Essential Fish Habitat Assessment

Total Page:16

File Type:pdf, Size:1020Kb

Essential Fish Habitat Assessment Appendix C Essential Fish Habitat Assessment Berths 226-236 [Everport] Container SCH# 2014101050 Terminal Improvements Project Draft EIS/EIR April 2017 BERTHS 226-236 (EVERPORT) CONTAINER TERMINAL IMPROVEMENTS PROJECT September, 2016 Essential Fish Habitat Assessment Prepared for: CDM Smith Irvine, California Prepared by: MBC Applied Environmental Sciences Costa Mesa, California BERTHS 226- 236(EVERPORT) CONTAINER TERMINAL IMPROVEMENTS PROJECT Northern Anchovy (Engraulis mordax) January 4, 2013 Prepared for: CDM Smith 111 Academy Way Suite 150 Irvine, California 92617 Prepared by: MBC Applied Environmental Sciences 3000 Red Hill Avenue Costa Mesa, California 92626 PROJECT STAFF CDM Smith Dorothy Meyer, Principal Planner Envicraft LLC Louis Utsumi MBC Applied Environmental Sciences Shane Beck – Project Manager Eric F. Miller Jennifer L. Rankin David G. Vilas Table of Contents EXECUTIVE SUMMARY ....................................................................................................................... IV INTRODUCTION ..................................................................................................................................... 1 DESCRIPTION OF THE STUDY AREA ................................................................................................. 3 PHYSICAL FEATURES .......................................................................................................................... 3 Water Quality Parameters ....................................................................................................................... 4 Tides and Currents .................................................................................................................................. 4 Sediment Characterization ...................................................................................................................... 6 Project Area Habitats .............................................................................................................................. 7 FISH AND INVERTEBRATE COMMUNITIES ........................................................................................ 8 Fish ......................................................................................................................................................... 8 Ichthyoplankton ....................................................................................................................................... 8 Juvenile and Adult Fishes ....................................................................................................................... 9 Invertebrates ......................................................................................................................................... 10 Planktonic Invertebrates .................................................................................................................. 10 Juvenile/Adult Invertebrates ............................................................................................................ 11 Protected Species ................................................................................................................................. 12 EFH AND MANAGED SPECIES .......................................................................................................... 13 COASTAL PELAGICS FMP .................................................................................................................. 13 PACIFIC GROUNDFISH FMP .............................................................................................................. 15 OCCURRENCE OF MANAGED SPECIES AT THE PROJECT SITE .................................................. 16 Coastal Pelagics .............................................................................................................................. 16 Pacific Groundfish ............................................................................................................................ 17 ASSESSMENT OF POTENTIAL IMPACTS ......................................................................................... 17 Construction Impacts ............................................................................................................................ 18 Effects to Water Quality during Dredging and Pile Installation ........................................................ 18 Underwater Sound ........................................................................................................................... 19 Habitat Loss ..................................................................................................................................... 21 Effects on Special Aquatic Habitats ................................................................................................. 21 Effects of Backlands Improvements ................................................................................................ 21 Accidental Spills ............................................................................................................................... 22 Shading and Nighttime Illumination ................................................................................................. 22 Operational Impacts .............................................................................................................................. 22 Increased Vessel Activity ................................................................................................................. 