Basic Set Theory

Total Page:16

File Type:pdf, Size:1020Kb

Basic Set Theory STUDENT MATHEMATICAL LIBRARY Volume 17 Basic Set Theory A. Shen N. K. Vereshchagin http://dx.doi.org/10.1090/stml/017 Basic Set Theory STUDENT MATHEMATICAL LIBRARY Volume 17 Basic Set Theory A. Shen N. K.Vereshchagin Editorial Board David Bressoud, Chair Carl Pomerance Robert Devaney Hung-Hsi Wu N. K. Verewagin, A. Xen OSNOVY TEORII MNOESTV MCNMO, Moskva, 1999 Translated from the Russian by A. Shen 2000 Mathematics Subject Classification. Primary 03–01, 03Exx. Abstract. The book is based on lectures given by the authors to undergraduate students at Moscow State University. It explains basic notions of “naive” set theory (cardinalities, ordered sets, transfinite induction, ordinals). The book can be read by undergraduate and graduate students and all those interested in basic notions of set theory. The book contains more than 100 problems of various degrees of difficulty. Library of Congress Cataloging-in-Publication Data Vereshchagin, Nikolai Konstantinovich, 1958– [Osnovy teorii mnozhestv. English] Basic set theory / A. Shen, N. K. Vereshchagin. p. cm. — (Student mathematical library, ISSN 1520-9121 ; v. 17) Authors’ names on t.p. of translation reversed from original. Includes bibliographical references and index. ISBN 0-8218-2731-6 (acid-free paper) 1. Set theory. I. Shen, A. (Alexander), 1958– II. Title. III. Series. QA248 .V4613 2002 511.322—dc21 2002066533 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given. Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904- 2294, USA. Requests can also be made by e-mail to [email protected]. c 2002 by the American Mathematical Society. All rights reserved. The American Mathematical Society retains all rights except those granted to the United States Government. Printed in the United States of America. ∞ The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability. Visit the AMS home page at http://www.ams.org/ 10 9 8 7 6 5 4 3 2 1 07 06 05 04 03 02 Contents Preface vii Chapter 1. Sets and Their Cardinalities 1 §1. Sets 1 §2. Cardinality 4 §3. Equal cardinalities 7 §4. Countable sets 9 §5. Cantor–Bernstein Theorem 16 §6. Cantor’s Theorem 24 §7. Functions 30 §8. Operations on cardinals 35 Chapter 2. Ordered Sets 41 §1. Equivalence relations and orderings 41 §2. Isomorphisms 47 §3. Well-founded orderings 52 §4. Well-ordered sets 56 v vi Contents §5. Transfinite induction 59 §6. Zermelo’s Theorem 66 §7. Transfinite induction and Hamel basis 69 §8. Zorn’s Lemma and its application 74 §9. Operations on cardinals revisited 78 §10. Ordinals 83 §11. Ordinal arithmetic 87 §12. Recursive definitions and exponentiation 91 §13. Application of ordinals 99 Bibliography 109 Glossary 111 Index 113 Preface This book is based on notes from several undergraduate courses the authors offered for a number of years at the Department of Math- ematics and Mechanics of Moscow State University. (We hope to extend this series: the books “Calculi and Languages” and “Com- putable Functions” are in preparation.) The main notions of set theory (cardinals, ordinals, transfinite induction) are among those any professional mathematician should know (even if (s)he is not a specialist in mathematical logic or set- theoretic topology). Usually these notions are briefly discussed in the opening chapters of textbooks on analysis, algebra, or topology, before passing to the main topic of the book. This is, however, unfortunate— the subject is sufficiently interesting, important, and simple to deserve a leisurely treatment. It is such a leisurely exposition that we are trying to present here, having in mind a diversified audience: from an advanced high school student to a professional mathematician (who, on his/her way to vacations, wants to finally find out what is this transfinite indiction which is always replaced by Zorn’s Lemma). For deeper insight into set theory the reader can turn to other books (some of which are listed in references). We would like to use this opportunity to express deep gratitude to our teacher Vladimir Andreevich Uspensky, whose