Effect of Short Time Exposure of Rats to Extreme Low Temperature on Some Plasma and Liver Enzymes

Total Page:16

File Type:pdf, Size:1020Kb

Effect of Short Time Exposure of Rats to Extreme Low Temperature on Some Plasma and Liver Enzymes Bull Vet Inst Pulawy 50, 121-124, 2006 EFFECT OF SHORT TIME EXPOSURE OF RATS TO EXTREME LOW TEMPERATURE ON SOME PLASMA AND LIVER ENZYMES EWA ROMUK1, EWA BIRKNER1, BRONISŁAWA SKRZEP-POLOCZEK1, LESZEK JAGODZIŃSKI2, AGATA STANEK2, BERNADETA WIŚNIOWSKA3 AND ALEKSANDER SIEROŃ2 1Department of Biochemistry in Zabrze, 2Clinic of Internal Diseases, Angiology and Physical Medicine in Bytom, Medical University of Silesia, 40-006 Katowice, Poland 3Center of Cryotherapy, 41-709 Ruda Śląska, Poland e-mail: [email protected] Received for publication October 10, 2005. Abstract protocol of the studies was reviewed and approved by the Bioethical Committee of Medical University of The aim of the study was to search the influence of Silesia in Katowice. Animals were supplied by the cryotherapy on liver enzyme activity in experimental rat Experimental Animal Farm. The rats underwent two model. The first group of rats was exposed 1 min daily to - week environmental adaptation cycle. After this period 90°C for 5 d, the second group was exposed 1 min daily to - the animals were randomized into 3 equal groups. Group 90°C for 10 d and the control group was not exposed to low I - rats exposed to -90°C for 5 d; group II - rats exposed temperature. A statistically significant increase in the activity to -90°C for 10 d and group III - control rats – without of glutamate dehydrogenase, sorbitol dehydrogenase, malate exposure to cryotherapy. All the groups were fed dehydrogenase, ornithine transcarbamoylase and arginase was observed in the plasma and liver. The obtained results indicate standard rat chow ad libitum. the influence of low temperature on liver metabolism. The rats were put individually into cold chamber in wooden cages. Body weight of the animals Key words: rat, cryotherapy, liver enzymes, was controlled before and after 5 and 10 d of the metabolism. experiment. During ether anaesthesia of the animals blood was taken from the right ventricle of the heart and collected into EDTA-containing tubes. Then the animals There is growing interest in using extreme low were killed by the by spinal cord disruption. Ten per temperature in medical treatment. Cryotherapy makes cent homogenates of the liver were prepared in 0.9% the use of low temperature applied for a short time to sodium chloride solution with the use of Potter- stimulate physiological reaction of an organism to this Elvehjem homogenizator. The homogenates were stored condition (16). Whole-body cryotherapy results in at –20°C for 36 h. After defrosting, the homogenates analgesic, antiswelling, immune, hormone and were treated by ultrasounds (ultrasonic desintegrator circulatory system reactions (4). The metabolic effects UD-11). Total protein, glucose, creatinine and urea of cryotherapy are not yet clear (17). One of the concentrations were measured in the plasma. The fundamental body functions is an thermoregulation activity of glutamate dehydrogenase (GDH), malate within a defined temperature range. Thermal dehydrogenase (MDH), and sorbitol dehydrogenase homeostasis is necessary for correct run of every (SDH) were determined in the plasma and liver metabolic process. During cryotherapy, homogenates, and the activity of ornithine thermoregulation is affected by an increase in heat transcarbamoylase (OTC) and arginase (ARG) was production in the organism caused by an elevated measured in liver homogenates. intensity of metabolism (1). The aim of our study was to Total protein, glucose, creatinine, and urea search the influence