22 Shading ............................................................................................................................................ 22 Effects from Runoff and Spills ......................................................................................................... 23 Nonnative/Invasive Species ............................................................................................................. 23 ASSESSMENT SUMMARY .................................................................................................................. 24 REFERENCES ...................................................................................................................................... 25 Berths 226-236 (Everport) Container Terminal Improvements Project List of Figures and Tables Figure 1. Location of the Project boundary in Los Angeles Harbor. ...................................................................... 1 Figure 2. Current patterns in Los Angeles and Long Beach Harbors predicted by the WRAP Model (POLA and POLB 2009). Top: Typical flood tide currents. Bottom: Typical ebb tide currents. ................................ 5 Figure 3. Sediment sampling stations and composite areas (Ramboll Environ, 2015). ........................................ 6 Figure 4. Entrainment and source water stations sampled January-December 2006. From: MBC et al. [2007]). ............................................................................................................................................................. 11 Table 1. Managed fish species found in Los Angeles Harbor based on past occurrences. ............................... 13 Table 2. Occurrence of managed fish species near the proposed Project site and elsewhere in the Port Complex, 2008 and 2013–2014. .......................................................................................................................... 15 Table 3. Acoustic data from sheet and H-pile driving projects using both vibratory and impact hammers. ........ 20 Appendix Lists of EFH Species - Coastal Pelagic Species - Pacific Groundfish Species - Shared Ecosystem Component Species - Pacific Groundfish Ecosystem Component Species - Pacific Groundfish Species Page ii MBC Applied Environmental Sciences Berths 226-236 (Everport) Container Terminal Improvements Project EXECUTIVE SUMMARY The proposed Project would improve and expand the existing Everport Container Terminal currently in operation at Berths 226–236 on Terminal Island within the Port of Los Angeles (Port). Essential Fish Habitat (EFH) is managed under the Magnuson-Stevens Fishery Conservation and Management Act (Magnuson-Stevens Act), which is designed to protect waters and substrate necessary to fish for spawning, breeding, feeding, or growth to maturity. This EFH Assessment was prepared pursuant to the Magnuson-Stevens Act to analyze potential impacts to federally managed fish and invertebrates from construction and operation of the proposed Project. The primary Project elements that could affect the marine environment, including EFH, include: . Dredging (including installation of king piles and approximately 1,400 linear feet of sheet piling to stabilize the wharf) at Berths 226-229 to a design depth of -53 feet mean lower low water (MLLW) plus two feet of overdepth tolerance (for a total depth of -55 feet MLLW) to accommodate larger ships (the existing design depth is -45 feet MLLW); . Dredging (including installation of approximately 1,400 linear feet of sheet piling to stabilize the wharf) at Berths 230-232 to a design depth of -47 feet MLLW plus two feet of overdepth tolerance (for a total depth of -49 feet MLLW) to accommodate larger ships (the existing design depth is -45 feet MLLW); . Disposal of approximately 38,000 cubic yards of dredged materials (30,000 cubic yards from Berths 226-229 and 8,000 cubic yards from Berths 230-232) at an ocean disposal site (i.e., LA-2), assuming an approved upland disposal facility, or a combination
Recommended publications
  • Periodicity of Spawning by the Grunion, Leuresthes Tenuis, An
    Periodicity of Spawning by the Grunion, Louresthes tenuis, an Atherine Fish A thesis submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Zoology by Boyd W. Walker June, 1949 The thesis of Boyd W. Walker is approved: University of California, Los Angeles May 28, 1949 TABLE OF CONTENTS PAGE INTRODUCTION 1 AIM AND SCOPE 4 ACKNOWLEDGMENTS 6 PREVIOUS STUDIES 8 MATERIALS, LOCALS AND METHODS 10 Systematics and Relationships 10 Range 12 Habitat 13 Area of Investigation 15 La Jolla 15 Other Beaches 17 Field Observations 18 Accuracy and Completeness of Observations 21 Coastwise Check 25 Marking 26 TIDAL PECULIARITIES IN THE RANGE OF THE GRUNION 30 LIFE HISTORY 31 Spawning Behavior 31 Frequency of Spawning by Individual Fish 32 Movement of Fish between Runs 40 Spawning Beaches 42 Description of the Run 42 Description of the Spawning Act 47 ii PAGE Development and Hatching of Eggs 56 Size Groups of Larval and Juvenile Grunion Resulting from Periodic Spawning 60 Mortality of Eggs and Prolarvae 64 Mortality of Adults during Spawning 68 ANALYSIS OF TIME OF SPAWNING 70 Spawning Season 70 Run Series 72 Possible Controlling Factors 78 Runs 99 Possible Controlling Factors 106 Geographical Consistency in Time Pattern 107 Evolution of the Spawning Pattern 109 Methods of Prediction 113 OTHER ANIMALS HAVING SIMILAR SPAWNING HABITS 115 VALUE AND CONSERVATION OF THE GRUNION 122 SUMMARY AND CONCLUSIONS 127 LITERATURE CITED 131 APPENDIX 136 LIST OF TABLES TABLE PAGE I. Classification of Grunion Ovaries from San Pedro 33 II. Classification of Grunion Ovaries from San Diego Bay 35 III.
