The African Elephant Under Threat
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Impact of Civil War on Forest Wildlife in West Africa: Mammals in Gola Forest, Sierra Leone J Eremy A
The impact of civil war on forest wildlife in West Africa: mammals in Gola Forest, Sierra Leone J eremy A. Lindsell,Erik K lop and A lhaji M. Siaka Abstract Human conflicts may sometimes benefit wildlife et al., 1996). However, the generality of this argument has by depopulating wilderness areas but there is evidence been challenged and recent evidence, especially from forest- from Africa that the impacts tend to be negative. The based conflicts in Africa, suggests a negative impact from forested states of West Africa have experienced much over-harvesting of wildlife, degradation of habitats and recent human conflict but there have been no assessments pollution, and the prevention of a range of necessary of impacts on the wildlife. We conducted surveys of conservation and protection activities (Dudley et al., mammals in the 710-km2 Gola Forest reserves to assess 2002; McNeely, 2003). Understanding the effects of conflict the impact of the 1991–2001 civil war in Sierra Leone. Gola on wildlife has important implications for the way conser- is the most important remaining tract of lowland forest in vation agencies work in conflict areas (Plumptre et al., the country and a key site for the conservation of the 2000; Hanson et al., 2009), especially how effectively they highly threatened forests of the Upper Guinea region. We can respond at the cessation of hostilities (Draulans & Van found that Gola has survived well despite being in the Krunkelsven, 2002; McNeely, 2003) because the period of heart of the area occupied by the rebels. We recorded 44 time immediately after war is often crucial (Dudley et al., species of larger mammal, including 18 threatened, near- 2002). -
Structure of the Ovaries of the Nimba Otter Shrew, Micropotamogale Lamottei , and the Madagascar Hedgehog Tenrec, Echinops Telfairi
Original Paper Cells Tissues Organs 2005;179:179–191 Accepted after revision: March 7, 2005 DOI: 10.1159/000085953 Structure of the Ovaries of the Nimba Otter Shrew, Micropotamogale lamottei , and the Madagascar Hedgehog Tenrec, Echinops telfairi a b c d A.C. Enders A.M. Carter H. Künzle P. Vogel a Department of Cell Biology and Human Anatomy, University of California, Davis, Calif. , USA; b Department of Physiology and Pharmacology, University of Southern Denmark, Odense , Denmark; c d Department of Anatomy, University of Munich, München , Germany, and Department of Ecology and Evolution, University of Lausanne, Lausanne , Switzerland Key Words es between the more peripheral granulosa cells. It is sug- Corpora lutea Non-antral follicles Ovarian gested that this fl uid could aid in separation of the cu- lobulation Afrotheria mulus from the remaining granulosa at ovulation. The protruding follicles in lobules and absence of a tunica albuginea might also facilitate ovulation of non-antral Abstract follicles. Ovaries with a thin-absent tunica albuginea and The otter shrews are members of the subfamily Potamo- follicles with small-absent antra are widespread within galinae within the family Tenrecidae. No description of both the Eulipotyphla and in the Afrosoricida, suggest- the ovaries of any member of this subfamily has been ing that such features may represent a primitive condi- published previously. The lesser hedgehog tenrec, Echi- tion in ovarian development. Lobulated and deeply nops telfairi, is a member of the subfamily Tenrecinae of crypted ovaries are found in both groups but are not as the same family and, although its ovaries have not been common in the Eulipotyphla making inclusion of this fea- described, other members of this subfamily have been ture as primitive more speculative. -
Chromosomal Evolution in Tenrecs (Microgale and Oryzorictes, Tenrecidae) from the Central Highlands of Madagascar
Chromosome Research (2007) 15:1075–1091 # Springer 2007 DOI: 10.1007/s10577-007-1182-6 Chromosomal evolution in tenrecs (Microgale and Oryzorictes, Tenrecidae) from the Central Highlands of Madagascar C. Gilbert1, S. M. Goodman2,3, V. Soarimalala3,4, L. E. Olson5,P.C.M.O_Brien6, F. F. B. Elder7, F. Yang8, M. A. Ferguson-Smith6 & T. J. Robinson1* 1Evolutionary Genomics Group, Department of Botany and Zoology, University of Stellenbosch, Stellenbosch, South Africa; Tel: +27-21-8083955; Fax: +27-21-8082405; E-mail: [email protected]; 2Department of Zoology, Field Museum of Natural History, Lake Shore Drive, Chicago, IL, USA; 3Vahatra, BP 738, Antananarivo (101), Madagascar; 4De´partement de Biologie Animale, Universite´ d_Antananarivo, BP 906, Antananarivo (101), Madagascar; 5University of Alaska Museum, University of Alaska Fairbanks, Fairbanks, AK, USA; 6Centre for Veterinary Science, University of Cambridge, Cambridge, UK; 7Department of Pathology, Cytogenetics Laboratory, UT Southwestern Medical Center, Dallas, TX, USA; 8The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK *Correspondence Received 13 August 2007. Received in revised form and accepted for publication by Pat Heslop-Harrison 2 October 2007 Key words: Afrotheria, cytogenetics, evolution, speciation, Tenrecidae Abstract Tenrecs (Tenrecidae) are a widely diversified assemblage of small eutherian mammals that occur in Madagascar and Western and Central Africa. With the exception of a few early karyotypic descriptions based on conventional staining, nothing is known about the chromosomal evolution of this family. We present a detailed analysis of G-banded and molecularly defined chromosomes based on fluorescence in situ hybridization (FISH) that allows a comprehensive comparison between the karyotypes of 11 species of two closely related Malagasy genera, Microgale (10 species) and Oryzorictes (one species), of the subfamily Oryzorictinae. -
Endemic Small Mammals Captured Outside of Natural Habitats in the Moramanga District, Central Eastern Madagascar
Terrestrial “forest-dwelling” endemic small mammals captured outside of natural habitats in the Moramanga District, central eastern Madagascar Toky M. Randriamoria1,2, Voahangy Soarimalala2 petits mammifères, par le biais des trous-pièges et & Steven M. Goodman2, 3 des pièges standards, menées dans cinq villages du 1Département de Biologie Animale, Faculté des District de Moramanga, dans la partie Est-centrale Sciences, Université d’Antananarivo, BP 906, de Madagascar, en 2013 (saison sèche) et en 2014 Antananarivo 101, Madagascar (saison humide) ont permis d’attraper pour la première E-mail: [email protected] fois deux espèces d’Afrosoricida endémiques, 2 Association Vahatra, BP 3972, Antananarivo 101, Microgale majori et M. thomasi, dans des habitats Madagascar anthropogéniques en dehors des forêts naturelles. E-mail: [email protected] La première espèce a été répertoriée dans deux 3Field Museum of Natural History, 1400 South Lake sites (Ambalafary et Antsahatsaka) à travers deux Shore Drive, Chicago, Illinois 60605, USA types d’habitats principaux : la forêt d’Eucalyptus et E-mail: [email protected] le savoka. Le terme savoka désigne des formations végétales secondaires souvent peu pénétrables et correspond à la période de jachère des cultures sur Abstract brûlis. Ces habitats de capture sont situés près de The vast majority of Malagasy rodent (Subfamily 770 m jusqu’à plus de 3 km d’une forêt naturelle. Nesomyinae) and tenrec (Subfamily Oryzorictinae) Concernant M. thomasi, un spécimen a été capturé species living in the eastern humid forest are thought dans un savoka situé à près d’une centaine de to be strictly forest-dwelling. Small mammals surveys mètres d’une forêt naturelle, dans le site de Besakay. -
Karyotype Determination of Rock Hyrax Procavia Capensis in Saudi Arabia
© 2015 The Japan Mendel Society Cytologia 80(3): 287–293 Karyotype Determination of Rock Hyrax Procavia capensis in Saudi Arabia Saud A. Al-Dakan and Abdulaziz A. Al-Saleh* Zoology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia Received November 1, 2014; accepted May 31, 2015 Summary Procavia capensis is considered as a small mammalian animal which belongs to order Hyracoidea, and it is the only species of the order that has been found in Saudi Arabia. Therefore, karyotype analysis of this species has been carried out and the finding summarized as follows. The diploid chromosome number is 54. In the karyotype analysis, the somatic chromosomes were catego- rized into three groups: 21 pairs of acrocentric, 2 pairs of submetacentric and 3 pairs of metacentric chromosomes. The sex chromosomes are one submetacentric X chromosome and one acrocentric Y chromosome. The lengths of chromosomes varied between 1.6–7.6 µm, and the Y chromosome is the shortest. The FN is 65 in the male and 66 in the female, while the FNa is 62. The karyotype formula of Procavia capensis could be deduced as: a sm a sm a sm m (2=54);Ln 14+ L 1 + M 14 + M 2 ++ S 15 S 2 + S 6 Key words Karyotype, Rock hyrex, Chromosome, Procavia capensis. The rock hyrax (Procavia capensis) is one of small mammalian herbovorous animals that lives in small family groups ranging from 10 to 80 members headed by a dominant adult male which defends and watches over the group (Turner and Watson 1965, Grzimek 1975, Skinner and Smithers 1990, Estes 1991, Kingdon 1991, Manharth and Harris-Gerber 2002). -
City's Limits: Can Verreaux's Eagle Survive Urbanization?