of cryotherapy on liver enzyme contents were measured with the use of standard activity in experimental rat model. diagnostic kits. The activity of GDH was measured with the use of spectrophotometric method by Schmidt (11). The activity of MDH was measured with the use of Material and Methods colorymetric method by Więckowski (4). The activity of SDH was measured with the use of spectrophotometric Studies were carried out on 18 adult (3 month- method by Gerlach (6). The activity of OTC was old) male Wistar FL rats (body weight about 320 g). The determined with the use of colorimetric method by Żak 122 et al. (18). The activity of ARG was measured with the changes between the studied groups. However, there use of colorimetric method by Tamir et al. (13). was statistically significant increase in the activity of Statistical analysis was performed using plasma and liver GDH as compared to the control group STATISTICA 6.0 PL. The differences between groups (Figs 1 and 4). MDH activity was significantly increased were analysed using U-Mann-Whitney test. To be in the liver of animals kept at low temperature considered statistically significant, we required P<0.05 comparing to the control (Fig. 5). There was also (confidence limits). statistically significant increase in plasma and liver activity of SDH in comparison to the control group (Figs 2 and 3). Liver OTC and ARG activity showed Results statistically significant increase in groups exposed to low temperature as compared with the control (Figs 6 and7). A comparative assesment of plasma protein, There were no statistically significant changes glucose, creatinine, and urea concentrations in rats in all the examined parameters between groups exposed subjected to different conditions of cryotherapy are for 5 d and 10 d to cryotherapy. shown in Table 1. There were no statistically significant Table1 Protein, glucose, creatinine and urea concentrations in the plasma -90/I -90/II control protein 65.8±16.5 65.7±18.5 66.4±18.2 g/l glucose 5.90±1.25 5.33±0.96 4.52±1.02 mmol/l creatinine 39.8±19.6 37.1±16.3 43.5±11.9 umol/ urea 6.17±1.29 6.30±0.99 6.31±1.17 mmol/l 20 12 10.8±2.13 14.8±3.21 15.7±4.11 9.62±1.25 10 16 8 P=0.05 12 P=0.006 P=0.004 -90/I P= 0.006 -90/I 6 control control 2.75±0.21 8 5.16±1.0 -90/II 4 -90/II 4 2 0 0 Fig. 1. Plasma GDH activity in rats exposed Fig. 2. Plasma SDH activity in rats exposed to -90°C compared to the control. to -90°C compared to the control. 25 21.9±5.24 69.7±23.6 80 20 15.5±3.62 70 48.7±12.3 60 15 -90/I 50 P=0.004 -90/I 9.62±2.2 control 40 control 10 -90/II 30 19.2±3.69 -90/II P=0.004 5 20 P=0.004 10 P=0.05 0 0 Fig. 3. Liver SDH activity in rats exposed Fig. 4. Liver GDH activity in rats exposed to -90°C compared to the control. to -90°C compared to the control. 123 7 5.98±1.39 200 158±23.6 145±24.3 6 5.07±2.03 160 116±19.5 5 4.41±1.12 120 4 -90/I -90/I P=0.02 control control 3 80 P=0.05 -90/II P=0.006 -90/II 2 40 P=0.01 1 0 0 Fig. 5. Liver MDH activity in rats exposed Fig. 6. Liver ARG activity in rats exposed to -90°C compared to the control. to -90°C compared to the control. 120 98.5±23.6 100 73.2±19.8 87.9±30.1 80 -90/I 60 control P=0.004 -90/II 40 P=0.01 20 0 Fig. 7. Liver OTC activity in rats exposed to -90°C compared to the control. Discussion transdeamination (10). It is a cross reversible reaction both in catabolism and glutamate anabolism. A constant level of body temperature can only Transdeamination leads to the occurrence of ammonia. be preserved if the heat production by the organism is This is a very toxic product even in the minimal balanced by its heat loss, which is achieved by concentration. The main mechanism of ammonia physiological mechanism of thermoregulation. One of detoxication in the liver