Novitates PUBLISHED by the AMERICAN MUSEUM of NATURAL HISTORY CENTRAL PARK WEST at 79TH STREET, NEW YORK, N.Y

Total Page:16

File Type:pdf, Size:1020Kb

Novitates PUBLISHED by the AMERICAN MUSEUM of NATURAL HISTORY CENTRAL PARK WEST at 79TH STREET, NEW YORK, N.Y AMERICANt MUSEUM Novitates PUBLISHED BY THE AMERICAN MUSEUM OF NATURAL HISTORY CENTRAL PARK WEST AT 79TH STREET, NEW YORK, N.Y. 10024 Number 2870, pp. 1-8, figs. 1-3 April 6, 1987 Selected Features of the Desmostylian Skeleton and Their Phylogenetic Implications MICHAEL J. NOVACEK1 AND ANDRE R. WYSS2 ABSTRACT According to several standard descriptions, des- pertaining to these traits are either in error, or have mostylians lack certain specializations shared by alternative phylogenetic implications. Hence, proboscideans, sirenians, and hyracoids. These comparisons of these conditions do not exclude specializations are amastoidy and the serial ar- desmostylians from the superordinal group Teth- rangement ofthe carpals with the concomitant loss ytheria (proboscideans and sirenians) or the more of contact between the lunar and unciform. We inclusive Paenungulata (tethytheres and hyra- argue that original descriptions of desmostylians coids). INTRODUCTION The Desmostylia are an extinct order of be more conservative than sirenians (and, by mammals with specializations ofthe skeleton implication, proboscideans) with respect to suitable for an amphibious mode of life. Al- the reduction ofmastoid exposure (Hay, 1915; though this group was formerly associated Abel, 1922; VanderHoof, 1937) and the se- with the aquatic Sirenia (Simpson, 1945), and rial arrangement ofthe carpal elements (Shi- is now placed within a superordinal category kama, 1966). These differences have influ- Tethytheria, which also includes the Probos- enced more recent students of the problem cidea and Sirenia (McKenna, 1975), these (e.g., Tassy, 1981), who have opted for a close avowed relationships present some prob- association ofProboscidea (including the late lems. According to standard descriptions, Eocene-early Oligocene genus Moeritheri- desmostylians lack certain skeletal special- um) and Sirenia to the exclusion of Desmo- izations shared by Proboscidea and Sirenia. stylia. Specifically, desmostylians were claimed to Of significance is the fact that the above ' Chairman and Associate Curator, Department ofVertebrate Paleontology, American Museum ofNatural History. 2Graduate Student, Department of Vertebrate Paleontology, American Museum of Natural History; Graduate Student, Department of Geological Sciences, Columbia University. Copyright ©) American Museum of Natural History 1987 ISSN 0003-0082 / Price $ 1.00 2 AMERICAN MUSEUM NOVITATES NO. 2870 cited specializations, though supposedly ofthe ambiguities discussed below. The char- lacking in desmostylians, are found in hy- acters below are of note. racoids as well as proboscideans and sire- nians. Such features have been used as evi- dence for the monophyly ofthe Paenungulata, MASTOID ExPosuRE a superordinal group comprising tethytheres Typically (and primitively) within mam- and hyracoids (Gregory, 1910; Shoshani et mals the mastoid portion of the petrosal is al., 1978; Novacek, 1982, 1986). Hence, the well exposed on the exterior surface of the lack ofcertain apomorphies in desmostylians skull, as it forms a broad flange in the occiput not only presents a difficulty for recognition lateral to the exoccipital and medial and pos- of the Tethytheria but also for the more in- terior to the squamosal (Novacek and Wyss, clusive Paenungulata, if Desmostylia are to 1986). However, the mastoid is not exposed be retained within these groups. in this fashion in the occiput ofcertain mam- Here we offer arguments why published de- mals, including pholidotans, cetaceans, der- scriptions of desmostylians with respect to mopterans, advanced artiodactyls, probos- the characters in question are either incorrect, cideans, sirenians, and hyracoids. This, the or are subject to alternative phylogenetic in- "amastoid condition" is clearly derived for terpretations. Our emendations allow assign- mammals (Novacek and Wyss, 1986). ment of the Desmostylia to the Tethytheria. Sirenians show exposure ofthe mastoid via They are also consistent with a paenungulate a large fenestra in the dorsal occiput, but this grouping for tethytheres and hyracoids. seems a uniquely specialized condition. Al- though the mastoid is inflated and essentially ACKNOWLEDGMENTS fills this large fenestra, it does not extend around the base of the cranium to form