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/289670312 City's limits: Can Verreaux's Eagle survive urbanization? Article · July 2007 CITATIONS READS 0 12 4 authors, including: Robert Simmons University of Cape Town 117 PUBLICATIONS 1,378 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Climate change View project Namibian Red data birds View project All content following this page was uploaded by Robert Simmons on 14 January 2016. The user has requested enhancement of the downloaded file. and bush encroachment, the raptors second pair live on the west side of the which need pristine woodlands rather Cape Peninsula mountain chain, in the than those that have been burnt and Silvermine area of the Table Mountain CITY’S logged, and some, such as the harriers National Park, just north of Chapman’s and the African Fish-Eagle, which live Peak. There they have bred successfully Can Verreaux’s Eagles survive urbanisation? around the fringes of degraded and for three years, monitored weekly by drained wetlands. their finder and eagle-advocate Lucia What of our montane eagles? Can Rodrigues. These pairs share similarities species, such as Verreaux’s (Black) Eagles and differences that allow us to assess Aquila verreauxii, which live along- if Verreaux’s Eagles can survive human side man, continue to thrive in their encroachment. mountain retreats? Two closely studied When the Roodekrans pair began Below An adult Verreaux’s Eagle arrives LIMITS examples, one from Johannesburg and to bring chickens to their nest, it was at its nest on the Roodekrans in the sub- the other from Cape Town, allow an apparent that the dassie (rock hyrax) urbs of Johannesburg. -
Chapter 15 the Mammals of Angola
Chapter 15 The Mammals of Angola Pedro Beja, Pedro Vaz Pinto, Luís Veríssimo, Elena Bersacola, Ezequiel Fabiano, Jorge M. Palmeirim, Ara Monadjem, Pedro Monterroso, Magdalena S. Svensson, and Peter John Taylor Abstract Scientific investigations on the mammals of Angola started over 150 years ago, but information remains scarce and scattered, with only one recent published account. Here we provide a synthesis of the mammals of Angola based on a thorough survey of primary and grey literature, as well as recent unpublished records. We present a short history of mammal research, and provide brief information on each species known to occur in the country. Particular attention is given to endemic and near endemic species. We also provide a zoogeographic outline and information on the conservation of Angolan mammals. We found confirmed records for 291 native species, most of which from the orders Rodentia (85), Chiroptera (73), Carnivora (39), and Cetartiodactyla (33). There is a large number of endemic and near endemic species, most of which are rodents or bats. The large diversity of species is favoured by the wide P. Beja (*) CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal CEABN-InBio, Centro de Ecologia Aplicada “Professor Baeta Neves”, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal e-mail: [email protected] P. Vaz Pinto Fundação Kissama, Luanda, Angola CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus de Vairão, Vairão, Portugal e-mail: [email protected] L. Veríssimo Fundação Kissama, Luanda, Angola e-mail: [email protected] E. -
Tour Report 7 – 25 November 2015
The Best of Ethiopia Naturetrek Tour Report 7 – 25 November 2015 African Fish Eagle Walia Ibex Ethiopian Wolf White-cheeked Turaco Report & images compiled by Eric Barnes Naturetrek Mingledown Barn Wolf's Lane Chawton Alton Hampshire GU34 3HJ UK T: +44 (0)1962 733051 E: [email protected] W: www.naturetrek.co.uk The Best of Ethiopia Tour Report Tour Participants: Abiy Dagne and Eric Barnes (leaders) with ten Naturetrek clients Introduction For most people, Ethiopia won’t be top of their list of places to visit for an enjoyable holiday, nor would they think of it as a wildlife hotspot. Those that take the trip, in my experience, have been universally pleased that they took a leap of faith and travelled to a