    [Show full text]
  • A Morphometric and Meristic Comparison of the Gulf Grunion, Leuresthes Sardina (Jenkins and Evermann), and the California Grunion, Leuresthes Tenuis (Ayres)
    A morphistic and meristic comparison of the Gulf grunion, Leuresthes sardina (Jenkins and Evermann), and the California grunion, Leuresthes tenuis (Ayres) Item Type text; Thesis-Reproduction (electronic) Authors Moffatt, Nancy Margaret, 1950- Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 02/10/2021 10:26:42 Link to Item http://hdl.handle.net/10150/554681 A MORPHOMETRIC AND MERISTIC COMPARISON OF THE GULF GRUNION, LEURESTHES SARDINA (JENKINS AND EVERMANN), AND THE CALIFORNIA GRUNION, LEURESTHES TENUIS (AYRES) by Nancy Margaret Moffatt A Thesis Submitted to the Faculty of the DEPARTMENT OF BIOLOGICAL SCIENCES In Partial Fulfillment of the Requirements For the Degree of MASTER OF SCIENCE WITH A MAJOR IN BIOLOGY In the Graduate College THE UNIVERSITY OF ARIZONA 1 9 7 4 STATEMENT BY AUTHOR This thesis has been submitted in partial ful­ fillment of requirements for an advanced degree at The University of Arizona and is deposited in the University Library to be made available to borrowers under rules of the Library. Brief quotations from this thesis are allowable without special permission, provided that accurate acknowl­ edgment of source is made. Requests for permission for extended quotation from or reproduction of this manuscript in whole or in part may be granted by the head of the major department of the Dean of the Graduate College when in his judgment the proposed use of the material is in the inter­ ests of scholarship.
    [Show full text]
  • US Fish & Wildlife Service Seabird Conservation Plan—Pacific Region
    U.S. Fish & Wildlife Service Seabird Conservation Plan Conservation Seabird Pacific Region U.S. Fish & Wildlife Service Seabird Conservation Plan—Pacific Region 120 0’0"E 140 0’0"E 160 0’0"E 180 0’0" 160 0’0"W 140 0’0"W 120 0’0"W 100 0’0"W RUSSIA CANADA 0’0"N 0’0"N 50 50 WA CHINA US Fish and Wildlife Service Pacific Region OR ID AN NV JAP CA H A 0’0"N I W 0’0"N 30 S A 30 N L I ort I Main Hawaiian Islands Commonwealth of the hwe A stern A (see inset below) Northern Mariana Islands Haw N aiian Isla D N nds S P a c i f i c Wake Atoll S ND ANA O c e a n LA RI IS Johnston Atoll MA Guam L I 0’0"N 0’0"N N 10 10 Kingman Reef E Palmyra Atoll I S 160 0’0"W 158 0’0"W 156 0’0"W L Howland Island Equator A M a i n H a w a i i a n I s l a n d s Baker Island Jarvis N P H O E N I X D IN D Island Kauai S 0’0"N ONE 0’0"N I S L A N D S 22 SI 22 A PAPUA NEW Niihau Oahu GUINEA Molokai Maui 0’0"S Lanai 0’0"S 10 AMERICAN P a c i f i c 10 Kahoolawe SAMOA O c e a n Hawaii 0’0"N 0’0"N 20 FIJI 20 AUSTRALIA 0 200 Miles 0 2,000 ES - OTS/FR Miles September 2003 160 0’0"W 158 0’0"W 156 0’0"W (800) 244-WILD http://www.fws.gov Information U.S.
