Introduction: the 1930S Revolution

Total Page:16

File Type:pdf, Size:1020Kb

Introduction: the 1930S Revolution PROPERTY OF MIT PRESS: FOR PROOFREADING AND INDEXING PURPOSES ONLY Introduction: The 1930s Revolution The theory of computability was launched in the 1930s by a group of young math- ematicians and logicians who proposed new, exact, characterizations of the idea of algorithmic computability. The most prominent of these young iconoclasts were Kurt Gödel, Alonzo Church, and Alan Turing. Others also contributed to the new field, most notably Jacques Herbrand, Emil Post, Stephen Kleene, and J. Barkley Rosser. This seminal research not only established the theoretical basis for computability: these key thinkers revolutionized and reshaped the mathematical world—a revolu- tion that culminated in the Information Age. Their motive, however, was not to pioneer the discipline that we now know as theoretical computer science, although with hindsight this is indeed what they did. Nor was their motive to design electronic digital computers, although Turing did go on to do so (in fact producing the first complete paper design that the world had seen for an electronic stored-program universal computer). Their work was rather the continuation of decades of intensive investigation into that most abstract of subjects, the foundations of mathematics—investigations carried out by such great thinkers as Leopold Kronecker, Richard Dedekind, Gottlob Frege, Bertrand Russell, David Hilbert, L. E. J. Brouwer, Paul Bernays, and John von Neumann. The concept of an algorithm, or an effective or computable procedure, was central during these decades of foundational study, although for a long time no attempt was made to characterize the intuitive concept formally. This changed when Hilbert’s foundation- alist program, and especially the issue of decidability, made it imperative to provide an exact characterization of the idea of a computable function—or algorithmically calculable function, or effectively calculable function, or decidable predicate. Dif- ferent authors used different terminology for this central intuitive concept, which, they realized, stood in need of precise analysis. Computability: Turing, Gödel, Church, and Beyond examines not only the his- toric breakthroughs made in the 1930s by these three great thinkers, but also the legacy of their work in the modern world. The 1930s began with Gödel’s publication of his completeness theorem for first-order logic, and a year later, in S Copeland—Computability 8009_000a.indd 7 3/12/2013 7:48:23 PM PROPERTY OF MIT PRESS: FOR PROOFREADING AND INDEXING PURPOSES ONLY PROPERTY OF MIT PRESS: FOR PROOFREADING AND INDEXING PURPOSES ONLY viii Introduction 1931, he published his famous incompleteness results. The latter concerned formal systems of arithmetic involving (what we now call) primitive recursive axioms and inference rules. A first major step had been taken in the develop- ment of modern computability theory. In 1934, in a series of lectures at the Princeton Institute for Advanced Study, Gödel went on to present the concept of a general recursive function (which he created by refining a suggestion that Herbrand had communicated to him in 1931). Notes of these landmark lectures, taken at the time by Church’s students Kleene and Rosser, were published in Martin Davis’s classic volume The Undecidable, under the title “On undecidable propositions of formal mathematical systems.” In 1936, Kleene published his own formulation of the theory of general recursive functions—the version standardly used today—and in 1938 Kleene extended his analysis to cover partial recursive functions as well. Church began his work on what he called the lambda calculus early in the 1930s, and was soon joined by his Princeton students Kleene and Rosser. When Gödel visited Princeton in 1934, Church suggested to him that the new concept of “lambda- definability” be taken as a precise, formal definition of the intuitive idea of effective calculability, but Gödel famously rejected Church’s suggestion, calling it “thoroughly unsatisfactory.” Nevertheless, Church did go on to propose this identification pub- licly, in a 1935 presentation and then the following year in a journal article. He also made the alternative suggestion that the intuitive idea of an effectively calculable function could be identified with the concept of a recursive function. These two suggestions are mathematically equivalent and are now known collectively as “Church’s thesis.” The name “Church-Turing thesis” is also used, in recognition of Turing’s slightly later work, also published in 1936. In his strikingly original paper of 1936, Turing characterized the intuitive idea of computability in terms of the activity of an abstract automatic computing machine. This machine, now called simply the “Turing machine,” figures in modern theoretical computer science as the most fundamental model of computation. (Post, in 1947, recast the Turing machine into