lectures, books, vii viii Preface and comments influenced us (and this book) perhaps even more than we realize. We are grateful to the AMS and Sergei Gelfand (who suggested to translate this book into English) for patience. We also thank Yuri Burman who helped a lot with the translation. Finally, we wish to thank all participants of our lectures and seminars and all readers of preliminary versions of this book. We would appreciate learning about all errors and typos in the book found by the readers (and sent by e-mail to [email protected] or [email protected]). A. Shen, N. K. Vereshchagin Bibliography [1] P. S. Aleksandrov, Introduction to set theory and general topology, “Nauka”, Moscow, 1977. (Russian) [2] N. Bourbaki, El´´ ements de Math´ematique XXII, Th´eorie des ensembles, Hermann, Paris, 1957. [3] G. Cantor, Works in set theory, Compiled by A. N. Kolmogorov, F. A. Medvedev, and A. P. Yushkevich, “Nauka”, Moscow, 1985. (Rus- sian)1 [4] P. J. Cohen, Set theory and the continuum hypothesis,Benjamin,New York, 1966. [5] A. A. Fraenkel and Y. Bar-Hillel, Foundations of set theory, Studies in Logic and the Foundations of Mathematics, North-Holland, Amster- dam, 1958. [6] Handbook of mathematical logic, Edited by Jon Barwise, with the coop- erationofH.J.Keisler,K.Kunen,Y.N.Moschovakis,andA.S.Troel- stra, Studies in Logic and the Foundations of Mathematics, Vol. 90, North-Holland, Amsterdam, 1977. [7] F. Hausdorff, Grundz¨uge der Mengenlehre, Veit, Leipzig, 1914. [8]T.J.Jech,Lectures on set theory with particular emphasis on the method of forcing, Springer-Verlag, Berlin, 1971. [9] W. Just and M. Weese, Discovering modern set theory, I. The basics, Amer. Math. Soc., Providence, RI, 1996. 1Editorial Note. This collection consists mostly of selected works translated from the complete collection (Georg Cantor, Gesammelte Abhandlungen mathematischen und philosophischen Inhalts, Reprint of the 1932 original, Springer-Verlag, Berlin–New York, 1980). More on the content of the Russian book can be found in Mathematical Reviews,MR87g:01062. 109 110 Bibliography [10] , Discovering modern set theory, II. Set-theoretic tools for every mathematician, Amer. Math. Soc., Providence, RI, 1997. [11] A. Kechris, Classical descriptive set theory, Springer-Verlag, New York, 1995. [12] K. Kuratowski and A. Mostowski, Set theory, North-Holland, Amster- dam, 1976. [13] Yu. Manin, A course in mathematical logic, Springer-Verlag, New York, 1991. [14] A. Mostowski, Constructible sets with applications, North-Holland, Amsterdam, 1969. [15] J. R. Shoenfield, Mathematical logic, Addison-Wesley, Reading, MA, 1967. Glossary Felix BERNSTEIN, Feb. 24, 1878, Halle (Germany) – Dec. 3, 1956, Zurich (Switzerland), 16, 20 F´elix Edouard´ Justin Emile´ BOREL, Jan. 7, 1871, Saint Affrique, Aveyron, Midi-Pyr´en´ees (France) – Feb. 3, 1956, Paris (France), 100 Luitzen Egbertus Jan BROUWER, Feb. 27, 1881, Overschie (now in Rot- terdam, Netherlands) – Dec. 2, 1966, Blaricum (Netherlands), 15 Cesare BURALI-FORTI, Aug. 13, 1861, Arezzo (Italy) – Jan. 21, 1931, Turin (Italy), 84 Georg Ferdinand Ludwig Philipp CANTOR, Mar. 3, 1845, St. Petersburg (Russia) – Jan. 6, 1918, Halle (Germany), 2, 15, 16, 20, 24–26, 29, 68 Paul Joseph COHEN, born Apr. 2, 1934, Long Branch, New Jersey (USA), 11 Julius Wilhelm Richard DEDEKIND, Oct. 6, 1831, Braunschweig (now Germany) – Feb. 12, 1916, Braunschweig (Germany), 13, 15 EUCLID of Alexandria, about 325 (?) BC – about 265 (?) BC, Alexandria (now Egypt), 29 Adolf Abraham Halevi FRAENKEL, Feb. 17, 1891, Munich (Germany) – Oct. 15, 1965, Jerusalem (Israel), 29, 85 Guido FUBINI, Jan. 19, 1879, Venice (Italy) – Jun. 6, 1943, New York (USA), 108 Galileo GALILEI, Feb. 15, 1564, Pisa (now Italy) – Jan. 8, 1642, Arcetri near Florence (now Italy), 17 111 112 Glossary Kurt GODEL,¨ Apr. 28, 1906, Br¨unn, Austria-Hungary (now Brno, Czech Republic) – Jan. 14, 1978, Princeton (USA), 11 Georg Karl Wilhelm HAMEL, Sep. 12, 1877, D¨uren, Rheinland (Ger- many) – Oct. 4, 1954, Berlin (Germany), 69, 76 Charles HERMITE, Dec. 24, 1822, Dieuze, Lorraine (France) – Jan. 14, 1901, Paris (France), 25 David