a We thank Malcolm C. McKenna, John flange on the ventral occiput. Thus, sirenians Flynn, Daryl Domning, and Clayton Ray for do not show the continuous mastoid expo- discussion. Daryl Domning provided a par- sure between the horizontal basicranium and ticularly useful review ofthe manuscript. We ventral (vertical) occiput that is characteristic also thank Clayton Ray for access to the im- of most mammals. The opening of the oc- portant collection of desmostylian material cipital fenestra for dorsal exposure of the in- at the United States National Museum flated mastoid is therefore likely a secondary (USNM), Smithsonian Institution. Figures feature, and one that could well derive from were prepared by Lisa Lomauro (figs. 1B, 3) the amastoid condition exemplified by hy- and Chester Tarka (fig. 2). This work was racoids and proboscideans. supported by the Frick Laboratory Endow- The broad occipital exposure of the des- ment Fund in Vertebrate Paleontology. mostylian mastoid was explicitly described by Hay (1915, p. 387), figured but not de- scribed by Abel (1922, fig. 3), and figured CHARACTER ANALYSIS and discussed by VanderHoof(1937, figs. 1, Desmostylians include the nominal genera 12). These descriptions are based on a skull Desmostylus, Paleoparadoxia, Cornwallius, ofDesmostylus hesperus (USNM 8191). Van- VanderhooJius, Kronokotherium, and Be- derHoof's (1937) figure 12 of this specimen hemotops (Hay, 1915; VanderHoof, 1937; shows a mastoid element only on the left side Pronina, 1957; Reinhart, 1959; Ijiri and Ka- ofthe skull. Although he did not label sutures, mei, 1961; Shikama, 1966; Domning et al., it appears from his figure 12 that the mastoid 1986; Kronokotherium and Vanderhoofius on the left side of the skull is isolated on its may be junior synonyms of Desmostylus, D. lateral border by a short, curved suture and Domning, personal commun.). Ofthese, only on its medial border by a long, vertically ori- Desmostylus and Paleoparadoxia are well ented suture that runs to the lambdoidal rim represented by nearly complete skulls and (fig. 1A herein). However, the "lateral su- skeletons, and even in such cases damage ture" is more likely a contact between the during preservation has contributed to some occipital exposure of the squamosal and the 1987 NOVACEK AND WYSS: DESMOSTYLIAN SKELETON 3 exoccipital (fig. IB). Contrary to Vander- Hoof's figure, this suture runs all the way to A the occipital foramen. The suture is also pre- served on the right side of the skull where it appears to extend beyond the occipital fo- ramen and join the oblique supraoccipital- exoccipital suture either at the lambdoidal crest or at a somewhat more medial junction (fig. 1B). The "medial suture," which VanderHoof (1937) and others seem to have taken as the mastoid-exoccipital suture, is an artifact, a crack in the bone. It is clearly not present on the right side of USNM 8191. It crosses, rather thanjoins, the "lateral suture" (cf. fig. 1A, 1B). It trends lateral to the oc- cipital foramen; this foramen typically lies within the mastoid or exoccipital or in a su- B ture separating these elements from the su- Focc praoccipital. The "medial suture" also marks the lateral edge ofa damaged area where sur- face bone has been removed. We conclude, then, that earlier descrip- tions of this important specimen are in error and there is clearly no exposure of the mas- toid on the occiput in Desmostylus hesperus. Moreover, published figures and descriptions of Desmostylus hesperus japonicus (a senior synonym of Desmostylus mirabilis Nagao, Ijiri and Kamei, see Shikama, 1966) and Pa- leoparadoxia tabatai (Ijiri and Kamei, 1961, pl. 1, fig. 4 and pl. 3, fig. 5) do not indicate a mastoid in the occiput. Instead, these fig- Exocc Cocc ures correspond closely with the geometry of elements reconstructed in figure 1 B. Finally, immature specimens (USNM 181744) of 4 cm Desmostylus hesperus (fig. 2) and Cornwallius Fig. 1. Posterior views of occipital region in sp. (USNM 181788) show neither mastoid USNM 8191, Desmostylus hesperus. (A) Recon- exposure nor VanderHoof's (1937) "medial struction from VanderHoof(I 937, fig. 12). (B) Re- suture" in the occiput. construction favored in this paper. Symbols are The broad invasion of the squamosal on Exocc, exoccipital; Focc, occipital foramen; Ma, the occipital surface in Desmostylus (figs. 1 B, mastoid process (of the petromastoid); Cocc, oc- 2) is a curious feature. This arrangement, cipital condyle; Socc, supraoccipital; Sq, squa- however, bears striking resemblance to that