wildlife paradise full of character and surprises. “Eric, this Lammergeier is far too close for us to photograph” and “Don’t stop, it’s only another Arabian Bustard” were comments from this year’s tour that, perhaps, give some idea of the great views and wealth of wildlife experiences. Unfortunately, it is unclear how long this situation will last. In the past two years there have been changes relating to uncontrolled grazing in their National Parks. It is clear that the wildlife will suffer severely over the next decade, so if you are thinking of going, go sooner rather than later! Day 1 Saturday 7th November In flight to Ethiopia. Day 2 Sunday 8th November Our Ethiopian Airline flight touched down as smooth as silk, slightly ahead of schedule. We got our visas, picked up our adjoining clients and headed off for a quick breakfast and wander around the Ghion Hotel. -
Oomparative Craniological Systematics of the "Tenrecomorpha" (Mammalia: Insectivora)
Oomparative craniological systematics of the "Tenrecomorpha" (Mammalia: Insectivora) Peter Giere Anke C. Schunke Ulrich Zeller 1 Introduction Insectivore systematics has long been of spécial interest for mammal- ogists in the belief that a member of this group represents the ances¬ tral eutherian stock. Despite this attention, the establishment of a phylogenetic classification based on shared derived characters proved to be diffïcult due to the heterogeneity of the group and the paucity of such characters (cf. Butler 1988, MacPhee and Novacek 1993). In part, this is also true for the taxa identified within the Insectivora. Hère, a doser look will be taken at the 'Tenrecomorpha", consisting of the Malagasy tenrecs and the central and west African otter shrews. Based mainly on palaeontological data, Butler (1972) distinguished the 'Tenrecomorpha" from the Erinaceomorpha, Soricomorpha and View metadata, citation and similar papers at core.ac.uk Chrysochlorida.brought to you by CORE Due to a misidentification of the original material, provided by Horizon / Pleins textes this division ofthe insectivores was abandoned (Butler 1988), and both tenrecs and otter shrews are now subsumed under the Soricomorpha (Butler 1988; cf. MacPhee and Novacek 1993; McKenna and BELL 1997). The label 'Tenrecomorpha" is used hère to facilitate denoting tenrecs and otter shrews and could be used inter- 244 African Small Mammals / Petits mammifères africains changeably with "Tenrecidae" as in Hutterer (1993) or 'Tenrecoidea" as in McKenna and Bell (1997). It is not used hère to distinguish the tenrecs and otter shrews as a higher level taxon to be separated from other insectivore higher taxa. The two gênera of otter shrews, Potamogale and Micropotamogale are generally placed within the Tenrecidae (e.g. -
Ornithological Surveys in Kalakpa Resource Reserve, Ghana (2005, 2008-11), with Notes on Vegetation and Mammals
Ornithological surveys in Kalakpa Resource Reserve, Ghana (2005, 2008-11), with notes on vegetation and mammals Françoise Dowsett-Lemaire & Robert J. Dowsett A report prepared for the Wildlife Division, Forestry Commission, Accra Dowsett-Lemaire Misc. Report 76 (2011) Dowsett-Lemaire F. & Dowsett R.J. 2011. Ornithological surveys in Kalakpa Re - source Reserve, Ghana (2005, 2008-11), with notes on vegetation and mammals. Dowsett-Lemaire Misc. Rep. 76: 33 pp. E-mail : [email protected] Birds and mammals of Kalakpa R.R., Ghana -1- Dowsett-Lemaire Misc. Rep. 76 (2011) Ornithological surveys in Kalakpa Resource Reserve, Ghana (2005, 2008-11), with notes on vegetation and mammals by Françoise Dowsett-Lemaire & Robert J. Dowsett Table of Contents ACKNOWLEDGEMENTS ...............................................................................................................2 SUMMARY .........................................................................................................................................2 1. INTRODUCTION ..........................................................................................................................3 2. HABITAT CLASSIFICATION .....................................................................................................4 3. THE AVIFAUNA ............................................................................................................................5 3.1. Past references and reports ................................................................................................... -