is production of urea in the urea the factors determining the intensity of metabolism and cycle (2). consequently the rate of heat production, is the In our experiment an increase in the GDH temperature of surroundings. In biochemical activity was accompanied by the increase in liver OTC thermoregulation the liver plays a crucial role. The activity. OTC is the key enzyme of urea cycle. This temperature of the blood in the hepatic vein is higher enzyme, just as the GDH, is present in the liver than that in the hepatic artery, which points to active mitochondrium and catalyses conversion of carbamoyl heat production in the liver. This process is intensified phosphate to ornithine (9). when the body is cooled during cryotherapy. A very Other important urea cycle enzyme, arginase, important question is the influence of cryotherapy on was also increased during the cryotherapy. The low individual metabolic pathways. In our study we focused temperature exert a great influence on metabolic on liver enzyme activity. pathways through changes in the activity of hormones. Important indicatory enzyme involved in Concentration of amino acids in blood is the main factor protein metabolism is GDH. On the basis of the adjusting conversion of nitrogen in the liver. Anabolic performed experiment we observed increased activity in hormones lower the concentration of amino acid in GDH in groups subjected to cryotherapy at -90ºC. This blood through their stimulation of catching by skeleton increase was observed in the plasma as well as in the muscles. As the result, liver amino acids uptake falls off. liver of examined animals. Then, catabolic hormones increase the supply of amino GDH is situated in the mitochondrium. This is acid in the liver and utilization in the process of protein the regulatory enzyme which is under influence of an resynthesis, as well as they intensify the process of activator (ADP) and inhibitors (ATP, GTP, NADH).
Recommended publications
  • Kinetics of Ornithine Carbamoyltransferase
    15// 454 BIOCHEMICAL SOCIETY TRANSACTIONS Ammonia stimulation of malate dehydrogenase from Bacilllls slearolhermophillls: generation of an apparent aspartate dehydrogenase activity C. N. G. SCHMIDT* and L. JER VISt Attempts to purify aspartate dehydrogenase by salt fraction• • Departmel/t 0/ Botal/Y. Rothamsted Experimel/tal Statiol/. ation. chromatography on Cibacron Blue 3GA-Sepharose or \ Harpel/del/. Herts. A L5 2JQ. U.K .. al/d t Departmel/t 0/ Procion Red HE-3B-Scpharose. affinity chromatography on Biology. Paisley College o/Tee/mology. High Street. Paisley 5'-AMP-Sepharose and gel filtration through Sephacryl S-300 PA I 2BE. Re/l(rewshire. Seollal/d. U.K. always resulted in co-purification of malate dehydrogenase. ' Purification of malate dehydrogenase to near-Ifomogeneity by During investigations into the enzymology of ammonia assimi• the procedure of Wright & Sundaram (1979) yielded a product lation by Baeil/lls stearolhermophillls strain PH24 (Buswell & that was more than 90% pure but still appeared to contain Twomey. 1975). we detected high amounts of an apparent aspartate dehydrogenase in that the addition of ammonia to the aspartate dehydrogenase activity. The enzyme appeared to be malate dehydrogenase assay system caused a 2-fold increase in capable of catalysing the reductive ami nation of oxaloacetic acid the rate of NADH oxidation. Attempts to stain polyacrylamide with NA DH as cofactor. but could not catalyse the oxidative gels for aspartate dehydrogenase activity by using I.-aspartate. deamination of I.-aspartic acid. At low concentrations of NI~4C1 NAD+., Nitro Blue Tetrazolium and phenazonium metho• as the sole nitrogen source in the culture medium. the most sulphate were unsuccessful.