    [Show full text]
  • Forage Fish Management Plan
    Oregon Forage Fish Management Plan November 19, 2016 Oregon Department of Fish and Wildlife Marine Resources Program 2040 SE Marine Science Drive Newport, OR 97365 (541) 867-4741 http://www.dfw.state.or.us/MRP/ Oregon Department of Fish & Wildlife 1 Table of Contents Executive Summary ....................................................................................................................................... 4 Introduction .................................................................................................................................................. 6 Purpose and Need ..................................................................................................................................... 6 Federal action to protect Forage Fish (2016)............................................................................................ 7 The Oregon Marine Fisheries Management Plan Framework .................................................................. 7 Relationship to Other State Policies ......................................................................................................... 7 Public Process Developing this Plan .......................................................................................................... 8 How this Document is Organized .............................................................................................................. 8 A. Resource Analysis ....................................................................................................................................
    [Show full text]
  • 227 2009 1203 Article-Web 1..10
    Mar Biol (2009) 156:1681–1690 DOI 10.1007/s00227-009-1203-4 ORIGINAL PAPER Multiple paternity and extra-group fertilizations in a natural population of California grunion (Leuresthes tenuis), a beach-spawning marine Wsh Rosemary J. Byrne · John C. Avise Received: 10 February 2009 / Accepted: 15 April 2009 / Published online: 1 May 2009 © The Author(s) 2009. This article is published with open access at Springerlink.com Abstract Although individuals in many Wsh species Wndings to those reported previously for a beach-spawning move to shallow waters to spawn, the California grunion arthropod, and we discuss the forces that may be maintaining (Leuresthes tenuis) is almost unique in its constitutive this peculiar reproductive behavior. display of synchronous full-emergence beach spawning. During a spawning event, Wsh ride large waves onshore to spawn on beach land, where their eggs incubate terrestri- Introduction ally. Here, we employ molecular markers to ascertain how this unusual reproductive behavior impacts genetic parent- Terrestrial spawning may aVord several special advantages age. We developed and utilized four highly polymorphic for a marine Wsh. Egg development can be accelerated by microsatellite markers to assess maternal and paternal con- the increased availability of oxygen (Strathmann and Hess tributions in a total of 682 progeny from 17 nests of a natu- 1999) and by elevated temperatures in a terrestrial environ- ral population of L. tenuis. Alleles deduced to be of paternal ment (Seymour and Bradford 1995; Smyder and Martin origin in progeny were used to determine the minimum 2002); and, the lack of aquatic predators on a beach, and the number of sires per nest and to estimate the true number of synchronous release (when present) of hatched oVspring, sires per nest via Bayesian analysis.
