An Oligarchic Microbial Assemblage in the Anoxic Bottom Waters of a Volcanic Subglacial Lake
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Regeneration of Unconventional Natural Gas by Methanogens Co
www.nature.com/scientificreports OPEN Regeneration of unconventional natural gas by methanogens co‑existing with sulfate‑reducing prokaryotes in deep shale wells in China Yimeng Zhang1,2,3, Zhisheng Yu1*, Yiming Zhang4 & Hongxun Zhang1 Biogenic methane in shallow shale reservoirs has been proven to contribute to economic recovery of unconventional natural gas. However, whether the microbes inhabiting the deeper shale reservoirs at an average depth of 4.1 km and even co-occurring with sulfate-reducing prokaryote (SRP) have the potential to produce biomethane is still unclear. Stable isotopic technique with culture‑dependent and independent approaches were employed to investigate the microbial and functional diversity related to methanogenic pathways and explore the relationship between SRP and methanogens in the shales in the Sichuan Basin, China. Although stable isotopic ratios of the gas implied a thermogenic origin for methane, the decreased trend of stable carbon and hydrogen isotope value provided clues for increasing microbial activities along with sustained gas production in these wells. These deep shale-gas wells harbored high abundance of methanogens (17.2%) with ability of utilizing various substrates for methanogenesis, which co-existed with SRP (6.7%). All genes required for performing methylotrophic, hydrogenotrophic and acetoclastic methanogenesis were present. Methane production experiments of produced water, with and without additional available substrates for methanogens, further confrmed biomethane production via all three methanogenic pathways. Statistical analysis and incubation tests revealed the partnership between SRP and methanogens under in situ sulfate concentration (~ 9 mg/L). These results suggest that biomethane could be produced with more fexible stimulation strategies for unconventional natural gas recovery even at the higher depths and at the presence of SRP. -
Acetogen Communities in the Gut of Herbivores and Their Potential Role in Syngas Fermentation
fermentation Article Acetogen Communities in the Gut of Herbivores and Their Potential Role in Syngas Fermentation Chunlei Yang Institute of Dairy Science, MoE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; [email protected] Received: 2 May 2018; Accepted: 4 June 2018; Published: 7 June 2018 Abstract: To better understand the effects of host selection on gut acetogens and their potential role in syngas fermentation, the composition and hydrogenotrophic features of acetogen populations in cow and sheep rumens, rabbit ceca, and horse feces were studied. The acetogens detected in horses and rabbits were more phylogenetically diverse than those in cows and sheep, suggesting that the host species plays an important role in shaping gut acetogen populations. Acetogen enrichments from these animals presented good capacities to use hydrogen, with acetate as the major end product. Minor propionate, butyrate, and isovalerate were also produced. During 48 h of incubation, acetogen enrichments from horse consumed 4.75 moles of H2 to every 1 mole of acetate—significantly lower than rabbits, cows, and sheep (5.17, 5.53, and 5.23 moles, respectively) (p < 0.05)—and produced significantly more butyrate (p < 0.05). Enrichments from cows and sheep produced significantly higher amounts of propionate when compared to rabbits or horses (p < 0.05); enrichments from sheep produced the highest amounts of isovalerate (p < 0.05). These short chain fatty acids are important precursors for the synthesis of biofuel products, suggesting that gut contents of herbivores may be promising sources for harvesting functional acetogens for biofuel production. -
Wetland Restoration and Methanogenesis: the Activity of Microbial Populations and Competition for Substrates at Different Temperatures