mosal. Dashed line indicates crack in the bone in Sirenia where the occipital exposure ofthe surface. Hatching indicates damaged area. squamosal is even more marked. It is clear, then, that the ventral mastoid is concealed in these taxa by the expansive paroccipital ly derived feature. It probably represents the apophysis formed by broad contact between marked expansion of the occipital foramen, the squamosal and exoccipital. Only in si- which in Desmostylus is also atypically large renians does a large fenestra expose, more (figs. 1A, 1B, 2). The amastoid condition not- dorsally, the inflated mastoid process. As ed for tethytheres and hyracoids is thus at- noted above, we regard this fenestra as a high- tained in
Recommended publications
  • MARINE MAMMALS, EXTINCTIONS of Glenn R
    MARINE MAMMALS, EXTINCTIONS OF Glenn R. VanBlaricom,* Leah R. Gerber,† and Robert L. Brownell, Jr.‡ *U.S. Geological Survey and University of Washington, †University of California, Santa Barbara, and ‡National Marine Fisheries Service I. Introduction principal source for taxonomic nomenclature, includ- II. Patterns and Case Studies of Extinction in ing common names, is the recent review of Rice (1998). Marine Mammals The order Cetacea includes whales, dolphins, and III. Discussion porpoises (Table I). The ‘‘pinnipedia’’ is a group of species in three families in the mammalian order Carni- vora (Table I). The pinnipeds include the seals, fur seals, sea lions, and walrus. The term pinnipedia is no I. INTRODUCTION longer recognized formally by marine mammal taxono- mists, but it continues to appear in the systematic ver- A. Taxonomic Definition of nacular as a matter of tradition and convenience. The order Sirenia includes the extant manatees and dugong ‘‘Marine Mammals’’ and the extinct Steller’s sea cow (Table I). The order The marine mammals include one extinct order and Desmostylia is the only recognized order of marine three major extant taxa that were or are fully aquatic, mammals to become entirely extinct. in most cases occurring entirely in the marine habitats Two largely terrestrial families of the order Carnivora of the major ocean basins and associated coastal seas also include species recognized as marine mammals and estuaries. In addition, a few species of largely terres- (Table I). Sea otters and chungungos (family Mustel- trial taxa are currently regarded as marine mammals. idae) live entirely or primarily in marine habitats. Polar We consider 127 recent mammal species in total to bears (family Ursidae) also spend a significant propor- be marine mammals for purposes of this review.
    [Show full text]
  • Download Full Article in PDF Format
    A new marine vertebrate assemblage from the Late Neogene Purisima Formation in Central California, part II: Pinnipeds and Cetaceans Robert W. BOESSENECKER Department of Geology, University of Otago, 360 Leith Walk, P.O. Box 56, Dunedin, 9054 (New Zealand) and Department of Earth Sciences, Montana State University 200 Traphagen Hall, Bozeman, MT, 59715 (USA) and University of California Museum of Paleontology 1101 Valley Life Sciences Building, Berkeley, CA, 94720 (USA) [email protected] Boessenecker R. W. 2013. — A new marine vertebrate assemblage from the Late Neogene Purisima Formation in Central California, part II: Pinnipeds and Cetaceans. Geodiversitas 35 (4): 815-940. http://dx.doi.org/g2013n4a5 ABSTRACT e newly discovered Upper Miocene to Upper Pliocene San Gregorio assem- blage of the Purisima Formation in Central California has yielded a diverse collection of 34 marine vertebrate taxa, including eight sharks, two bony fish, three marine birds (described in a previous study), and 21 marine mammals. Pinnipeds include the walrus Dusignathus sp., cf. D. seftoni, the fur seal Cal- lorhinus sp., cf. C. gilmorei, and indeterminate otariid bones. Baleen whales include dwarf mysticetes (Herpetocetus bramblei Whitmore & Barnes, 2008, Herpetocetus sp.), two right whales (cf. Eubalaena sp. 1, cf. Eubalaena sp. 2), at least three balaenopterids (“Balaenoptera” cortesi “var.” portisi Sacco, 1890, cf. Balaenoptera, Balaenopteridae gen. et sp. indet.) and a new species of rorqual (Balaenoptera bertae n. sp.) that exhibits a number of derived features that place it within the genus Balaenoptera. is new species of Balaenoptera is relatively small (estimated 61 cm bizygomatic width) and exhibits a comparatively nar- row vertex, an obliquely (but precipitously) sloping frontal adjacent to vertex, anteriorly directed and short zygomatic processes, and squamosal creases.