the mathematical formulation usually used today, a finite collection of 4-tuples.) In 1936, Turing also described one of the most impor- tant scientific ideas of the twentieth century, his “universal computing machine”—a single Turing machine that, by making use of what we now call “programs” stored in its memory, can compute everything that is computable in the intuitive sense (or so Turing persuasively argued). Turing’s thesis, that the universal Turing machine can compute anything and everything computable in the intuitive sense, is equiva- lent to each of Church’s formulations of Church’s thesis. Now, numerous equivalent formulations of the Church-Turing thesis are known. Arguably, Turing’s formulation is the most fundamental, since it links the intuitive idea of computability with the S concept of a computing machine. Copeland—Computability 8009_000a.indd 8 3/12/2013 7:48:23 PM PROPERTY OF MIT PRESS: FOR PROOFREADING AND INDEXING PURPOSES ONLY PROPERTY OF MIT PRESS: FOR PROOFREADING AND INDEXING PURPOSES ONLY The 1930s Revolution ix Within a dozen or so years, Turing’s universal machine had been realized elec- tronically—the world’s first stored-program electronic digital computers had arrived. The transformation from abstract conception to physical machine was brought about by Tom Flowers, Max Newman, Freddie Williams, Tom Kilburn, Maurice Wilkes, John von Neumann, Presper Eckert, John Mauchly, Harry Huskey, and others—and certainly not forgetting Turing himself, in his postwar guise as computer designer. Turing’s electronic computer, the Automatic Computing Engine, or ACE, was in the event not the first of the new machines to operate, but it was by a wide margin the fastest. The early work by Turing, Gödel, Church, and the other founding fathers of com- putability has blossomed into what is today a vast bouquet of fields of study, as diverse as recursive function theory, computer engineering and computer program- ming, numerical analysis, computational linguistics, virtual reality, artificial intelli- gence, artificial life, computational theories of mind, complexity theory, machine learning, quantum computing, and modern cryptography—and much more besides. This multidisciplinary book is about what all these fields rest upon: the foundations of computability. Several chapters of the book are historical in perspective, focusing closely on the work of the founding fathers of computability. Soare and Sieg review the emergence of the various characterizations of computability in the 1930s, detailing Gödel’s role in these developments. Kripke clarifies and develops an important argument put forward by Turing in support of his 1936 analysis of computability. Copeland and Shagrir examine the theoretical underpinnings of the historic analyses of comput- ability, and also elucidate what Gödel and Turing wrote about computability and the mind. More recent work in the foundations of computability is discussed by Davis, whose topic is the solution of Hilbert’s tenth problem; and by Putnam, who discusses the impact of Gödel’s work on modern mathematical logic and recursion theory; and Soare, who describes the legacy of Turing and Post in modern interactive and online computing. Aharonov, Vazirani, and Aaronson focus on recent issues in complexity theory and quantum computing, and Feferman and Posy discuss devel- opments in the theory of computability over the real numbers. A number of chapters address the relationship between computability and the mind. Copeland and Shagrir, Putnam, and Sieg discuss the issue of whether Turing- computability places an upper bound on the powers of the human mind, while Aaronson raises the question whether the mind is limited to solving problems whose solutions are obtainable in polynomial time. Other chapters target issues in the philosophy of mathematics and the philosophy of science. Posy discusses the rela- tionship between computability and constructivity in mathematics, and Aaronson the relationship between computational complexity and mathematical proof. Kripke, Soare, and Shapiro investigate issues concerning the Church-Turing thesis itself, and S Copeland—Computability 8009_000a.indd 9 3/12/2013 7:48:23 PM PROPERTY OF MIT PRESS: FOR PROOFREADING AND INDEXING PURPOSES ONLY x Introduction Kripke explains the significance that Gödel’s 1931 theorem IX holds for Hilbert’s Entscheidungsproblem. Aharonov and Vazirani ask how the natural world can be studied at all, given that quantum mechanics exhibits exponential complexity, and they describe a foundation for experimental science that is based on the mathemati- cal concept of interactive proof. The computational revolution of the 1930s can fairly be said to have fuelled the rocketing expansion of the horizons of knowledge that characterizes our modern scientific era. Turing, Gödel, and Church, although relatively unsung heroes, are pivotal figures in the story of modern science. S Copeland—Computability 8009_000a.indd 10 3/12/2013 7:48:23 PM.