Biogeosciences, 6, 1127–1138, 2009 www.biogeosciences.net/6/1127/2009/ Biogeosciences © Author(s) 2009. This work is distributed under the Creative Commons Attribution 3.0 License. Wetland restoration and methanogenesis: the activity of microbial populations and competition for substrates at different temperatures V. Jerman1,2, M. Metje1, I. Mandic-Mulec´ 2, and P. Frenzel1 1Max-Planck-Institute for Terrestrial Microbiology, Karl-von-Frisch-Str., 35043 Marburg, Germany 2University of Ljubljana, Biotechnical Faculty, Department of Food Science and Technology, Chair of Microbiology, Vecnaˇ pot 111, 1000 Ljubljana, Slovenia Received: 29 December 2008 – Published in Biogeosciences Discuss.: 24 February 2009 Revised: 12 June 2009 – Accepted: 16 June 2009 – Published: 29 June 2009 Abstract. Ljubljana marsh in Slovenia is a 16 000 ha area 1 Introduction of partly drained fen, intended to be flooded to restore its ecological functions. The resultant water-logging may For centuries, most European wetlands have been drained create anoxic conditions, eventually stimulating production and used for agricultural and industrial needs. It is esti- and emission of methane, the most important greenhouse mated that more than half of all peatlands in Europe were gas next to carbon dioxide. We examined the upper layer lost because of human activities (Nivet and Frazier 2004). (∼30 cm) of Ljubljana marsh soil for microbial processes However, the attitude toward wetlands changed as their func- that would predominate in water-saturated conditions, focus- tions were understood better, and today conservation efforts ing on the potential for iron reduction, carbon mineralization abound. One of the most important functions worth saving (CO2 and CH4 production), and methane emission. -
Characterization of an Adapted Microbial Population to the Bioconversion of Carbon Monoxide Into Butanol Using Next-Generation Sequencing Technology
Characterization of an adapted microbial population to the bioconversion of carbon monoxide into butanol using next-generation sequencing technology Guillaume Bruant Research officer, Bioengineering group Energy, Mining, Environment - National Research Council Canada Pacific Rim Summit on Industrial Biotechnology and Bioenergy December 8 -11, 2013 Butanol from residue (dry): syngas route biomass → gasification → syngas → catalysis → synfuels (CO, H2, CO2, CH4) (alcohols…) Biocatalysis vs Chemical catalysis potential for higher product specificity may be less problematic when impurities present less energy intensive (low pressure and temperature) Anaerobic undefined mixed culture vs bacterial pure culture mesophilic anaerobic sludge treating agricultural wastes (Lassonde Inc, Rougemont, QC, Canada) PRS 2013 - 2 Experimental design CO Alcohols Serum bottles incubated at Next Generation RDP Pyrosequencing mesophilic temperature Sequencing (NGS) pipeline 35°C for 2 months Ion PGMTM sequencer http://pyro.cme.msu.edu/ sequences filtered CO continuously supplied Monitoring of bacterial and to the gas phase archaeal populations RDP classifier atmosphere of 100% CO, http://rdp.cme.msu.edu/ 1 atm 16S rRNA genes Ion 314TM chip classifier VFAs & alcohol production bootstrap confidence cutoff low level of butanol of 50 % Samples taken after 1 and 2 months total genomic DNA extracted, purified, concentrated PRS 2013 - 3 NGS: bacterial results Bacterial population - Phylum level 100% 80% Other Chloroflexi 60% Synergistetes % -
Simple Is Beautiful. Dare to Think, Dare to Try
Simple is beautiful. Dare to think, dare to try. Promoters: Prof. dr. ir. Korneel Rabaey Laboratory of Microbial Ecology and Technology, Ghent University, Ghent, Belgium Dr. Stefano Freguia Advanced Water Management Centre, The University of Queensland, Brisbane, Australia Dr. Bogdan Donose Advanced Water Management Centre, The University of Queensland, Brisbane, Australia Prof. Jurg Keller Advanced Water Management Centre, The University of Queensland, Brisbane, Australia Members of the examination committee: Prof. dr. ir. Peter Bossier (Chairman , UGent) Laboratory of Aquaculture & Artemia Reference Center, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium Dr. Phil Bond (Chairman ,UQ) Advanced Water Management Centre, The University of Queensland, Brisbane, Australia Prof. dr. ir. Arne Verliefde (Secretary) Centre Environmental Science and Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium Prof. dr. ir. Pascal Boeckx Department of Applied Analytical and Physical Chemistry, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium Prof. Uwe Schroder Institute of Environmental and Sustainable Chemistry, TU-Braunschweig, Braunschweig, Germany Dr. Tom Sleutels Wetsus, Centre of Excellence for Sustainable Water Technology, Leeuwarden, The Netherlands Dean Faculty of Bioscience Engineering Prof. dr. ir. Guido Van Huylenbroeck Rector Ghent University Prof. Dr. Anne De Paepe The effects of electrode surface modifications on biofilm formation and electron transfer in bioelectrochemical -