    [Show full text]
  • Annotating Enzymes of Unknown Function: N
    Biochemistry 2006, 45, 1997-2005 1997 Annotating Enzymes of Unknown Function: N-Formimino-L-glutamate Deiminase Is a Member of the Amidohydrolase Superfamily† Ricardo Martı´-Arbona, Chengfu Xu, Sondra Steele, Amanda Weeks, Gabriel F. Kuty, Clara M. Seibert, and Frank M. Raushel* Department of Chemistry, P.O. Box 30012, Texas A&M UniVersity, College Station, Texas 77842-3012 ReceiVed December 13, 2005; ReVised Manuscript ReceiVed January 2, 2006 ABSTRACT: The functional assignment of enzymes that catalyze unknown chemical transformations is a difficult problem. The protein Pa5106 from Pseudomonas aeruginosa has been identified as a member of the amidohydrolase superfamily by a comprehensive amino acid sequence comparison with structurally authenticated members of this superfamily. The function of Pa5106 has been annotated as a probable chlorohydrolase or cytosine deaminase. A close examination of the genomic content of P. aeruginosa reveals that the gene for this protein is in close proximity to genes included in the histidine degradation pathway. The first three steps for the degradation of histidine include the action of HutH, HutU, and HutI to convert L-histidine to N-formimino-L-glutamate. The degradation of N-formimino-L-glutamate to L-glutamate can occur by three different pathways. Three proteins in P. aeruginosa have been identified that catalyze two of the three possible pathways for the degradation of N-formimino-L-glutamate. The protein Pa5106 was shown to catalyze the deimination of N-formimino-L-glutamate to ammonia and N-formyl-L-glutamate, while Pa5091 catalyzed the hydrolysis of N-formyl-L-glutamate to formate and L-glutamate. The protein Pa3175 is dislocated from the hut operon and was shown to catalyze the hydrolysis of N-formimino-L-glutamate to formamide and L-glutamate.
    [Show full text]
  • Metabolic Engineering of Corynebacterium Glutamicum for Production of the Chemical Chaperone Ectoine
    Metabolic engineering of Corynebacterium glutamicum for the production of L-aspartate and its derivatives β-alanine and ectoine Dissertation zur Erlangung des akademischen Grades Doktor der Naturwissenschaften (Dr. rer. nat.) Fakultät für Biologie Universität Bielefeld vorgelegt von Christian Ziert aus Fulda Ebersberg, April 2014 Table of contents Table of figures .................................................................................................8 List of tables ......................................................................................................9 Abbreviations .................................................................................................. 10 Summary ......................................................................................................... 11 Zusammenfassung .......................................................................................... 12 1 Introduction .............................................................................................. 13 1.1 Characteristics of Corynebacterium glutamicum and its application in biotechnology ........... 13 1.2 The central metabolism of C. glutamicum ............................................................................... 14 1.2.1 Carbon source uptake ...................................................................................................... 16 1.2.2 Glycolysis .......................................................................................................................... 17 1.2.3 Pentose
    [Show full text]
  • Genome-Scale Metabolic Network Analysis and Drug Targeting of Multi-Drug Resistant Pathogen Acinetobacter Baumannii AYE