Recommended publications
  • Richard Dedekind English Version
    RICHARD DEDEKIND (October 6, 1831 – February 12, 1916) by HEINZ KLAUS STRICK, Germany The biography of JULIUS WILHELM RICHARD DEDEKIND begins and ends in Braunschweig (Brunswick): The fourth child of a professor of law at the Collegium Carolinum, he attended the Martino-Katherineum, a traditional gymnasium (secondary school) in the city. At the age of 16, the boy, who was also a highly gifted musician, transferred to the Collegium Carolinum, an educational institution that would pave the way for him to enter the university after high school. There he prepared for future studies in mathematics. In 1850, he went to the University at Göttingen, where he enthusiastically attended lectures on experimental physics by WILHELM WEBER, and where he met CARL FRIEDRICH GAUSS when he attended a lecture given by the great mathematician on the method of least squares. GAUSS was nearing the end of his life and at the time was involved primarily in activities related to astronomy. After only four semesters, DEDEKIND had completed a doctoral dissertation on the theory of Eulerian integrals. He was GAUSS’s last doctoral student. (drawings © Andreas Strick) He then worked on his habilitation thesis, in parallel with BERNHARD RIEMANN, who had also received his doctoral degree under GAUSS’s direction not long before. In 1854, after obtaining the venia legendi (official permission allowing those completing their habilitation to lecture), he gave lectures on probability theory and geometry. Since the beginning of his stay in Göttingen, DEDEKIND had observed that the mathematics faculty, who at the time were mostly preparing students to become secondary-school teachers, had lost contact with current developments in mathematics; this in contrast to the University of Berlin, at which PETER GUSTAV LEJEUNE DIRICHLET taught.
    [Show full text]
  • Biography Paper – Georg Cantor
    Mike Garkie Math 4010 – History of Math UCD Denver 4/1/08 Biography Paper – Georg Cantor Few mathematicians are house-hold names; perhaps only Newton and Euclid would qualify. But there is a second tier of mathematicians, those whose names might not be familiar, but whose discoveries are part of everyday math. Examples here are Napier with logarithms, Cauchy with limits and Georg Cantor (1845 – 1918) with sets. In fact, those who superficially familier with Georg Cantor probably have two impressions of the man: First, as a consequence of thinking about sets, Cantor developed a theory of the actual infinite. And second, that Cantor was a troubled genius, crippled by Freudian conflict and mental illness. The first impression is fundamentally true. Cantor almost single-handedly overturned the Aristotle’s concept of the potential infinite by developing the concept of transfinite numbers. And, even though Bolzano and Frege made significant contributions, “Set theory … is the creation of one person, Georg Cantor.” [4] The second impression is mostly false. Cantor certainly did suffer from mental illness later in his life, but the other emotional baggage assigned to him is mostly due his early biographers, particularly the infamous E.T. Bell in Men Of Mathematics [7]. In the racially charged atmosphere of 1930’s Europe, the sensational story mathematician who turned the idea of infinity on its head and went crazy in the process, probably make for good reading. The drama of the controversy over Cantor’s ideas only added spice. 1 Fortunately, modern scholars have corrected the errors and biases in older biographies.