Fermentation of Triacetin and Glycerol by Acetobacterium Sp. : No Energy Is Conserved by Acetate Excretion
Fermentation of triacetin and glycerol by Acetobacterium sp. No energy is conserved by acetate excretion* R. Emde and B. Schink** Fachbereich Biologie-Mikrobiologie, Philipps-Universitfit, D-3550 Marburg, Federal Republic of Germany Abstract. Two strains of homoacetogenic bacteria similar residue with coenzyme A to acetyl CoA (Wood et al. 1986; to Acetobacterium carbinolicum were enriched and isolated Fuchs 1986). However, the way how energy is conserved from freshwater and marine sediment samples with triacctin during autotrophic growth is not yet understood. One ATP (glycerol triacetylester) as sole carbon and energy source. can be synthetized by acetate kinase, however, one ATP has Also the type strains of A. carbinolicum and A. woodii were also to be spent in the formyl tetrahydrofolate synthetase found to be able to grow with triacetin, and to convert reaction (Fuchs 1986). The reduction of CO2 to CO with H2 it nearly exclusively to acetate. The triacetin-hydrolyzing as electron donor requires energy as well which is provided enzyme was inducible, and was localized in the cytoplasmic by the membrane proton motive force (Diekert et al. 1986). fraction of both species at an activity of 0.21-0.26 U mg It has been suggested that the methylene tetrahydrofolate protein -1. During fermentation of glycerol, varying reductase reaction is coupled to an electron transport reac- amounts of 1,3-propranediol were produced which could be tion. This reaction should establish a proton motive force kept at a minimum in a glycerol-limited chemostat. Growth sufficient to allow an overall energy conservation of 0.5 - 1 yields in batch and continuous culture experiments varied ATP per acetate produced (Fuchs 1986). -
Draft Genome Sequence of Dethiobacter Alkaliphilus Strain AHT1T, a Gram-Positive Sulfidogenic Polyextremophile Emily Denise Melton1, Dimitry Y
Melton et al. Standards in Genomic Sciences (2017) 12:57 DOI 10.1186/s40793-017-0268-9 EXTENDED GENOME REPORT Open Access Draft genome sequence of Dethiobacter alkaliphilus strain AHT1T, a gram-positive sulfidogenic polyextremophile Emily Denise Melton1, Dimitry Y. Sorokin2,3, Lex Overmars1, Alla L. Lapidus4, Manoj Pillay6, Natalia Ivanova5, Tijana Glavina del Rio5, Nikos C. Kyrpides5,6,7, Tanja Woyke5 and Gerard Muyzer1* Abstract Dethiobacter alkaliphilus strain AHT1T is an anaerobic, sulfidogenic, moderately salt-tolerant alkaliphilic chemolithotroph isolated from hypersaline soda lake sediments in northeastern Mongolia. It is a Gram-positive bacterium with low GC content, within the phylum Firmicutes. Here we report its draft genome sequence, which consists of 34 contigs with a total sequence length of 3.12 Mbp. D. alkaliphilus strain AHT1T was sequenced by the Joint Genome Institute (JGI) as part of the Community Science Program due to its relevance to bioremediation and biotechnological applications. Keywords: Extreme environment, Soda lake, Sediment, Haloalkaliphilic, Gram-positive, Firmicutes Introduction genome of a haloalkaliphilic Gram-positive sulfur dispro- Soda lakes are formed in environments where high rates portionator within the phylum Firmicutes: Dethiobacter of evaporation lead to the accumulation of soluble carbon- alkaliphilus AHT1T. ate salts due to the lack of dissolved divalent cations. Con- sequently, soda lakes are defined by their high salinity and Organism information stable highly alkaline pH conditions, making them dually Classification and features extreme environments. Soda lakes occur throughout the The haloalkaliphilic anaerobe D. alkaliphilus AHT1T American, European, African, Asian and Australian conti- was isolated from hypersaline soda lake sediments in nents and host a wide variety of Archaea and Bacteria, northeastern Mongolia [10]. -
Genome-Scale Analysis of Acetobacterium Bakii Reveals the Cold Adaptation of Psychrotolerant Acetogens by Post-Transcriptional Regulation