    [Show full text]
  • Sirenian Feeding Apparatus: Functional Morphology of Feeding Involving Perioral Bristles and Associated Structures
    THE SIRENIAN FEEDING APPARATUS: FUNCTIONAL MORPHOLOGY OF FEEDING INVOLVING PERIORAL BRISTLES AND ASSOCIATED STRUCTURES By CHRISTOPHER DOUGLAS MARSHALL A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNrVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REOUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 1997 DEDICATION to us simply as I dedicate this work to the memory of J. Rooker (known "Rooker") and to sirenian conservation. Rooker was a subject involved in the study during the 1993 sampling year at Lowry Park Zoological Gardens. Rooker died during the red tide event in May of 1996; approximately 140 other manatees also died. During his rehabilitation at Lowry Park Zoo, Rooker provided much information regarding the mechanism of manatee feeding and use of the perioral bristles. The "mortality incident" involving the red tide event in southwest Florida during the summer of 1996 should serve as a reminder that the Florida manatee population and the status of all sirenians is precarious. Although some estimates suggest that the Florida manatee population may be stable, annual mortality numbers as well as habitat degradation continue to increase. Sirenian conservation and research efforts must continue. ii ACKNOWLEDGMENTS Research involving Florida manatees required that I work with several different government agencies and private parks. The staff of the Sirenia Project, U.S. Geological Service, Biological Resources Division - Florida Caribbean Science Center has been most helpful in conducting the behavioral aspect of this research and allowed this work to occur under their permit (U.S. Fish and Wildlife Permit number PRT-791721). Numerous conversations regarding manatee biology with Dr.
    [Show full text]
  • 71St Annual Meeting Society of Vertebrate Paleontology Paris Las Vegas Las Vegas, Nevada, USA November 2 – 5, 2011 SESSION CONCURRENT SESSION CONCURRENT
    ISSN 1937-2809 online Journal of Supplement to the November 2011 Vertebrate Paleontology Vertebrate Society of Vertebrate Paleontology Society of Vertebrate 71st Annual Meeting Paleontology Society of Vertebrate Las Vegas Paris Nevada, USA Las Vegas, November 2 – 5, 2011 Program and Abstracts Society of Vertebrate Paleontology 71st Annual Meeting Program and Abstracts COMMITTEE MEETING ROOM POSTER SESSION/ CONCURRENT CONCURRENT SESSION EXHIBITS SESSION COMMITTEE MEETING ROOMS AUCTION EVENT REGISTRATION, CONCURRENT MERCHANDISE SESSION LOUNGE, EDUCATION & OUTREACH SPEAKER READY COMMITTEE MEETING POSTER SESSION ROOM ROOM SOCIETY OF VERTEBRATE PALEONTOLOGY ABSTRACTS OF PAPERS SEVENTY-FIRST ANNUAL MEETING PARIS LAS VEGAS HOTEL LAS VEGAS, NV, USA NOVEMBER 2–5, 2011 HOST COMMITTEE Stephen Rowland, Co-Chair; Aubrey Bonde, Co-Chair; Joshua Bonde; David Elliott; Lee Hall; Jerry Harris; Andrew Milner; Eric Roberts EXECUTIVE COMMITTEE Philip Currie, President; Blaire Van Valkenburgh, Past President; Catherine Forster, Vice President; Christopher Bell, Secretary; Ted Vlamis, Treasurer; Julia Clarke, Member at Large; Kristina Curry Rogers, Member at Large; Lars Werdelin, Member at Large SYMPOSIUM CONVENORS Roger B.J. Benson, Richard J. Butler, Nadia B. Fröbisch, Hans C.E. Larsson, Mark A. Loewen, Philip D. Mannion, Jim I. Mead, Eric M. Roberts, Scott D. Sampson, Eric D. Scott, Kathleen Springer PROGRAM COMMITTEE Jonathan Bloch, Co-Chair; Anjali Goswami, Co-Chair; Jason Anderson; Paul Barrett; Brian Beatty; Kerin Claeson; Kristina Curry Rogers; Ted Daeschler; David Evans; David Fox; Nadia B. Fröbisch; Christian Kammerer; Johannes Müller; Emily Rayfield; William Sanders; Bruce Shockey; Mary Silcox; Michelle Stocker; Rebecca Terry November 2011—PROGRAM AND ABSTRACTS 1 Members and Friends of the Society of Vertebrate Paleontology, The Host Committee cordially welcomes you to the 71st Annual Meeting of the Society of Vertebrate Paleontology in Las Vegas.