    [Show full text]
  • Georg Cantor English Version
    GEORG CANTOR (March 3, 1845 – January 6, 1918) by HEINZ KLAUS STRICK, Germany There is hardly another mathematician whose reputation among his contemporary colleagues reflected such a wide disparity of opinion: for some, GEORG FERDINAND LUDWIG PHILIPP CANTOR was a corruptor of youth (KRONECKER), while for others, he was an exceptionally gifted mathematical researcher (DAVID HILBERT 1925: Let no one be allowed to drive us from the paradise that CANTOR created for us.) GEORG CANTOR’s father was a successful merchant and stockbroker in St. Petersburg, where he lived with his family, which included six children, in the large German colony until he was forced by ill health to move to the milder climate of Germany. In Russia, GEORG was instructed by private tutors. He then attended secondary schools in Wiesbaden and Darmstadt. After he had completed his schooling with excellent grades, particularly in mathematics, his father acceded to his son’s request to pursue mathematical studies in Zurich. GEORG CANTOR could equally well have chosen a career as a violinist, in which case he would have continued the tradition of his two grandmothers, both of whom were active as respected professional musicians in St. Petersburg. When in 1863 his father died, CANTOR transferred to Berlin, where he attended lectures by KARL WEIERSTRASS, ERNST EDUARD KUMMER, and LEOPOLD KRONECKER. On completing his doctorate in 1867 with a dissertation on a topic in number theory, CANTOR did not obtain a permanent academic position. He taught for a while at a girls’ school and at an institution for training teachers, all the while working on his habilitation thesis, which led to a teaching position at the university in Halle.
    [Show full text]
  • The Development of Mathematical Logic from Russell to Tarski: 1900–1935
    The Development of Mathematical Logic from Russell to Tarski: 1900–1935 Paolo Mancosu Richard Zach Calixto Badesa The Development of Mathematical Logic from Russell to Tarski: 1900–1935 Paolo Mancosu (University of California, Berkeley) Richard Zach (University of Calgary) Calixto Badesa (Universitat de Barcelona) Final Draft—May 2004 To appear in: Leila Haaparanta, ed., The Development of Modern Logic. New York and Oxford: Oxford University Press, 2004 Contents Contents i Introduction 1 1 Itinerary I: Metatheoretical Properties of Axiomatic Systems 3 1.1 Introduction . 3 1.2 Peano’s school on the logical structure of theories . 4 1.3 Hilbert on axiomatization . 8 1.4 Completeness and categoricity in the work of Veblen and Huntington . 10 1.5 Truth in a structure . 12 2 Itinerary II: Bertrand Russell’s Mathematical Logic 15 2.1 From the Paris congress to the Principles of Mathematics 1900–1903 . 15 2.2 Russell and Poincar´e on predicativity . 19 2.3 On Denoting . 21 2.4 Russell’s ramified type theory . 22 2.5 The logic of Principia ......................... 25 2.6 Further developments . 26 3 Itinerary III: Zermelo’s Axiomatization of Set Theory and Re- lated Foundational Issues 29 3.1 The debate on the axiom of choice . 29 3.2 Zermelo’s axiomatization of set theory . 32 3.3 The discussion on the notion of “definit” . 35 3.4 Metatheoretical studies of Zermelo’s axiomatization . 38 4 Itinerary IV: The Theory of Relatives and Lowenheim’s¨ Theorem 41 4.1 Theory of relatives and model theory . 41 4.2 The logic of relatives .