Downloaded from rnajournal.cshlp.org on September 23, 2021 - Published by Cold Spring Harbor Laboratory Press Shin et al. 1 Genome-scale analysis of Acetobacterium bakii reveals the cold adaptation of 2 psychrotolerant acetogens by post-transcriptional regulation 3 4 Jongoh Shin1, Yoseb Song1, Sangrak Jin1, Jung-Kul Lee2, Dong Rip Kim3, Sun Chang Kim1,4, 5 Suhyung Cho1*, and Byung-Kwan Cho1,4* 6 7 1Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of 8 Science and Technology, Daejeon 34141, Republic of Korea 9 2Department of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea 10 3Department of Mechanical Engineering, Hanyang University, Seoul 04763, Republic of Korea 11 4Intelligent Synthetic Biology Center, Daejeon 34141, Republic of Korea 12 13 *Correspondence and requests for materials should be addressed to S.C. ([email protected]) 14 and B.-K.C. ([email protected]) 15 16 Running title: Cold adaptation of psychrotolerant acetogen 17 18 Keywords: Post-transcriptional regulation, Psychrotolerant acetogen, Acetobacterium bakii, 19 Cold-adaptive acetogenesis 20 1 Downloaded from rnajournal.cshlp.org on September 23, 2021 - Published by Cold Spring Harbor Laboratory Press Shin et al. 1 ABSTRACT 2 Acetogens synthesize acetyl-CoA via CO2 or CO fixation, producing organic compounds. 3 Despite their ecological and industrial importance, their transcriptional and post-transcriptional 4 regulation has not been systematically studied. With completion of the genome sequence of 5 Acetobacterium bakii (4.28-Mb), we measured changes in the transcriptome of this 6 psychrotolerant acetogen in response to temperature variations under autotrophic and 7 heterotrophic growth conditions. -
Microbial Activity in Bentonite Buffers. Literature Study
NOL CH OG E Y T • • R E E C S N E E A I 20 R C C S H • S H N I G O I H S L I I V G • H S T Microbial activity in bentonite buffers Literature study Marjaana Rättö | Merja Itävaara VTT TECHNOLOGY 20 Microbial activity in bentonite buffers Literature study Marjaana Rättö & Merja Itävaara ISBN 978-951-38-7833-7 (URL: http://www.vtt.fi/publications/index.jsp) ISSN 2242-122X (URL: http://www.vtt.fi/publications/index.jsp) Copyright © VTT 2012 JULKAISIJA – UTGIVARE – PUBLISHER VTT PL 1000 (Vuorimiehentie 5, Espoo) 02044 VTT Puh. 020 722 111, faksi 020 722 4374 VTT PB 1000 (Bergsmansvägen 5, Esbo) FI-2044 VTT Tfn +358 20 722 111, telefax +358 20 722 4374 VTT Technical Research Centre of Finland P.O. Box 1000 (Vuorimiehentie 5, Espoo) FI-02044 VTT, Finland Tel. +358 20 722 111, fax + 358 20 722 4374 2 Microbial activity in bentonite buffers Literature study Marjaana Rättö & Merja Itävaara. Espoo 2012. VTT Technology 20. 30 p. Abstract The proposed disposal concept for high-level radioactive wastes involves storing the wastes underground in copper-iron containers embedded in buffer material of compacted bentonite. Hydrogen sulphide production by sulphate-reducing prokar- yotes is a potential mechanism that could cause corrosion of waste containers in repository conditions. The prevailing conditions in compacted bentonite buffer will be harsh. The swelling pressure is 7–8 MPa, the amount of free water is low and the average pore and pore throat di ameters are small. This literature study aims to assess the potential of microbial activity in bentonite buffers. -
Oxidation of Primary Aliphatic Alcohols by Acetobacterium Carbinolicum Sp
Archives of Arch Microbiol (1984) 140:147-152 Microbiology Springer-Verlag 1984 Oxidation of primary aliphatic alcohols by Acetobacterium carbinolicum sp. nov., a homoacetogenic anaerobe Barbara Eichler and Bernhard Schink Fakult/it f/Jr Biologic, Universit/it Konstanz, Postfach 5560, D-7750 Konstanz, Federal Republic of Germany Abstract. Four strains of new homoacetogenic bacteria were absence of sulfate to acetate and propionate using carbon enriched and isolated from freshwater sediments and sludge dioxide as electron acceptor (Laanbroek et al. 1982). A with ethanol, propanol, 1,2-propanediol, or 1,2-butanediol similar fermentation pattern was reported for an unidenti- as substrates. All strains were Gram-positive nonsporeform- fied anaerobic bacterium (Samain et al. 1982) and for ing rods and grew well in carbonate-buffered defined media Pelobacter propionicus (Schink i 984 a). under obligately anaerobic conditions. Optimal growth occurred at 27 ~C around pH 7.0. H2/CO2, primary aliphatic Clostridium aceticum oxidizes ethanol to acetate and uses alcohols C1- C5, glucose, fructose, lactate, pyruvate, ethyl- carbon dioxide as electron acceptor to form further acetate ene glycol, 1,2-propanediol, 2,3-butanediol, acetoin, glyc- (Wieringa 1940; Braun et al. 1981), according to the equa- erol, and methyl groups ofmethoxylated benzoate derivates tion: and betaine were fermented to acetate or, in case of primary 2CH3CH2OH + 2HCO~ 3CH3COO- + H + + 2H20. alcohols C3-C5 and 1,2-propanediol, to acetate and the respective fatty acid. In coculture with methanogens In the present study, a new anaerobic bacterium physiologi- methane was formed, probably due to interspecies hydrogen cally similar to C. aceticum is described which ferments transfer. -