HILBERT, Jan. 23, 1862, K¨onigsberg, Prussia (now Kaliningrad, Russia) – Feb. 14, 1943, G¨ottingen (Germany), 72 Julius KONIG,¨ 1849, Gy¨or (Hungary) – 1913, Budapest (Hungary), 40 Kazimierz KURATOWSKI, Feb. 2, 1896, Warsaw (Poland) – Jun. 18, 1980, Warsaw (Poland), 34 Carl Louis Ferdinand von LINDEMANN, Apr. 12, 1852, Hannover (now Germany) – Mar. 6, 1939, Munich (Germany), 25 Joseph LIOUVILLE, Mar. 24, 1809, Saint-Omer (France) – Sep. 8, 1882, Paris (France), 25 Nikolai Ivanovich LOBACHEVSKY , Dec. 1, 1792, Nizhnii Novgorod (Rus- sia) – Feb. 24, 1856, Kazan (Russia), 29 Sir Isaac NEWTON, Jan. 4, 1643, Woolsthorpe, Lincolnshire (England) – Mar. 31, 1727, London (England), 7 Giuseppe PEANO, Aug. 27, 1858, Cuneo, Piemonte (Italy) – Apr. 20, 1932, Turin (Italy), 16 Frank Plumpton RAMSEY, Feb. 22, 1903, Cambridge, Cambridgeshire (England) – Jan. 19, 1930, London (England), 42 Bertrand Arthur William RUSSELL, May 18, 1872, Ravenscroft, Trelleck, Monmouthshire (Wales, UK) – Feb. 2, 1970, Penrhyndeudraeth, Merioneth (Wales, UK), 28 Friedrich Wilhelm Karl Ernst SCHRODER,¨ Nov. 25, 1841, Mannhein (Germany) – Jun. 16, 1902, Karlsruhe (Germany), 20 John von NEUMANN, Dec. 28, 1903, Budapest (Hungary) – Feb. 8, 1957, Washington, D.C. (USA), 83, 84 Norbert WIENER, Nov. 26, 1894, Columbia, Missouri (USA) – Mar. 18, 1964, Stockholm (Sweden), 35 Ernst Friedrich Ferdinand ZERMELO, Jul.
Recommended publications
  • Arnold Sommerfeld in Einigen Zitaten Von Ihm Und Über Ihn1
    K.-P. Dostal, Arnold Sommerfeld in einigen Zitaten von ihm und über ihn Seite 1 Karl-Peter Dostal, Arnold Sommerfeld in einigen Zitaten von ihm und über ihn1 Kurze biographische Bemerkungen Arnold Sommerfeld [* 5. Dezember 1868 in Königsberg, † 26. April 1951 in München] zählt neben Max Planck, Albert Einstein und Niels Bohr zu den Begründern der modernen theoretischen Physik. Durch die Ausarbeitung der Bohrschen Atomtheorie, als Lehrbuchautor (Atombau und Spektrallinien, Vorlesungen über theoretische Physik) und durch seine „Schule“ (zu der etwa die Nobelpreisträger Peter Debye, Wolfgang Pauli, Werner Heisenberg und Hans Bethe gehören) sorgte Sommerfeld wie kein anderer für die Verbreitung der modernen Physik.2 Je nach Auswahl könnte Sommerfeld [aber] nicht nur als theoretischer Physiker, sondern auch als Mathematiker, Techniker oder Wissenschaftsjournalist porträtiert werden.3 Als Schüler der Mathematiker Ferdinand von Lindemann, Adolf Hurwitz, David Hilbert und Felix Klein hatte sich Sommerfeld zunächst vor allem der Mathematik zugewandt (seine erste Professur: 1897 - 1900 für Mathematik an der Bergakademie Clausthal). Als Professor an der TH Aachen von 1900 - 1906 gewann er zunehmendes Interesse an der Technik. 1906 erhielt er den seit Jahren verwaisten Lehrstuhl für theoretische Physik in München, an dem er mit wenigen Unterbrechungen noch bis 1940 (und dann wieder ab 19464) unterrichtete. Im Gegensatz zur etablierten Experimen- talphysik war die theoretische Physik anfangs des 20. Jh. noch eine junge Disziplin. Sie wurde nun zu
    [Show full text]
  • Richard Dedekind English Version
    RICHARD DEDEKIND (October 6, 1831 – February 12, 1916) by HEINZ KLAUS STRICK, Germany The biography of JULIUS WILHELM RICHARD DEDEKIND begins and ends in Braunschweig (Brunswick): The fourth child of a professor of law at the Collegium Carolinum, he attended the Martino-Katherineum, a traditional gymnasium (secondary school) in the city. At the age of 16, the boy, who was also a highly gifted musician, transferred to the Collegium Carolinum, an educational institution that would pave the way for him to enter the university after high school. There he prepared for future studies in mathematics. In 1850, he went to the University at Göttingen, where he enthusiastically attended lectures on experimental physics by WILHELM WEBER, and where he met CARL FRIEDRICH GAUSS when he attended a lecture given by the great mathematician on the method of least squares. GAUSS was nearing the end of his life and at the time was involved primarily in activities related to astronomy. After only four semesters, DEDEKIND had