Order Suborder Infraorder Superfamily Family
ORDER SUBORDER INFRAORDER SUPERFAMILY FAMILY SUBFAMILY TRIBE GENUS SUBGENUS SPECIES Monotremata Tachyglossidae Tachyglossus aculeatus Monotremata Tachyglossidae Zaglossus attenboroughi Monotremata Tachyglossidae Zaglossus bartoni Monotremata Tachyglossidae Zaglossus bruijni Monotremata Ornithorhynchidae Ornithorhynchus anatinus Didelphimorphia Didelphidae Caluromyinae Caluromys Caluromys philander Didelphimorphia Didelphidae Caluromyinae Caluromys Mallodelphys derbianus Didelphimorphia Didelphidae Caluromyinae Caluromys Mallodelphys lanatus Didelphimorphia Didelphidae Caluromyinae Caluromysiops irrupta Didelphimorphia Didelphidae Caluromyinae Glironia venusta Didelphimorphia Didelphidae Didelphinae Chironectes minimus Didelphimorphia Didelphidae Didelphinae Didelphis aurita Didelphimorphia Didelphidae Didelphinae Didelphis imperfecta Didelphimorphia Didelphidae Didelphinae Didelphis marsupialis Didelphimorphia Didelphidae Didelphinae Didelphis pernigra Didelphimorphia Didelphidae Didelphinae Didelphis virginiana Didelphimorphia Didelphidae Didelphinae Didelphis albiventris Didelphimorphia Didelphidae Didelphinae Gracilinanus formosus Didelphimorphia Didelphidae Didelphinae Gracilinanus emiliae Didelphimorphia Didelphidae Didelphinae Gracilinanus microtarsus Didelphimorphia Didelphidae Didelphinae Gracilinanus marica Didelphimorphia Didelphidae Didelphinae Gracilinanus dryas Didelphimorphia Didelphidae Didelphinae Gracilinanus aceramarcae Didelphimorphia Didelphidae Didelphinae Gracilinanus agricolai Didelphimorphia Didelphidae Didelphinae -
Mammal Richness and Diversity in Tropical Ecosystem: the Role of Protected
Journal of Agriculture and Sustainability ISSN 2201-4357 Volume 13, 2020, 19 Mammal Richness and Diversity in Tropical Ecosystem: The Role of Protected Area in Conserving Vertebrate Fauna, Oban Hill’s Region Emmanuel Tertsea IKYAAGBA1,*, Abideen Abiodun ALARAPE2, James Kehinde OMIFOLAJI2.3,5,*, Ikaa Johnson ULOKO4 and Oladuuni Saka JIMOH6 1Department of Social and Environmental Forestry, University of Agriculture, Makurdi, Nigeria 2Department of Wildlife and Ecotourism, University of Ibadan, Ibadan, Nigeria 3Department of Forestry and Wildlife Management, Federal University Dutse, Nigeria 4Department of Wildlife and Range Management, University of Agriculture, Makurdi, Nigeria 5. School of Nature Conservation, Beijing Forestry University, Beijing 100083, China 6. 1Department of Social and Environmental Forestry, University of Ibadan, Ibadan, Nigeria *Corresponding Authors: [email protected] (Ikyaagba); [email protected] (Omifolaji) Abstract Documenting the diversity and distribution of vertebrates is crucial to achieving sustainability and assists in planning for the protection and conservation strategy. We conducted a line transect via stratified distance sampling techniques to estimate the densities and diversity of forest mammal in tropical ecosystem landscape of Oban Hills __________________________ © Copyright 2020 the authors. 1 JOURNAL OF AGRICULTURE AND SUSTAINABILITY Region, Cross River Park National (CRNP), Nigeria. A detection function was estimated individually for each land use types by pooling all the animal data from the transects. For fauna species, all sighting records of the two out of four land use types (core and buffer) were used because both accounted for the high significant percentage 36% core and 30% buffer of the species composition encountered in the land use types respectively. In total, core, buffer, farmfallow and plantation recorded 868, 519, 136, and 48 individuals respectively.