Selective Enhancement of Autotrophic Acetate Production with Genetically Modified Acetobacterium Woodii
Journal of Biotechnology 178 (2014) 67–72 Contents lists available at ScienceDirect Journal of Biotechnology j ournal homepage: www.elsevier.com/locate/jbiotec Selective enhancement of autotrophic acetate production with genetically modified Acetobacterium woodii a,∗,1 b b a Melanie Straub , Martin Demler , Dirk Weuster-Botz , Peter Dürre a Institut für Mikrobiologie und Biotechnologie, Universität Ulm, Albert-Einstein-Allee 11, D-89081 Ulm, Germany b Lehrstuhl für Bioverfahrenstechnik, Technische Universität München, Boltzmannstr. 15, D-85748 Garching, Germany a r a t i b s c t l e i n f o r a c t Article history: Great interest has emerged in the recent past towards the potential of autotrophic acetogenic bacte- Received 13 December 2013 ria for the sustainable production of fuels and chemicals. This group of microorganisms possesses an Received in revised form 21 February 2014 ancient pathway for the fixation of carbon dioxide in the presence of hydrogen, making them highly Accepted 1 March 2014 attractive for the utilization of gas mixtures as a cheap and abundant carbon and energy source. As Available online 15 March 2014 more and more genome sequence data of acetogens becomes available, the genetic tools are being developed concomitantly. Here, we demonstrate for the first time the genetic modification of the well- Keywords: characterized acetogen Acetobacterium woodii. This microorganism selectively produces acetate under Acetate autotrophic conditions, but seems to be limited at high acetate concentrations. To increase the carbon Acetobacterium woodii Autotrophic flow through the Wood–Ljungdahl pathway and therefore increase the efficiency of CO2 fixation, genes of Genetic modification enzyme groups of this pathway were selectively overexpressed (the four THF-dependent enzymes for the CO2 + H2 processing of formate as well as phosphotransacetylase and acetate kinase to enhance an ATP-generation step). -
Core Sulphate-Reducing Microorganisms in Metal-Removing Semi-Passive Biochemical Reactors and the Co-Occurrence of Methanogens
microorganisms Article Core Sulphate-Reducing Microorganisms in Metal-Removing Semi-Passive Biochemical Reactors and the Co-Occurrence of Methanogens Maryam Rezadehbashi and Susan A. Baldwin * Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, BC V6T 1Z3, Canada; [email protected] * Correspondence: [email protected]; Tel.: +1-604-822-1973 Received: 2 January 2018; Accepted: 17 February 2018; Published: 23 February 2018 Abstract: Biochemical reactors (BCRs) based on the stimulation of sulphate-reducing microorganisms (SRM) are emerging semi-passive remediation technologies for treatment of mine-influenced water. Their successful removal of metals and sulphate has been proven at the pilot-scale, but little is known about the types of SRM that grow in these systems and whether they are diverse or restricted to particular phylogenetic or taxonomic groups. A phylogenetic study of four established pilot-scale BCRs on three different mine sites compared the diversity of SRM growing in them. The mine sites were geographically distant from each other, nevertheless the BCRs selected for similar SRM types. Clostridia SRM related to Desulfosporosinus spp. known to be tolerant to high concentrations of copper were members of the core microbial community. Members of the SRM family Desulfobacteraceae were dominant, particularly those related to Desulfatirhabdium butyrativorans. Methanogens were dominant archaea and possibly were present at higher relative abundances than SRM in some BCRs. Both hydrogenotrophic and acetoclastic types were present. There were no strong negative or positive co-occurrence correlations of methanogen and SRM taxa. Knowing which SRM inhabit successfully operating BCRs allows practitioners to target these phylogenetic groups when selecting inoculum for future operations.