has in the images library 27. Cephalophus niger – Black Duiker 28. Cephalophus rufilatus – Red-flanked Duiker 29. Cephalophus silvicultor - Yellow-backed Duiker 30. Cephalophus zebra - Zebra Duiker 31. Connochaetes gnou - Black Wildebeest 32. Connochaetes taurinus - Blue Wildebeest 33. Damaliscus korrigum – Topi 34.
    [Show full text]
  • The African Elephant Under Threat
    AFROTHERIAN CONSERVATION Newsletter of the IUCN/SSC Afrotheria Specialist Group Number 11 Edited by PJ Stephenson October 2015 Afrotherian Conservation is published annually by the To help PJ focus on our conservation work, Chris IUCN Species Survival Commission Afrotheria Specialist and Mathilde Stuart have kindly agreed to take on the Group to promote the exchange of news and information role of editing the next edition of Afrotherian Conservation. on the conservation of, and applied research into, golden Their contacts are in the guidelines for submissions (page moles, sengis, hyraxes, tenrecs and the aardvark. 17). We hope you’ll send them plenty of material for the next edition. Published by IUCN, Gland, Switzerland. © 2015 International Union for Conservation of Nature Galen Rathbun, Cambria, California, USA and Natural Resources & ISSN: 1664-6754 PJ Stephenson, Gland, Switzerland 1 October 2015 Find out more about the Group on our website at http://afrotheria.net/ASG.html and follow us on Twitter @Tweeting_Tenrec Message from the Chairs Galen Rathbun & PJ Stephenson Co-Chairs, IUCN/SSC Afrotheria Specialist Group It’s been a busy twelve months for the group. Sadly, 2015 started with the terrible news that Peter Vogel had passed away. Peter was a global expert on shrews but he was a long-term member of the group due to his specialist knowledge of otter-shrews; he was one of the few biologists to capture and study these illusive afrotheres. We include an obituary to Peter on page 8 and send our Chequered sengi (Rhynchocyon cirnei) by Jonathan Kingdon condolences to his family, friends and colleagues.
    [Show full text]
  • Tour Report 7 – 25 November 2015
    The Best of Ethiopia Naturetrek Tour Report 7 – 25 November 2015 African Fish Eagle Walia Ibex Ethiopian Wolf White-cheeked Turaco Report & images compiled by Eric Barnes Naturetrek Mingledown Barn Wolf's Lane Chawton Alton Hampshire GU34 3HJ UK T: +44 (0)1962 733051 E: [email protected] W: www.naturetrek.co.uk The Best of Ethiopia Tour Report Tour Participants: Abiy Dagne and Eric Barnes (leaders) with ten Naturetrek clients Introduction For most people, Ethiopia won’t be top of their list of places to visit for an enjoyable holiday, nor would they think of it as a wildlife hotspot. Those that take the trip, in my experience, have been universally pleased that they took a leap of faith and travelled to a wildlife paradise full of character and surprises. “Eric, this Lammergeier is far too close for us to photograph” and “Don’t stop, it’s only another Arabian Bustard” were comments from this year’s tour that, perhaps, give some idea of the great views and wealth of wildlife experiences. Unfortunately, it is unclear how long this situation will last. In the past two years there have been changes relating to uncontrolled grazing in their National Parks. It is clear that the wildlife will suffer severely over the next decade, so if you are thinking of going, go sooner rather than later! Day 1 Saturday 7th November In flight to Ethiopia. Day 2 Sunday 8th November Our Ethiopian Airline flight touched down as smooth as silk, slightly ahead of schedule. We got our visas, picked up our adjoining clients and headed off for a quick breakfast and wander around the Ghion Hotel.
    [Show full text]