    [Show full text]
  • Equivalents to the Axiom of Choice and Their Uses A
    EQUIVALENTS TO THE AXIOM OF CHOICE AND THEIR USES A Thesis Presented to The Faculty of the Department of Mathematics California State University, Los Angeles In Partial Fulfillment of the Requirements for the Degree Master of Science in Mathematics By James Szufu Yang c 2015 James Szufu Yang ALL RIGHTS RESERVED ii The thesis of James Szufu Yang is approved. Mike Krebs, Ph.D. Kristin Webster, Ph.D. Michael Hoffman, Ph.D., Committee Chair Grant Fraser, Ph.D., Department Chair California State University, Los Angeles June 2015 iii ABSTRACT Equivalents to the Axiom of Choice and Their Uses By James Szufu Yang In set theory, the Axiom of Choice (AC) was formulated in 1904 by Ernst Zermelo. It is an addition to the older Zermelo-Fraenkel (ZF) set theory. We call it Zermelo-Fraenkel set theory with the Axiom of Choice and abbreviate it as ZFC. This paper starts with an introduction to the foundations of ZFC set the- ory, which includes the Zermelo-Fraenkel axioms, partially ordered sets (posets), the Cartesian product, the Axiom of Choice, and their related proofs. It then intro- duces several equivalent forms of the Axiom of Choice and proves that they are all equivalent. In the end, equivalents to the Axiom of Choice are used to prove a few fundamental theorems in set theory, linear analysis, and abstract algebra. This paper is concluded by a brief review of the work in it, followed by a few points of interest for further study in mathematics and/or set theory. iv ACKNOWLEDGMENTS Between the two department requirements to complete a master's degree in mathematics − the comprehensive exams and a thesis, I really wanted to experience doing a research and writing a serious academic paper.
    [Show full text]
  • Forcing in Proof Theory∗
    Forcing in proof theory¤ Jeremy Avigad November 3, 2004 Abstract Paul Cohen's method of forcing, together with Saul Kripke's related semantics for modal and intuitionistic logic, has had profound e®ects on a number of branches of mathematical logic, from set theory and model theory to constructive and categorical logic. Here, I argue that forcing also has a place in traditional Hilbert-style proof theory, where the goal is to formalize portions of ordinary mathematics in restricted axiomatic theories, and study those theories in constructive or syntactic terms. I will discuss the aspects of forcing that are useful in this respect, and some sample applications. The latter include ways of obtaining conservation re- sults for classical and intuitionistic theories, interpreting classical theories in constructive ones, and constructivizing model-theoretic arguments. 1 Introduction In 1963, Paul Cohen introduced the method of forcing to prove the indepen- dence of both the axiom of choice and the continuum hypothesis from Zermelo- Fraenkel set theory. It was not long before Saul Kripke noted a connection be- tween forcing and his semantics for modal and intuitionistic logic, which had, in turn, appeared in a series of papers between 1959 and 1965. By 1965, Scott and Solovay had rephrased Cohen's forcing construction in terms of Boolean-valued models, foreshadowing deeper algebraic connections between forcing, Kripke se- mantics, and Grothendieck's notion of a topos of sheaves. In particular, Lawvere and Tierney were soon able to recast Cohen's original independence proofs as sheaf constructions.1 It is safe to say that these developments have had a profound impact on most branches of mathematical logic.
    [Show full text]
  • Cantor and Continuity
    Cantor and Continuity Akihiro Kanamori May 1, 2018 Georg Cantor (1845-1919), with his seminal work on sets and number, brought forth a new field of inquiry, set theory, and ushered in a way of proceeding in mathematics, one at base infinitary, topological, and combinatorial. While this was the thrust, his work at the beginning was embedded in issues and concerns of real analysis and contributed fundamentally to its 19th Century rigorization, a development turning on limits and continuity. And a continuing engagement with limits and continuity would be very much part of Cantor's mathematical journey, even as dramatically new conceptualizations emerged. Evolutionary accounts of Cantor's work mostly underscore his progressive ascent through set- theoretic constructs to transfinite number, this as the storied beginnings of set theory. In this article, we consider Cantor's work with a steady focus on con- tinuity, putting it first into the context of rigorization and then pursuing the increasingly set-theoretic constructs leading to its further elucidations. Beyond providing a narrative through the historical record about Cantor's progress, we will bring out three aspectual motifs bearing on the history and na- ture of mathematics. First, with Cantor the first mathematician to be engaged with limits and continuity through progressive activity over many years, one can see how incipiently metaphysical conceptualizations can become systemati- cally transmuted through mathematical formulations and results so that one can chart progress on the understanding of concepts. Second, with counterweight put on Cantor's early career, one can see the drive of mathematical necessity pressing through Cantor's work toward extensional mathematics, the increasing objectification of concepts compelled, and compelled only by, his mathematical investigation of aspects of continuity and culminating in the transfinite numbers and set theory.