    [Show full text]
  • How to Cite Complete Issue More Information About This Article
    Boletín de la Sociedad Geológica Mexicana ISSN: 1405-3322 Sociedad Geológica Mexicana, A.C. Hernández Cisneros, Atzcalli Ehécatl; González Barba, Gerardo; Fordyce, Robert Ewan Oligocene cetaceans from Baja California Sur, Mexico Boletín de la Sociedad Geológica Mexicana, vol. 69, no. 1, January-April, 2017, pp. 149-173 Sociedad Geológica Mexicana, A.C. Available in: http://www.redalyc.org/articulo.oa?id=94350664007 How to cite Complete issue Scientific Information System Redalyc More information about this article Network of Scientific Journals from Latin America and the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Project academic non-profit, developed under the open access initiative Boletín de la Sociedad Geológica Mexicana / 2017 / 149 Oligocene cetaceans from Baja California Sur, Mexico Atzcalli Ehécatl Hernández Cisneros, Gerardo González Barba, Robert Ewan Fordyce ABSTRACT Atzcalli Ehecatl Hernández Cisneros ABSTRACT RESUMEN [email protected] Museo de Historia Natural de la Universidad Autónoma de Baja California Sur, Univer- Baja California Sur has an import- Baja California Sur tiene un importante re- sidad Autónoma de Baja California Sur, ant Cenozoic marine fossil record gistro de fósiles marinos del Cenozoico que Carretera al Sur Km 5.5, Apartado Postal which includes diverse but poorly incluye los restos poco conocidos de cetáceos 19-B, C.P. 23080, La Paz, Baja California Sur, México. known Oligocene cetaceans from del Oligoceno de México. En este estudio Instituto Politécnico Nacional, Centro Inter- Mexico. Here we review the cetacean ofrecemos más detalles sobre estos fósiles de disciplinario de Ciencias Marinas (CICMAR), fossil record including new observa- cetáceos, incluyendo nuevas observaciones Av. Instituto Politécnico Nacional s/n, Col.
    [Show full text]
  • Atypicat Molecular Evolution of Afrotherian and Xenarthran B-Globin
    Atypicat molecular evolution of afrotherian and xenarthran B-globin cluster genes with insights into the B-globin cluster gene organization of stem eutherians. By ANGELA M. SLOAN A thesis submitted to the Faculty of Graduate Studies in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Department of Zoology University of Manitoba Winnipeg, Manitoba, Canada @ Angela M. Sloan, July 2005 TIIE I]MVERSITY OF' MANITOBA FACULTY OF GRADUATE STT]DIES ***** - COPYRIGHTPERMISSION ] . Atypical molecular evolution of afrotherian and xenarthran fslobin cluster genes with insights into thefglobin cluster gene organization òf stem eutherians. BY Angela M. Sloan A ThesislPracticum submitted to the Faculty of Graduate Studies of The University of Manitoba in partial fulfill¡nent of the requirement of the degree of Master of Science Angela M. Sloan @ 2005 Permission has been granted to the Library of the University of Manitoba to lend or sell copies of this thesis/practicum, to the National Library of Canada to microfilm this thesis and to lend or sell copies of the fiIm, and to University Microfïlms Inc. to publish an abstract of this thesis/practicum. This reproduction or copy of this thesis has been made available by authority of the copyright owner solely for the purpose of private study and research, and may only be reproduced and copied as permitted by copyright laws or with express written authorization from the copyright ownér. ABSTRACT Our understanding of p-globin gene cluster evolutionlwithin eutherian mammals .is based solely upon data collected from species in the two most derived eutherian superorders, Laurasiatheria and Euarchontoglires. Ifence, nothing is known regarding_the gene composition and evolution of this cluster within afrotherian (elephants, sea cows, hyraxes, aardvarks, elephant shrews, tenrecs and golden moles) and xenarthran (sloths, anteaters and armadillos) mammals.