completed a doctoral dissertation on the theory of Eulerian integrals. He was GAUSS’s last doctoral student. (drawings © Andreas Strick) He then worked on his habilitation thesis, in parallel with BERNHARD RIEMANN, who had also received his doctoral degree under GAUSS’s direction not long before. In 1854, after obtaining the venia legendi (official permission allowing those completing their habilitation to lecture), he gave lectures on probability theory and geometry. Since the beginning of his stay in Göttingen, DEDEKIND had observed that the mathematics faculty, who at the time were mostly preparing students to become secondary-school teachers, had lost contact with current developments in mathematics; this in contrast to the University of Berlin, at which PETER GUSTAV LEJEUNE DIRICHLET taught.
    [Show full text]
  • Biography Paper – Georg Cantor
    Mike Garkie Math 4010 – History of Math UCD Denver 4/1/08 Biography Paper – Georg Cantor Few mathematicians are house-hold names; perhaps only Newton and Euclid would qualify. But there is a second tier of mathematicians, those whose names might not be familiar, but whose discoveries are part of everyday math. Examples here are Napier with logarithms, Cauchy with limits and Georg Cantor (1845 – 1918) with sets. In fact, those who superficially familier with Georg Cantor probably have two impressions of the man: First, as a consequence of thinking about sets, Cantor developed a theory of the actual infinite. And second, that Cantor was a troubled genius, crippled by Freudian conflict and mental illness. The first impression is fundamentally true. Cantor almost single-handedly overturned the Aristotle’s concept of the potential infinite by developing the concept of transfinite numbers. And, even though Bolzano and Frege made significant contributions, “Set theory … is the creation of one person, Georg Cantor.” [4] The second impression is mostly false. Cantor certainly did suffer from mental illness later in his life, but the other emotional baggage assigned to him is mostly due his early biographers, particularly the infamous E.T. Bell in Men Of Mathematics [7]. In the racially charged atmosphere of 1930’s Europe, the sensational story mathematician who turned the idea of infinity on its head and went crazy in the process, probably make for good reading. The drama of the controversy over Cantor’s ideas only added spice. 1 Fortunately, modern scholars have corrected the errors and biases in older biographies.
    [Show full text]
  • Is Uncountable the Open Interval (0, 1)
    Section 2.4:R is uncountable (0, 1) is uncountable This assertion and its proof date back to the 1890’s and to Georg Cantor. The proof is often referred to as “Cantor’s diagonal argument” and applies in more general contexts than we will see in these notes. Our goal in this section is to show that the setR of real numbers is uncountable or non-denumerable; this means that its elements cannot be listed, or cannot be put in bijective correspondence with the natural numbers. We saw at the end of Section 2.3 that R has the same cardinality as the interval ( π , π ), or the interval ( 1, 1), or the interval (0, 1). We will − 2 2 − show that the open interval (0, 1) is uncountable. Georg Cantor : born in St Petersburg (1845), died in Halle (1918) Theorem 42 The open interval (0, 1) is not a countable set. Dr Rachel Quinlan MA180/MA186/MA190 Calculus R is uncountable 143 / 222 Dr Rachel Quinlan MA180/MA186/MA190 Calculus R is uncountable 144 / 222 The open interval (0, 1) is not a countable set A hypothetical bijective correspondence Our goal is to show that the interval (0, 1) cannot be put in bijective correspondence with the setN of natural numbers. Our strategy is to We recall precisely what this set is. show that no attempt at constructing a bijective correspondence between It consists of all real numbers that are greater than zero and less these two sets can ever be complete; it can never involve all the real than 1, or equivalently of all the points on the number line that are numbers in the interval (0, 1) no matter how it is devised.