    [Show full text]
  • Gödel on Finitism, Constructivity and Hilbert's Program
    Lieber Herr Bernays!, Lieber Herr Gödel! Gödel on finitism, constructivity and Hilbert’s program Solomon Feferman 1. Gödel, Bernays, and Hilbert. The correspondence between Paul Bernays and Kurt Gödel is one of the most extensive in the two volumes of Gödel’s collected works devoted to his letters of (primarily) scientific, philosophical and historical interest. It ranges from 1930 to 1975 and deals with a rich body of logical and philosophical issues, including the incompleteness theorems, finitism, constructivity, set theory, the philosophy of mathematics, and post- Kantian philosophy, and contains Gödel’s thoughts on many topics that are not expressed elsewhere. In addition, it testifies to their life-long warm personal relationship. I have given a detailed synopsis of the Bernays Gödel correspondence, with explanatory background, in my introductory note to it in Vol. IV of Gödel’s Collected Works, pp. 41- 79.1 My purpose here is to focus on only one group of interrelated topics from these exchanges, namely the light that ittogether with assorted published and unpublished articles and lectures by Gödelthrows on his perennial preoccupations with the limits of finitism, its relations to constructivity, and the significance of his incompleteness theorems for Hilbert’s program.2 In that connection, this piece has an important subtext, namely the shadow of Hilbert that loomed over Gödel from the beginning to the end of his career. 1 The five volumes of Gödel’s Collected Works (1986-2003) are referred to below, respectively, as CW I, II, III, IV and V. CW I consists of the publications 1929-1936, CW II of the publications 1938-1974, CW III of unpublished essays and letters, CW IV of correspondence A-G, and CW V of correspondence H-Z.
    [Show full text]
  • Hunting the Story of Moses Schönfinkel
    Where Did Combinators Come From? Hunting the Story of Moses Schönfinkel Stephen Wolfram* Combinators were a key idea in the development of mathematical logic and the emergence of the concept of universal computation. They were introduced on December 7, 1920, by Moses Schönfinkel. This is an exploration of the personal story and intellectual context of Moses Schönfinkel, including extensive new research based on primary sources. December 7, 1920 On Tuesday, December 7, 1920, the Göttingen Mathematics Society held its regular weekly meeting—at which a 32-year-old local mathematician named Moses Schönfinkel with no known previous mathematical publications gave a talk entitled “Elemente der Logik” (“Elements of Logic”). This piece is included in S. Wolfram (2021), Combinators: A Centennial View, Wolfram Media. (wolframmedia.com/products/combinators-a-centennial-view.html) and accompanies arXiv:2103.12811 and arXiv:2102.09658. Originally published December 7, 2020 *Email: [email protected] 2 | Stephen Wolfram A hundred years later what was presented in that talk still seems in many ways alien and futuristic—and for most people almost irreducibly abstract. But we now realize that that talk gave the first complete formalism for what is probably the single most important idea of this past century: the idea of universal computation. Sixteen years later would come Turing machines (and lambda calculus). But in 1920 Moses Schönfinkel presented what he called “building blocks of logic”—or what we now call “combinators”—and then proceeded to show that by appropriately combining them one could effectively define any function, or, in modern terms, that they could be used to do universal computation.