    [Show full text]
  • University of Florida Thesis Or Dissertation Formatting
    TRACE METAL CONCENTRATIONS AND THE PHYSIOLOGICAL ROLE OF ZINC IN THE WEST INDIAN MANATEE (Trichechus manatus) By NOEL YOKO TAKEUCHI A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2012 1 © 2012 Noel Yoko Takeuchi 2 To my parents, for without them, I would not be where I am today. As first generation Japanese immigrants, they continue to inspire me to live the “American Dream”. 3 ACKNOWLEDGMENTS I want to first, and foremost, thank my amazing advisor, Dr. David Barber, for his dedication to his students, his great insight to science, life and family, and for being encouraging when times were tough. I want to also give a huge thank you to my committee members: Drs. Roger Reep, Robert Bonde, Robert Cousins and Michael Walsh. This could not have been accomplished without their support, advice and expertise. The greatest part of science is working together to answer a common question. As a result, I have a number of collaborators and organizations to thank for being a part of this project. The magnificent United States Geological Survey (Sirenia Project), Florida Fish and Wildlife Commission (Dr. Charles Deutsch), Nicole Auil Gomez and Dr. James Powell (Sea to Shore Alliance), Dr. Ramiro Isaza, Carla Bernal, Natalie Hall (UF) and Dr. Ellen Wiedner (Ringling Brothers) for elephant samples, the Marine Mammal Pathobiology Laboratory (Dr. Martine deWit and staff), Mote Marine Laboratory and Aquarium (Joseph Gaspard), Dr. Dean Bass (Doctor’s Data, Inc.), Dr. Iske Larkin (UF) and Joyce Kleen (Crystal River National Wildlife Refuge) for plant surveys, Dr.
    [Show full text]
  • Ore Bin / Oregon Geology Magazine / Journal
    THE ORE.-BIN Volume XVI Vol. 16, No.1 THE ORE.-BIN 1 January 1954 Portland, Oregon STATE DEPARTKENT OF GEOLOGY AND KINERAL INDUSTRIES Head Ottice: 1069 State Ottioe Bldg., Portland 1, Oregon Telephone: Columbia 2161, Ext. 488 State Governing Board ~ Kason L. Bingham, Chairman, Portland R. E. Corooran Geologist Niel R. Allen Grants Pass Hollis K. Dole Geologist Austin Dunn Baker L. L. Hoagland Assayer & Chemist Ralph S. Kason Kining Engineer F. W. Libbey, Direotor T. C. Katthews Speotrosoopist Lenin Ramp Geologist K. L. Steere Geologist R. E. stewart Geologist F18ld Ottices 20" First Street, Baker 2'9 S.E. "H" street, Grants Pass N. S. Wagper, Field Geologist David J. White, Field Geologist ****************************** THE ASTORIA LANDSLIDES Erosion to most ot us means the slow, almost imperoeptible, wearing down ot the higher parts ot the earth's crust by running water, wind, or ice. Seemingly mountains remain the same height and stream valleys the same depth throughout the years. The only rapid changes in the landscape which are accepted as normal are the neat exoavations made when new roads, dams, or other man-made structures are constructed. It 1s not sur­ prising that special attention to the ohoioe of a toundation for an ordinary building is seldom given, tor our experience tells us that the durability ot the structure is infinitely less than that of the ground on whioh it is bull t. It oomes as a shock to us when exceptions to our everyday observations ocour. Suoh is the oase in the land­ sliding at Astoria, Oregon,at the mouth of the Columbia River.