    [Show full text]
  • Cardinality of Sets
    Cardinality of Sets MAT231 Transition to Higher Mathematics Fall 2014 MAT231 (Transition to Higher Math) Cardinality of Sets Fall 2014 1 / 15 Outline 1 Sets with Equal Cardinality 2 Countable and Uncountable Sets MAT231 (Transition to Higher Math) Cardinality of Sets Fall 2014 2 / 15 Sets with Equal Cardinality Definition Two sets A and B have the same cardinality, written jAj = jBj, if there exists a bijective function f : A ! B. If no such bijective function exists, then the sets have unequal cardinalities, that is, jAj 6= jBj. Another way to say this is that jAj = jBj if there is a one-to-one correspondence between the elements of A and the elements of B. For example, to show that the set A = f1; 2; 3; 4g and the set B = {♠; ~; }; |g have the same cardinality it is sufficient to construct a bijective function between them. 1 2 3 4 ♠ ~ } | MAT231 (Transition to Higher Math) Cardinality of Sets Fall 2014 3 / 15 Sets with Equal Cardinality Consider the following: This definition does not involve the number of elements in the sets. It works equally well for finite and infinite sets. Any bijection between the sets is sufficient. MAT231 (Transition to Higher Math) Cardinality of Sets Fall 2014 4 / 15 The set Z contains all the numbers in N as well as numbers not in N. So maybe Z is larger than N... On the other hand, both sets are infinite, so maybe Z is the same size as N... This is just the sort of ambiguity we want to avoid, so we appeal to the definition of \same cardinality." The answer to our question boils down to \Can we find a bijection between N and Z?" Does jNj = jZj? True or false: Z is larger than N.
    [Show full text]
  • Georg Cantor English Version
    GEORG CANTOR (March 3, 1845 – January 6, 1918) by HEINZ KLAUS STRICK, Germany There is hardly another mathematician whose reputation among his contemporary colleagues reflected such a wide disparity of opinion: for some, GEORG FERDINAND LUDWIG PHILIPP CANTOR was a corruptor of youth (KRONECKER), while for others, he was an exceptionally gifted mathematical researcher (DAVID HILBERT 1925: Let no one be allowed to drive us from the paradise that CANTOR created for us.) GEORG CANTOR’s father was a successful merchant and stockbroker in St. Petersburg, where he lived with his family, which included six children, in the large German colony until he was forced by ill health to move to the milder climate of Germany. In Russia, GEORG was instructed by private tutors. He then attended secondary schools in Wiesbaden and Darmstadt. After he had completed his schooling with excellent grades, particularly in mathematics, his father acceded to his son’s request to pursue mathematical studies in Zurich. GEORG CANTOR could equally well have chosen a career as a violinist, in which case he would have continued the tradition of his two grandmothers, both of whom were active as respected professional musicians in St. Petersburg. When in 1863 his father died, CANTOR transferred to Berlin, where he attended lectures by KARL WEIERSTRASS, ERNST EDUARD KUMMER, and LEOPOLD KRONECKER. On completing his doctorate in 1867 with a dissertation on a topic in number theory, CANTOR did not obtain a permanent academic position. He taught for a while at a girls’ school and at an institution for training teachers, all the while working on his habilitation thesis, which led to a teaching position at the university in Halle.