    [Show full text]
  • 2.5. INFINITE SETS Now That We Have Covered the Basics of Elementary
    2.5. INFINITE SETS Now that we have covered the basics of elementary set theory in the previous sections, we are ready to turn to infinite sets and some more advanced concepts in this area. Shortly after Georg Cantor laid out the core principles of his new theory of sets in the late 19th century, his work led him to a trove of controversial and groundbreaking results related to the cardinalities of infinite sets. We will explore some of these extraordinary findings, including Cantor’s eponymous theorem on power sets and his famous diagonal argument, both of which imply that infinite sets come in different “sizes.” We also present one of the grandest problems in all of mathematics – the Continuum Hypothesis, which posits that the cardinality of the continuum (i.e. the set of all points on a line) is equal to that of the power set of the set of natural numbers. Lastly, we conclude this section with a foray into transfinite arithmetic, an extension of the usual arithmetic with finite numbers that includes operations with so-called aleph numbers – the cardinal numbers of infinite sets. If all of this sounds rather outlandish at the moment, don’t be surprised. The properties of infinite sets can be highly counter-intuitive and you may likely be in total disbelief after encountering some of Cantor’s theorems for the first time. Cantor himself said it best: after deducing that there are just as many points on the unit interval (0,1) as there are in n-dimensional space1, he wrote to his friend and colleague Richard Dedekind: “I see it, but I don’t believe it!” The Tricky Nature of Infinity Throughout the ages, human beings have always wondered about infinity and the notion of uncountability.
    [Show full text]
  • Project Gutenberg's Essays on the Theory of Numbers, by Richard
    Project Gutenberg’s Essays on the Theory of Numbers, by Richard Dedekind This eBook is for the use of anyone anywhere at no cost and with almost no restrictions whatsoever. You may copy it, give it away or re-use it under the terms of the Project Gutenberg License included with this eBook or online at www.gutenberg.net Title: Essays on the Theory of Numbers Author: Richard Dedekind Translator: Wooster Woodruff Beman Release Date: April 8, 2007 [EBook #21016] Language: English Character set encoding: TeX *** START OF THE PROJECT GUTENBERG EBOOK THEORY OF NUMBERS *** Produced by Jonathan Ingram, Keith Edkins and the Online Distributed Proofreading Team at http://www.pgdp.net Transcriber’s Note: The symbol 3 is used as an approximation to the au- thor’s Part-of symbol, not to be confused with the digit 3. Internal page ref- erences have been been adjusted to fit the pagination of this edition. A few typographical errors have been corrected - these are noted at the very end of the text. IN THE SAME SERIES. ON CONTINUITY AND IRRATIONAL NUMBERS, and ON THE NATURE AND MEANING OF NUMBERS. By R. Dedekind. From the German by W. W. Beman. Pages, 115. Cloth, 75 cents net (3s. 6d. net). GEOMETRIC EXERCISES IN PAPER-FOLDING. By T. Sundara Row. Edited and revised by W. W. Beman and D. E. Smith. With many half-tone engravings from photographs of actual exercises, and a package of papers for folding. Pages, circa 200. Cloth, $1.00. net (4s. 6d. net). (In Preparation.) ON THE STUDY AND DIFFICULTIES OF MATHEMATICS.
    [Show full text]
  • Study on Sets
    International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848 Study on Sets Sujeet Kumar & Ashish Kumar Gupta Department of Information and technology Dronacharya College of Engineering,Gurgaon-122001, India Email:[email protected], Email:[email protected] Set difference of U and A, denoted U \ A, Abstract- is the set of all members of Uthat are not members of A. The set difference {1,2,3} \ Set theory is the branch of mathematical logic that studies sets, which {2,3,4} is {1} , while, conversely, the set are collections of objects. Although any type of object can be collected difference {2,3,4} \ {1,2,3} is {4} . into a set, set theory is applied most often to objects that are relevant to mathematics.In this research paper we studied about Basic concepts and When A is a subset of U, the set notation, some ontology and applications. We have also study about difference U \ A is also called combinational set theory, forcing, cardinal invariants, fuzzy set theory. the complement of A inU. In this case, if We have described all the basic concepts of Set Theory. the choice of U is clear from the context, the notation Acis sometimes used instead Keywords- of U \ A, particularly if U is a universal set as in the study of Venn diagrams. Combinational ;fuzzy ; forcing; cardinals; ontology 1. INTRODUCTION Symmetric difference of sets A and B, denoted A △ B or A ⊖ B, is the set of all Set theory is the branch of mathematical logic that studies objects that are a member of exactly one sets, which are collections of objects.
    [Show full text]