    [Show full text]
  • Karyotype Determination of Rock Hyrax Procavia Capensis in Saudi Arabia
    © 2015 The Japan Mendel Society Cytologia 80(3): 287–293 Karyotype Determination of Rock Hyrax Procavia capensis in Saudi Arabia Saud A. Al-Dakan and Abdulaziz A. Al-Saleh* Zoology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia Received November 1, 2014; accepted May 31, 2015 Summary Procavia capensis is considered as a small mammalian animal which belongs to order Hyracoidea, and it is the only species of the order that has been found in Saudi Arabia. Therefore, karyotype analysis of this species has been carried out and the finding summarized as follows. The diploid chromosome number is 54. In the karyotype analysis, the somatic chromosomes were catego- rized into three groups: 21 pairs of acrocentric, 2 pairs of submetacentric and 3 pairs of metacentric chromosomes. The sex chromosomes are one submetacentric X chromosome and one acrocentric Y chromosome. The lengths of chromosomes varied between 1.6–7.6 µm, and the Y chromosome is the shortest. The FN is 65 in the male and 66 in the female, while the FNa is 62. The karyotype formula of Procavia capensis could be deduced as: a sm a sm a sm m (2=54);Ln 14+ L 1 + M 14 + M 2 ++ S 15 S 2 + S 6 Key words Karyotype, Rock hyrex, Chromosome, Procavia capensis. The rock hyrax (Procavia capensis) is one of small mammalian herbovorous animals that lives in small family groups ranging from 10 to 80 members headed by a dominant adult male which defends and watches over the group (Turner and Watson 1965, Grzimek 1975, Skinner and Smithers 1990, Estes 1991, Kingdon 1991, Manharth and Harris-Gerber 2002).
    [Show full text]
  • SUPPLEMENTARY INFORMATION: Tables, Figures and References
    Samuels et al. Evolution of the patellar sesamoid bone in mammals SUPPLEMENTARY INFORMATION: Tables, Figures and References Supplementary Table S1: Mammals$ Higher taxa Genus sp. Estimated. age of Patellar Comments# (partial) specimen, location state 0/1/2 (absent/ ‘patelloid’/ present) Sinoconodonta Sinoconodon Jurassic 0 Patellar groove absent, suggests no rigneyi (Kielan- patella Jaworowska, Cifelli & Luo, Sinoconodon is included on our 2004) phylogeny within tritylodontids. Morganucodonta Megazostrodon Late Triassic, southern 0 rudnerae (Jenkins Africa & Parrington, 1976) Morganucodonta Eozostrodon sp. Late Triassic, Wales 0 Asymmetric patellar groove, (Jenkins et al., specimens disarticulated so it is hard 1976) to assess the patella but appears absent Docodonta Castorocauda 164 Mya, mid-Jurassic, 0 Semi-aquatic adaptations lutrasimilis (Ji, China Luo, Yuan et al., 2006) Docodonta Agilodocodon 164 Mya, mid-Jurassic, 0 scansorius China (Meng, Ji, Zhang et al., 2015) Docodonta Docofossor 160 Mya 0 brachydactylus (Luo, Meng, Ji et al., 2015) Docodonta Haldanodon 150-155 Mya, Late 0 Shallow patellar groove exspectatus Jurassic, Portugal (Martin, 2005b) Australosphenida Asfaltomylos Mid-Jurassic, South ? Postcranial material absent patagonicus America (Martin, 2005a) Australosphenida Ornithorhynchus Extant 2 Platypus, genome sequenced Monotremata anatinus (Warren, Hillier, Marshall Graves et (Herzmark, 1938; al., 2008) Rowe, 1988) Samuels et al. Australosphenida Tachyglossus + Extant 2 Echidnas Monotremata Zaglossus spp. (Herzmark, 1938; Rowe, 1988) Mammaliaformes Fruitafossor 150 Mya, Late Jurassic, 0 Phylogenetic status uncertain indet. windscheffeli (Luo Colorado & Wible, 2005) Mammaliaformes Volaticotherium Late Jurassic/Early ? Hindlimb material incomplete indet. antiquus (Meng, Cretaceous Hu, Wang et al., 2006) Eutriconodonta Jeholodens 120-125 Mya, Early 0 Poorly developed patellar groove jenkinsi (Ji, Luo Cretaceous, China & Ji, 1999) Eutriconodonta Gobiconodon spp.