    [Show full text]
  • Cantor and Continuity
    Cantor and Continuity Akihiro Kanamori May 1, 2018 Georg Cantor (1845-1919), with his seminal work on sets and number, brought forth a new field of inquiry, set theory, and ushered in a way of proceeding in mathematics, one at base infinitary, topological, and combinatorial. While this was the thrust, his work at the beginning was embedded in issues and concerns of real analysis and contributed fundamentally to its 19th Century rigorization, a development turning on limits and continuity. And a continuing engagement with limits and continuity would be very much part of Cantor's mathematical journey, even as dramatically new conceptualizations emerged. Evolutionary accounts of Cantor's work mostly underscore his progressive ascent through set- theoretic constructs to transfinite number, this as the storied beginnings of set theory. In this article, we consider Cantor's work with a steady focus on con- tinuity, putting it first into the context of rigorization and then pursuing the increasingly set-theoretic constructs leading to its further elucidations. Beyond providing a narrative through the historical record about Cantor's progress, we will bring out three aspectual motifs bearing on the history and na- ture of mathematics. First, with Cantor the first mathematician to be engaged with limits and continuity through progressive activity over many years, one can see how incipiently metaphysical conceptualizations can become systemati- cally transmuted through mathematical formulations and results so that one can chart progress on the understanding of concepts. Second, with counterweight put on Cantor's early career, one can see the drive of mathematical necessity pressing through Cantor's work toward extensional mathematics, the increasing objectification of concepts compelled, and compelled only by, his mathematical investigation of aspects of continuity and culminating in the transfinite numbers and set theory.
    [Show full text]
  • CSC 443 – Database Management Systems Data and Its Structure
    CSC 443 – Database Management Systems Lecture 3 –The Relational Data Model Data and Its Structure • Data is actually stored as bits, but it is difficult to work with data at this level. • It is convenient to view data at different levels of abstraction . • Schema : Description of data at some abstraction level. Each level has its own schema. • We will be concerned with three schemas: physical , conceptual , and external . 1 Physical Data Level • Physical schema describes details of how data is stored: tracks, cylinders, indices etc. • Early applications worked at this level – explicitly dealt with details. • Problem: Routines were hard-coded to deal with physical representation. – Changes to data structure difficult to make. – Application code becomes complex since it must deal with details. – Rapid implementation of new features impossible. Conceptual Data Level • Hides details. – In the relational model, the conceptual schema presents data as a set of tables. • DBMS maps from conceptual to physical schema automatically. • Physical schema can be changed without changing application: – DBMS would change mapping from conceptual to physical transparently – This property is referred to as physical data independence 2 Conceptual Data Level (con’t) External Data Level • In the relational model, the external schema also presents data as a set of relations. • An external schema specifies a view of the data in terms of the conceptual level. It is tailored to the needs of a particular category of users. – Portions of stored data should not be seen by some users. • Students should not see their files in full. • Faculty should not see billing data. – Information that can be derived from stored data might be viewed as if it were stored.
    [Show full text]
  • Introduction: the 1930S Revolution
    PROPERTY OF MIT PRESS: FOR PROOFREADING AND INDEXING PURPOSES ONLY Introduction: The 1930s Revolution The theory of computability was launched in the 1930s by a group of young math- ematicians and logicians who proposed new, exact, characterizations of the idea of algorithmic computability. The most prominent of these young iconoclasts were Kurt Gödel, Alonzo Church, and Alan Turing. Others also contributed to the new field, most notably Jacques Herbrand, Emil Post, Stephen Kleene, and J. Barkley Rosser. This seminal research not only established the theoretical basis for computability: these key thinkers revolutionized and reshaped the mathematical world—a revolu- tion that culminated in the Information Age. Their motive, however, was not to pioneer the discipline that we now know as theoretical computer science, although with hindsight this is indeed what they did. Nor was their motive to design electronic digital computers, although Turing did go on to do so (in fact producing the first complete paper design that the world had seen for an electronic stored-program universal computer). Their work was rather the continuation of decades of intensive investigation into that most abstract of subjects, the foundations of mathematics—investigations carried out by such great thinkers as Leopold Kronecker, Richard Dedekind, Gottlob Frege, Bertrand Russell, David Hilbert, L. E. J. Brouwer, Paul Bernays, and John von Neumann. The concept of an algorithm, or an effective or computable procedure, was central during these decades of foundational study, although for a long time no attempt was made to characterize the intuitive concept formally. This changed when Hilbert’s foundation- alist program, and especially the issue of decidability, made it imperative to provide an exact characterization of the idea of a computable function—or algorithmically calculable function, or effectively calculable function, or decidable predicate.