    [Show full text]
  • California Saltwater Sport Fishing Regulations
    2018–2019 CALIFORNIA SALTWATER SPORT FISHING REGULATIONS For Ocean Sport Fishing in California Effective March 1, 2018 through February 28, 2019 You could get a discount when you combine your auto and boat policies. for your boat geico.com | 1-800-865-4846 | Local Office Some discounts, coverages, payment plans and features are not available in all states or all GEICO companies. Boat and PWC coverages are underwritten by GEICO Marine Insurance Company. Multi-Policy Discount available to auto insureds that have purchased a boat policy through the GEICO Marine Insurance Company. GEICO is a registered service mark of Government Employees Insurance Company, Washington, D.C. 20076; a Berkshire Hathaway Inc. subsidiary. © 2017 GEICO 13 2018–2019 CALIFORNIA SALTWATER SPORT FISHING REGULATIONS Groundfish Regulation Tables Contents What’s New for 2018? ............................................................. 4 25 License Information ................................................................ 5 Sport Fishing License Fees ..................................................... 8 Keeping Up With In-Season Groundfish Regulation Changes .... 11 Map of Groundfish Management Areas ...................................12 Summaries of Recreational Groundfish Regulations ..................13 General Provisions and Definitions ..........................................21 General Ocean Fishing Regulations ��������������������������������������� 25 Fin Fish — General ................................................................25 Fin Fish — Minimum
    [Show full text]
  • Multi-Locus Fossil-Calibrated Phylogeny of Atheriniformes (Teleostei, Ovalentaria)
    Molecular Phylogenetics and Evolution 86 (2015) 8–23 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Multi-locus fossil-calibrated phylogeny of Atheriniformes (Teleostei, Ovalentaria) Daniela Campanella a, Lily C. Hughes a, Peter J. Unmack b, Devin D. Bloom c, Kyle R. Piller d, ⇑ Guillermo Ortí a, a Department of Biological Sciences, The George Washington University, Washington, DC, USA b Institute for Applied Ecology, University of Canberra, Australia c Department of Biology, Willamette University, Salem, OR, USA d Department of Biological Sciences, Southeastern Louisiana University, Hammond, LA, USA article info abstract Article history: Phylogenetic relationships among families within the order Atheriniformes have been difficult to resolve Received 29 December 2014 on the basis of morphological evidence. Molecular studies so far have been fragmentary and based on a Revised 21 February 2015 small number taxa and loci. In this study, we provide a new phylogenetic hypothesis based on sequence Accepted 2 March 2015 data collected for eight molecular markers for a representative sample of 103 atheriniform species, cover- Available online 10 March 2015 ing 2/3 of the genera in this order. The phylogeny is calibrated with six carefully chosen fossil taxa to pro- vide an explicit timeframe for the diversification of this group. Our results support the subdivision of Keywords: Atheriniformes into two suborders (Atherinopsoidei and Atherinoidei), the nesting of Notocheirinae Silverside fishes within Atherinopsidae, and the monophyly of tribe Menidiini, among others. We propose taxonomic Marine to freshwater transitions Marine dispersal changes for Atherinopsoidei, but a few weakly supported nodes in our phylogeny suggests that further Molecular markers study is necessary to support a revised taxonomy of Atherinoidei.
    [Show full text]
  • Abstract Book JMIH 2011