    Electronic Supplementary Material (ESI) for Molecular BioSystems. This journal is © The Royal Society of Chemistry 2017 Electronic Supplementary Information (ESI) for Molecular BioSystems Genome-scale metabolic network analysis and drug targeting of multi-drug resistant pathogen Acinetobacter baumannii AYE Hyun Uk Kim, Tae Yong Kim and Sang Yup Lee* E-mail: [email protected] Supplementary Table 1. Metabolic reactions of AbyMBEL891 with information on their genes and enzymes. Supplementary Table 2. Metabolites participating in reactions of AbyMBEL891. Supplementary Table 3. Biomass composition of Acinetobacter baumannii. Supplementary Table 4. List of 246 essential reactions predicted under minimal medium with succinate as a sole carbon source. Supplementary Table 5. List of 681 reactions considered for comparison of their essentiality in AbyMBEL891 with those from Acinetobacter baylyi ADP1. Supplementary Table 6. List of 162 essential reactions predicted under arbitrary complex medium. Supplementary Table 7. List of 211 essential metabolites predicted under arbitrary complex medium. AbyMBEL891.sbml Genome-scale metabolic model of Acinetobacter baumannii AYE, AbyMBEL891, is available as a separate file in the format of Systems Biology Markup Language (SBML) version 2. Supplementary Table 1. Metabolic reactions of AbyMBEL891 with information on their genes and enzymes. Highlighed (yellow) reactions indicate that they are not assigned with genes. No. Metabolism EC Number ORF Reaction Enzyme R001 Glycolysis/ Gluconeogenesis 5.1.3.3 ABAYE2829
    [Show full text]
  • Comparative Functional Genomics of Amino Acid Metabolism of Lactic Acid Bacteria
    Comparative Functional Genomics of Amino Acid Metabolism of Lactic Acid Bacteria Marieke Pastink Thesis committee Thesis supervisors Prof. Dr. W. M. de Vos Professor of Microbiology Wageningen University Prof. Dr. J. Hugenholtz Professor of Industrial Molecular Microbiology University of Amsterdam Other members Prof. Dr. T. Abee, Wageningen University Prof. Dr. P. Hols, Université Catholique de Louvain Dr. J. E. T. van Hylckama Vlieg, Danone, Palaiseau, France Prof. Dr. R. J. Siezen, Radboud University Nijmegen This research was conducted under the auspices of the graduate school VLAG Comparative Functional Genomics of Amino Acid Metabolism of Lactic Acid Bacteria Marieke Pastink Thesis submitted in partial fulfilment of the requirements for the degree of doctor at Wageningen University by the authority of the Rector Magnificus, Prof. dr. M. J. Kropff, in the presence of Thesis Committee appointed by the Doctorate Board to be defended in public on Friday 16 October 2009 at 4 PM in the Aula. Marieke Pastink Comparative Functional Genomics of Amino Acid Metabolism of Lactic Acid Bacteria PhD thesis Wageningen University, Wageningen, the Netherlands (2009) With references, with summaries in Dutch and English ISBN 978-90-8585-461-6 Opgedragen aan mijn opa Table of contents Abstract 9 Chapter 1 Introduction and outline of this thesis 11 Chapter 2 Genomics and high-throughput screening approaches for 35 optimal flavor production in dairy fermentation. Chapter 3 Genome-scale model of Streptococcus thermophilus LMG18311 55 for metabolic comparison
    [Show full text]
  • A Meta-Analysis of the Effects of High-LET Ionizing Radiations in Human Gene Expression
    Supplementary Materials A Meta-Analysis of the Effects of High-LET Ionizing Radiations in Human Gene Expression Table S1. Statistically significant DEGs (Adj. p-value < 0.01) derived from meta-analysis for samples irradiated with high doses of HZE particles, collected 6-24 h post-IR not common with any other meta- analysis group. This meta-analysis group consists of 3 DEG lists obtained from DGEA, using a total of 11 control and 11 irradiated samples [Data Series: E-MTAB-5761 and E-MTAB-5754]. Ensembl ID Gene Symbol Gene Description Up-Regulated Genes ↑ (2425) ENSG00000000938 FGR FGR proto-oncogene, Src family tyrosine kinase ENSG00000001036 FUCA2 alpha-L-fucosidase 2 ENSG00000001084 GCLC glutamate-cysteine ligase catalytic subunit ENSG00000001631 KRIT1 KRIT1 ankyrin repeat containing ENSG00000002079 MYH16 myosin heavy chain 16 pseudogene ENSG00000002587 HS3ST1 heparan sulfate-glucosamine 3-sulfotransferase 1 ENSG00000003056 M6PR mannose-6-phosphate receptor, cation dependent ENSG00000004059 ARF5 ADP ribosylation factor 5 ENSG00000004777 ARHGAP33 Rho GTPase activating protein 33 ENSG00000004799 PDK4 pyruvate dehydrogenase kinase 4 ENSG00000004848 ARX aristaless related homeobox ENSG00000005022 SLC25A5 solute carrier family 25 member 5 ENSG00000005108 THSD7A thrombospondin type 1 domain containing 7A ENSG00000005194 CIAPIN1 cytokine induced apoptosis inhibitor 1 ENSG00000005381 MPO myeloperoxidase ENSG00000005486 RHBDD2 rhomboid domain containing 2 ENSG00000005884 ITGA3 integrin subunit alpha 3 ENSG00000006016 CRLF1 cytokine receptor like