    [Show full text]
  • Some Set Theory We Should Know Cardinality and Cardinal Numbers
    SOME SET THEORY WE SHOULD KNOW CARDINALITY AND CARDINAL NUMBERS De¯nition. Two sets A and B are said to have the same cardinality, and we write jAj = jBj, if there exists a one-to-one onto function f : A ! B. We also say jAj · jBj if there exists a one-to-one (but not necessarily onto) function f : A ! B. Then the SchrÄoder-BernsteinTheorem says: jAj · jBj and jBj · jAj implies jAj = jBj: SchrÄoder-BernsteinTheorem. If there are one-to-one maps f : A ! B and g : B ! A, then jAj = jBj. A set is called countable if it is either ¯nite or has the same cardinality as the set N of positive integers. Theorem ST1. (a) A countable union of countable sets is countable; (b) If A1;A2; :::; An are countable, so is ¦i·nAi; (c) If A is countable, so is the set of all ¯nite subsets of A, as well as the set of all ¯nite sequences of elements of A; (d) The set Q of all rational numbers is countable. Theorem ST2. The following sets have the same cardinality as the set R of real numbers: (a) The set P(N) of all subsets of the natural numbers N; (b) The set of all functions f : N ! f0; 1g; (c) The set of all in¯nite sequences of 0's and 1's; (d) The set of all in¯nite sequences of real numbers. The cardinality of N (and any countable in¯nite set) is denoted by @0. @1 denotes the next in¯nite cardinal, @2 the next, etc.
    [Show full text]
  • 2.5. INFINITE SETS Now That We Have Covered the Basics of Elementary
    2.5. INFINITE SETS Now that we have covered the basics of elementary set theory in the previous sections, we are ready to turn to infinite sets and some more advanced concepts in this area. Shortly after Georg Cantor laid out the core principles of his new theory of sets in the late 19th century, his work led him to a trove of controversial and groundbreaking results related to the cardinalities of infinite sets. We will explore some of these extraordinary findings, including Cantor’s eponymous theorem on power sets and his famous diagonal argument, both of which imply that infinite sets come in different “sizes.” We also present one of the grandest problems in all of mathematics – the Continuum Hypothesis, which posits that the cardinality of the continuum (i.e. the set of all points on a line) is equal to that of the power set of the set of natural numbers. Lastly, we conclude this section with a foray into transfinite arithmetic, an extension of the usual arithmetic with finite numbers that includes operations with so-called aleph numbers – the cardinal numbers of infinite sets. If all of this sounds rather outlandish at the moment, don’t be surprised. The properties of infinite sets can be highly counter-intuitive and you may likely be in total disbelief after encountering some of Cantor’s theorems for the first time. Cantor himself said it best: after deducing that there are just as many points on the unit interval (0,1) as there are in n-dimensional space1, he wrote to his friend and colleague Richard Dedekind: “I see it, but I don’t believe it!” The Tricky Nature of Infinity Throughout the ages, human beings have always wondered about infinity and the notion of uncountability.
    [Show full text]
  • 50 Mathematical Ideas You Really Need to Know
    50 mathematical ideas you really need to know Tony Crilly 2 Contents Introduction 01 Zero 02 Number systems 03 Fractions 04 Squares and square roots 05 π 06 e 07 Infinity 08 Imaginary numbers 09 Primes 10 Perfect numbers 11 Fibonacci numbers 12 Golden rectangles 13 Pascal’s triangle 14 Algebra 15 Euclid’s algorithm 16 Logic 17 Proof 3 18 Sets 19 Calculus 20 Constructions 21 Triangles 22 Curves 23 Topology 24 Dimension 25 Fractals 26 Chaos 27 The parallel postulate 28 Discrete geometry 29 Graphs 30 The four-colour problem 31 Probability 32 Bayes’s theory 33 The birthday problem 34 Distributions 35 The normal curve 36 Connecting data 37 Genetics 38 Groups 4 39 Matrices 40 Codes 41 Advanced counting 42 Magic squares 43 Latin squares 44 Money mathematics 45 The diet problem 46 The travelling salesperson 47 Game theory 48 Relativity 49 Fermat’s last theorem 50 The Riemann hypothesis Glossary Index 5 Introduction Mathematics is a vast subject and no one can possibly know it all. What one can do is explore and find an individual pathway. The possibilities open to us here will lead to other times and different cultures and to ideas that have intrigued mathematicians for centuries. Mathematics is both ancient and modern and is built up from widespread cultural and political influences. From India and Arabia we derive our modern numbering system but it is one tempered with historical barnacles. The ‘base 60’ of the Babylonians of two or three millennia BC shows up in our own culture – we have 60 seconds in a minute and 60 minutes in an hour; a right angle is still 90 degrees and not 100 grads as revolutionary France adopted in a first move towards decimalization.
    [Show full text]