    Abstract Book JMIH 2011 Abstracts for the 2011 Joint Meeting of Ichthyologists & Herpetologists AES – American Elasmobranch Society ASIH - American Society of Ichthyologists & Herpetologists HL – Herpetologists’ League NIA – Neotropical Ichthyological Association SSAR – Society for the Study of Amphibians & Reptiles Minneapolis, Minnesota 6-11 July 2011 Edited by Martha L. Crump & Maureen A. Donnelly 0165 Fish Biogeography & Phylogeography, Symphony III, Saturday 9 July 2011 Amanda Ackiss1, Shinta Pardede2, Eric Crandall3, Paul Barber4, Kent Carpenter1 1Old Dominion University, Norfolk, VA, USA, 2Wildlife Conservation Society, Jakarta, Java, Indonesia, 3Fisheries Ecology Division; Southwest Fisheries Science Center, Santa Cruz, CA, USA, 4University of California, Los Angeles, CA, USA Corroborated Phylogeographic Breaks Across the Coral Triangle: Population Structure in the Redbelly Fusilier, Caesio cuning The redbelly yellowtail fusilier, Caesio cuning, has a tropical Indo-West Pacific range that straddles the Coral Triangle, a region of dynamic geological history and the highest marine biodiversity on the planet. Caesio cuning is a reef-associated artisanal fishery, making it an ideal species for assessing regional patterns of gene flow for evidence of speciation mechanisms as well as for regional management purposes. We evaluated the genetic population structure of Caesio cuning using a 382bp segment of the mitochondrial control region amplified from over 620 fish sampled from 33 localities across the Philippines and Indonesia. Phylogeographic
    [Show full text]
  • Behavioral Ecology and Spawning Periodicity of the Gulf of California Grunion, Leuresthes Sardina
    Behavioral ecology and spawning periodicity of the Gulf of California grunion, Leuresthes sardina Item Type text; Dissertation-Reproduction (electronic) Authors Muench, Kevin Allen, 1941- Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 23/09/2021 20:26:50 Link to Item http://hdl.handle.net/10150/565393 BEHAVIORAL ECOLOGY AND SPAWNING PERIODICITY OF THE GULF OF CALIFORNIA GRUNION, LEURESTHES SARDINA by Kevin Allen Muench A Dissertation Submitted to the Faculty of the DEPARTMENT OF ECOLOGY AND EVOLUTIONARY BIOLOGY In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY WITH A MAJOR IN ZOOLOGY In the Graduate College THE UNIVERSITY OF-ARIZONA 1 9 7 7 THE UNIVERSITY OF ARIZONA GRADUATE COLLEGE I hereby recommend that this dissertation prepared under my direction by Kevin A11 en Muench_______________________________. entitled Behavioral Ecology and Spawning Periodicity of the Gulf of California Grunion, Leuresthes sardina_______________ be accepted as fulfilling the dissertation requirement of the degree of Doctor of Philosophy____________________ _____________ Dissertation Director Date After inspection of the final copy of the dissertation, the following members of the Final Examination Committee concur in its approval and recommend its acceptance:*’* '7~? This approval and acceptance is contingent on the candidate's adequate performance and defense of this dissertation at the final oral examination. The inclusion of this sheet bound into the library copy of the dissertation is evidence of satisfactory performance at the final examination.
    [Show full text]
  • Oregon's Forage Fish Resources
    Oregon’s Forage Fish Resources: A Fisheries Management and Conservation Strategy Perspective Gregory Krutzikowsky Marine Resources Program Oregon Dept. of Fish and Wildlife Forage Fish Workshop Presentation October 10, 2019 ODFW Mission: “To protect and enhance Oregon’s fish and wildlife and their habitats for use and enjoyment by present and future generations.” Fisheries Management & Conservation Strategy Oregon’s Forage Fish Resources • Anchovies – Northern Anchovy • Smelts – Surf Smelt, Eulachon, Whitebait Smelt, Longfin Smelt, Night Smelt, • Herrings – American Shad, Pacific Herring, Pacific Sardine • Silversides – Topsmelt, Jacksmelt, Grunion • Sand Lances – Pacific Sand Lance • Sauries – Pacific Saury • Jacks – Jack Mackerel • Mackerels – Pacific Mackerel • Mesopelagic fishes - lanternfish, deep-sea smelts, barracudina, and bristlemouths • Pelagic Squids Forage “fish” that are commercial fishery target species in Oregon: • Pacific Sardine • Northern Anchovy • Pacific Mackerel • Market Squid • Pacific Herring Forage “fish” that are prohibited as commercial fishery target species in Oregon: • Mesopelagic fishes - lanternfish, deep-sea smelts, barracudina, and bristlemouths • Pacific Sand Lance • Pacific Saury • Silversides (excluding Grunion) • Smelts of the family Osmeridae • Pelagic squids (except Market Squid) Strategy Species: Forage Fish Eulachon Northern Anchovy Longfin Smelt Surf Smelt Pacific Herring Topsmelt Pacific Sand Lance Strategy Species: Forage Fish Predators Avian & Marine Mammal Tufted Puffin Fork-tailed Storm Petrel