    [Show full text]
  • All Enzymes in BRENDA™ the Comprehensive Enzyme Information System
    All enzymes in BRENDA™ The Comprehensive Enzyme Information System http://www.brenda-enzymes.org/index.php4?page=information/all_enzymes.php4 1.1.1.1 alcohol dehydrogenase 1.1.1.B1 D-arabitol-phosphate dehydrogenase 1.1.1.2 alcohol dehydrogenase (NADP+) 1.1.1.B3 (S)-specific secondary alcohol dehydrogenase 1.1.1.3 homoserine dehydrogenase 1.1.1.B4 (R)-specific secondary alcohol dehydrogenase 1.1.1.4 (R,R)-butanediol dehydrogenase 1.1.1.5 acetoin dehydrogenase 1.1.1.B5 NADP-retinol dehydrogenase 1.1.1.6 glycerol dehydrogenase 1.1.1.7 propanediol-phosphate dehydrogenase 1.1.1.8 glycerol-3-phosphate dehydrogenase (NAD+) 1.1.1.9 D-xylulose reductase 1.1.1.10 L-xylulose reductase 1.1.1.11 D-arabinitol 4-dehydrogenase 1.1.1.12 L-arabinitol 4-dehydrogenase 1.1.1.13 L-arabinitol 2-dehydrogenase 1.1.1.14 L-iditol 2-dehydrogenase 1.1.1.15 D-iditol 2-dehydrogenase 1.1.1.16 galactitol 2-dehydrogenase 1.1.1.17 mannitol-1-phosphate 5-dehydrogenase 1.1.1.18 inositol 2-dehydrogenase 1.1.1.19 glucuronate reductase 1.1.1.20 glucuronolactone reductase 1.1.1.21 aldehyde reductase 1.1.1.22 UDP-glucose 6-dehydrogenase 1.1.1.23 histidinol dehydrogenase 1.1.1.24 quinate dehydrogenase 1.1.1.25 shikimate dehydrogenase 1.1.1.26 glyoxylate reductase 1.1.1.27 L-lactate dehydrogenase 1.1.1.28 D-lactate dehydrogenase 1.1.1.29 glycerate dehydrogenase 1.1.1.30 3-hydroxybutyrate dehydrogenase 1.1.1.31 3-hydroxyisobutyrate dehydrogenase 1.1.1.32 mevaldate reductase 1.1.1.33 mevaldate reductase (NADPH) 1.1.1.34 hydroxymethylglutaryl-CoA reductase (NADPH) 1.1.1.35 3-hydroxyacyl-CoA
    [Show full text]
  • Characterising the Role of a Putative Mammalian Aspartate Dehydrogenase In
    Characterising the Role of a Putative Mammalian Aspartate Dehydrogenase in Hepatic Lipogenesis and Secretion of Very Low Density Lipoproteins STEPHANIE ANN BONNEY Thesis submitted to the Imperial College of London For the degree of Doctor of Philosophy December 2009 MRC Genomic and Molecular Medicine Clinical Sciences Centre Imperial College School of Medicine Hammersmith Hospital, Du Cane Road London W12 ONN, UK. 1 i Acknowledgements I owe much gratitude to my Ph.D. supervisor, Professor Carol Shoulders for providing me the opportunity, support, advice, guidance and strength to undertake and complete a Ph.D. I would like to thank the many people who have significantly contributed to my studies and helped me along my way: Rocio Lale-Montes, Angela Whyte, Christopher Mann, Penny Ritchie, Abdul Hebbachi, Geoffrey Gibbons, Bethan Jones, Emma Jones and Max Salm. I am indebted to my many colleagues for providing a stimulating and fun environment in which to learn and grow. I am especially grateful to Helen Ringham, Claire Hutchison, Ruth Newton, Margaret Town, Paul Williams, Muddassar Mirza, Stuart Horswell and Lee Fryer. I wish to thank my family and friends for helping me get through the difficult times, and for all the emotional support, comradery, entertainment, and caring they provided. Especially to my mother Sylvia Bonney, who provided consistent support and encouragement through-out the many years of my Ph.D. To my brothers Craig, John and Sean, my sister in-laws Tracey, Francine and Suey and to all my nieces and nephews thank you for being there and supporting me through out the years. To all my friends, especially Denise Read, Victoria Westhead, Julia Barnett and Sophie Voline who have all been so supporting and caring through out the whole experience.