    [Show full text]
  • 25 Squires and Fritsche
    25 SQUIRES AND FRITSCHE Isurus sp. TRACE FOSSILS PI. 4, fig. 8 Unidentified burrows Isurus sp. (mako shark) teeth are the most " common shark teeth in the Sespe Creek area. Most The few unidentified burrows collected from the are moderately well preserved, nearly complete or Vaqueros Formation are about 9 cm long and about 1.5 complete, and not rounded by abrasion. Average cm in diameter. Burrows are more abundant in the length of complete specimens is about 1.5 cm; larger Santa Margarita Formation, where the most common type fragments are about 2.5 cm in length. is vertical, 1 to 3 cm in diameter, and straight to slightly curving. Some forms are branching, and at Genus Carcharodon Smith in Muller and Henle, 1838 locality 287, some resemble Ophiomorpha. Carcharodon angustidens L. Agassiz Kingdom PLANTAE PI. 4, fig. 3 Division RHODOPHYCOPHYTA Class RHODOPHYCEAE Carcharodon angustidens L. Agassiz, 1843, p. 255, Order CRYPTQNEMIALES pi. 28, figs. 20-25. Leriche, p. 13-14, pi. 11, figs. 8, 8a, 8b. Family Corallinaceae The figured specimen (PI. 4, fig. 3) of Carchar- Abundant whole and fragmented specimens of. an odon angustidens (great white shark) is a 6-cm-long unidentified coralline alga occur in a thin bed at tooth. Other specimens found include only a few locality 313. Small hemispherical colonies up to fragments. Remains of Carcharodon are previously 2.5 cm in height were collected, but most of the unreported from the Vaqueros Formation in the Sespe specimens are scattered fragments separated by Creek region (Loel and Corey, 1932). medium-grained sandstone.
    [Show full text]
  • Early Eocene Fossils Suggest That the Mammalian Order Perissodactyla Originated in India
    ARTICLE Received 7 Jul 2014 | Accepted 15 Oct 2014 | Published 20 Nov 2014 DOI: 10.1038/ncomms6570 Early Eocene fossils suggest that the mammalian order Perissodactyla originated in India Kenneth D. Rose1, Luke T. Holbrook2, Rajendra S. Rana3, Kishor Kumar4, Katrina E. Jones1, Heather E. Ahrens1, Pieter Missiaen5, Ashok Sahni6 & Thierry Smith7 Cambaytheres (Cambaytherium, Nakusia and Kalitherium) are recently discovered early Eocene placental mammals from the Indo–Pakistan region. They have been assigned to either Perissodactyla (the clade including horses, tapirs and rhinos, which is a member of the superorder Laurasiatheria) or Anthracobunidae, an obscure family that has been variously considered artiodactyls or perissodactyls, but most recently placed at the base of Proboscidea or of Tethytheria (Proboscidea þ Sirenia, superorder Afrotheria). Here we report new dental, cranial and postcranial fossils of Cambaytherium, from the Cambay Shale Formation, Gujarat, India (B54.5 Myr). These fossils demonstrate that cambaytheres occupy a pivotal position as the sister taxon of Perissodactyla, thereby providing insight on the phylogenetic and biogeographic origin of Perissodactyla. The presence of the sister group of perissodactyls in western India near or before the time of collision suggests that Perissodactyla may have originated on the Indian Plate during its final drift toward Asia. 1 Center for Functional Anatomy & Evolution, Johns Hopkins University School of Medicine, 1830 E. Monument Street, Baltimore, Maryland 21205, USA. 2 Department of Biological Sciences, Rowan University, Glassboro, New Jersey 08028, USA. 3 Department of Geology, H.N.B. Garhwal University, Srinagar 246175, Uttarakhand, India. 4 Wadia Institute of Himalayan Geology, Dehradun 248001, Uttarakhand, India. 5 Research Unit Palaeontology, Ghent University, Krijgslaan 281-S8, B-9000 Ghent, Belgium.
    [Show full text]