    [Show full text]
  • Fisheries Reproductive Biology Outline Defining Some Terms
    10/21/2011 Fisheries Reproductive Biology Presented by Nikolai Klibansky 0.8 0.4 0.0 Outline • I. Introduction • II. Diversity of Reproductive Biology in Fishes • III. Organizing Diversity: Breeding Systems • IV. Fisheries Reproductive Biology -Major ideas -The Nitty Gritty -Methodologies Defining some terms • fish reproductive biology – biology – physiology – ecology 1 10/21/2011 Defining some terms • Fish reproductive biology • Fisheries reproductive biology Fish RB: Diversity Pink anemonefish Port Jackson shark (Amphiprion perideraion ) (Heterodontus portusjacksoni ) California grunion, Anglerfish Leuresthes tenuis (Linophryne indica ) Fish RB: Taxonomy 2 10/21/2011 Fish RB: Taxonomy* Kingdom: Phylum: Subphylum: Superclass: Class: Animalia Chordata Vertebrata Agnatha Cephalaspidomorphi Myxini Pteraspidomorphi Osteichthyes Actinopterygii Sarcopterygii Chondrichthyes Amphibia Aves Mammalia *Branch length does NOT reflect genetic distance Reptilia Fish RB Diversity MAIN SOURCE: Helfman, G.S., Colette, B.B., and Facey, D.E. 1997. The Diversity of Fishes. Blackwell Science, Malden, MA. Superclass Agnatha • Class Cephalaspidomorphi (lampreys) – RB relatively well understood – Gonochoristic – Semelparous – Anadromous (migrate up to 1000km!) – Make nests – Spawn many small demersal eggs 3 10/21/2011 Superclass Agnatha • Class Myxini (hagfishes) – RB poorly understood – Apparently gonochoristic – External fertilization – Few, large, unique, demersal eggs – Eggs incubate for about 2 months Class Chondrichthyes • Subclass Elasmobranchii (sharks, skates, and rays) – RB fairly diverse within group – Typically late maturity (sharks, 6-18 years) – Gonochoristic – Sexual dimorphism • Males with claspers, females without • Dentition and skin thickness due to spawning behavior – Internal fertilization – Shark gestation period averages 9-12 mo. Class Chondrichthyes • Subclass Elasmobranchii (sharks, skates, and rays) – 40% of elasmobranchs, including all skates, are oviparous (egg laying). Eggs fairly large with hard outer case attach to substrate.
    [Show full text]
  • PDF Linkchapter
    INDEX* With the exception of Allee el al. (1949) and Sverdrup et at. (1942 or 1946), indexed as such, junior authors are indexed to the page on which the senior author is cited although their names may appear only in the list of references to the chapter concerned; all authors in the annotated bibliographies are indexed directly. Certain variants and equivalents in specific and generic names are indicated without reference to their standing in nomenclature. Ship and expedition names are in small capitals. Attention is called to these subindexes: Intertidal ecology, p. 540; geographical summary of bottom communities, pp. 520-521; marine borers (systematic groups and substances attacked), pp. 1033-1034. Inasmuch as final assembly and collation of the index was done without assistance, errors of omis- sion and commission are those of the editor, for which he prays forgiveness. Abbott, D. P., 1197 Acipenser, 421 Abbs, Cooper, 988 gUldenstUdti, 905 Abe, N.r 1016, 1089, 1120, 1149 ruthenus, 394, 904 Abel, O., 10, 281, 942, 946, 960, 967, 980, 1016 stellatus, 905 Aberystwyth, algae, 1043 Acmaea, 1150 Abestopluma pennatula, 654 limatola, 551, 700, 1148 Abra (= Syndosmya) mitra, 551 alba community, 789 persona, 419 ovata, 846 scabra, 700 Abramis, 867, 868 Acnidosporidia, 418 brama, 795, 904, 905 Acoela, 420 Abundance (Abundanz), 474 Acrhella horrescens, 1096 of vertebrate remains, 968 Acrockordus granulatus, 1215 Abyssal (defined), 21 javanicus, 1215 animals (fig.), 662 Acropora, 437, 615, 618, 622, 627, 1096 clay, 645 acuminata, 619, 622; facing
    [Show full text]