    [Show full text]
  • Mechanism and Regulation of Nitrogen Assimilation in Klebsiella Pneuminiae M5al
    South Dakota State University Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange Electronic Theses and Dissertations 1972 Mechanism and Regulation of Nitrogen Assimilation in Klebsiella pneuminiae M5al Ming- Liang Li Follow this and additional works at: https://openprairie.sdstate.edu/etd Recommended Citation Li, Ming- Liang, "Mechanism and Regulation of Nitrogen Assimilation in Klebsiella pneuminiae M5al" (1972). Electronic Theses and Dissertations. 4802. https://openprairie.sdstate.edu/etd/4802 This Thesis - Open Access is brought to you for free and open access by Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. For more information, please contact [email protected]. MEC!f1..NISM AND REGULATION OF NI TROGEN ASSIM ILATION I<LEBSIELLA ·IN PNEUMONIAE MSal MING.-:-.LIANG LI tt � thesis submi ec f f t the for in partial ul illmen of requirements the . degree Master of Science , major -in Bacteriology, South Dako�a State University 1972 TYL ARY SOUT D 'OT S T- MEC�NISM AND REGULATION OF NI'l:ROGEN ASS IM ILATION IN KLEBSIELLA PNEUMON�E MSa l This the�is is approved as a creditable and independent investigation by a candidate for the degree, Master of Science, and is accep able as meeting the thesis requirements for this· degree . Acceptance of this thesis does not imply that the conc lusions reached by the candidate are necessarily the conclusions o�he maj or departmen� The sis Adrtse_,,.
    [Show full text]
  • Supplementary Figure S1. Immunofluorescence of Canine Primary Breast Tumor
    Supplementary Figure S1. Immunofluorescence of canine primary breast tumor. Staining with DAP-I (A, D, G and J), staining with FITC (B, E, H and K) and Merge (C, F, I and L). Positive expression for PTEN (C), mTOR (F), AKT (I) and 4EBP1 (L) proteins. Supplementary Figure S2. Immunofluorescence of canine metastasis tumor. Staining with DAP-I (A, D, G and J), staining with FITC (B, E, H and K) and Merge (C, F, I and L). Positive expression for PTEN (C), mTOR (F), AKT (I) and 4EBP1 (L) proteins. Supplementary Figure S3. Cell viability percentage of primary tumors and their respective metastasis treated with different doses of rapamycin in MTT assay and their IC50 value, evaluated in 24, 48 and 72 h. A: UNESP-CM60. B: UNESP-MM4. C: UNESP-CM1. D: UNESP-MM1. Different lowercase letters in bars indicate statistical difference between the rapamycin doses at the same time. Different capital letters in columns of data label indicate the statistical difference between times in the same dose treatment. Supplementary Figure S4. Gene expression of AKT, PTEN, mTOR and 4EBP1 in control group versus rapamycin treatment group. Supplementary Figure S5. Gene expression of AKT, PTEN and mTOR of primary tumor cells group versus metastatic cells group. Supplementary Table S1. Mean ± standard error of protein expression for PTEN, mTOR, AKT and 4EBP1 in primary mammary gland tumors and their respective metastases. Antibody Primary tumors (n = 2) Metastases (n = 2) PTEN (%) 2.36 ± 0.23 24.67 ± 4.38 mTOR (%) 0.12 ± 0.03 4.05 ± 1.67 AKT (%) 2.32 ± 0.73 9.22 ± 4.52 4EBP1 (%) 1.25 ± 0.01 17.55 ± 2.31 Supplementary Table S2.
    [Show full text]
  • Springer Handbook of Enzymes
    Dietmar Schomburg Ida Schomburg (Eds.) Springer Handbook of Enzymes Alphabetical Name Index 1 23 © Springer-Verlag Berlin Heidelberg New York 2010 This work is subject to copyright. All rights reserved, whether in whole or part of the material con- cerned, specifically the right of translation, printing and reprinting, reproduction and storage in data- bases. The publisher cannot assume any legal responsibility for given data. Commercial distribution is only permitted with the publishers written consent. Springer Handbook of Enzymes, Vols. 1–39 + Supplements 1–7, Name Index 2.4.1.60 abequosyltransferase, Vol. 31, p. 468 2.7.1.157 N-acetylgalactosamine kinase, Vol. S2, p. 268 4.2.3.18 abietadiene synthase, Vol. S7,p.276 3.1.6.12 N-acetylgalactosamine-4-sulfatase, Vol. 11, p. 300 1.14.13.93 (+)-abscisic acid 8’-hydroxylase, Vol. S1, p. 602 3.1.6.4 N-acetylgalactosamine-6-sulfatase, Vol. 11, p. 267 1.2.3.14 abscisic-aldehyde oxidase, Vol. S1, p. 176 3.2.1.49 a-N-acetylgalactosaminidase, Vol. 13,p.10 1.2.1.10 acetaldehyde dehydrogenase (acetylating), Vol. 20, 3.2.1.53 b-N-acetylgalactosaminidase, Vol. 13,p.91 p. 115 2.4.99.3 a-N-acetylgalactosaminide a-2,6-sialyltransferase, 3.5.1.63 4-acetamidobutyrate deacetylase, Vol. 14,p.528 Vol. 33,p.335 3.5.1.51 4-acetamidobutyryl-CoA deacetylase, Vol. 14, 2.4.1.147 acetylgalactosaminyl-O-glycosyl-glycoprotein b- p. 482 1,3-N-acetylglucosaminyltransferase, Vol. 32, 3.5.1.29 2-(acetamidomethylene)succinate hydrolase, p. 287 Vol.
    [Show full text]
  • Amino Acid Biosynthesis in the Plastids of Root and Leaves1
    Plant Physiol. (1974) 54, 550-555 The Location of Nitrite Reductase and Other Enzymes Related to Amino Acid Biosynthesis in the Plastids of Root and Leaves1 Received for publication January 17, 1974 and in revised form April 1, 1974 BENJAMIN J. MIFLIN2 Division of Natural Sciences, University of California, Santa Cruz, California 95064 ABSTRACT tids, then the question arises as to how many more of the en- zymes involved in the synthesis of amino acids are also present Density gradient separation of plastids from leaf and root in the plastid. Studies with isolated chloroplasts have shown tissue was carried out. The distribution in the gradients of the that they are capable of a light-dependent reduction of nitrite activity of the following enzymes was determined: nitrite reduc- and the incorporation of the product into a-amino nitrogen tase, glutamine synthetase, acetolactate synthetase, aspartate (19, 20, 23). Leech and co-workers (9, 16) and Lea and Thur- amninotransferase, catalase, cytochrome oxidase, and triose- man (15) have shown that chloroplasts have a light-stimulated phosphate isomerase. The distribution of chlorophyll was fol- glutamate dehydrogenase, which appears to be NADPH-de- lowed in gradients from leaf tissue. The presence of plastids pendent and bound tightly to the chloroplast lamellae. There is that have retained their stroma enzymes was denoted by a peak also evidence that chloroplasts can incorporate ammonia into of triosephosphate isomerase activitv. Coincidental with this glutamine (12, 25, 27). Further, chloroplasts contain a wide peak were bands of nitrite reductase, acetolactate synthetase, range of transaminases (13). In root tissues, glutamate dehy- glutamine synthetase, and aspartate aminotransferase activity.
    [Show full text]