Study on Sets

Total Page:16

File Type:pdf, Size:1020Kb

Study on Sets International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848 Study on Sets Sujeet Kumar & Ashish Kumar Gupta Department of Information and technology Dronacharya College of Engineering,Gurgaon-122001, India Email:[email protected], Email:[email protected] Set difference of U and A, denoted U \ A, Abstract- is the set of all members of Uthat are not members of A. The set difference {1,2,3} \ Set theory is the branch of mathematical logic that studies sets, which {2,3,4} is {1} , while, conversely, the set are collections of objects. Although any type of object can be collected difference {2,3,4} \ {1,2,3} is {4} . into a set, set theory is applied most often to objects that are relevant to mathematics.In this research paper we studied about Basic concepts and When A is a subset of U, the set notation, some ontology and applications. We have also study about difference U \ A is also called combinational set theory, forcing, cardinal invariants, fuzzy set theory. the complement of A inU. In this case, if We have described all the basic concepts of Set Theory. the choice of U is clear from the context, the notation Acis sometimes used instead Keywords- of U \ A, particularly if U is a universal set as in the study of Venn diagrams. Combinational ;fuzzy ; forcing; cardinals; ontology 1. INTRODUCTION Symmetric difference of sets A and B, denoted A △ B or A ⊖ B, is the set of all Set theory is the branch of mathematical logic that studies objects that are a member of exactly one sets, which are collections of objects. Although any type of of A and B (elements which are in one of object can be collected into a set, set theory is applied most the sets, but not in both). For instance, for often to objects that are relevant to mathematics. The the sets{1,2,3} and {2,3,4} , the language of set theory can be used in the definitions of symmetric difference set is {1,4} . It is the nearly all mathematical objects. set difference of the union and the intersection, (A ∪ B) \ (A ∩ B) or(A \ B) ∪ 1.1 HISTORY (B \ A). Since the 5th century BC, beginning with Greek Cartesianproduct of A and B, mathematician Zeno of Elea in the West and early Indian denoted A × B, is the set whose members mathematicians in the East, mathematicians had struggled are all possible ordered with the concept of infinity. Especially notable is the work pairs (a,b) where a is a member of Bernard Bolzano in the first half of the 19th century.[3] of A and b is a member of B. The cartesian Modern understanding of infinity began in 1867–71, with product of{1, 2} and {red, white} is {(1, Cantor's work on number theory. An 1872 meeting between red), (1, white), (2, red), (2, white)}. Cantor and Richard Dedekind influenced Cantor's thinking and culminated in Cantor's 1874 paper. Power set of a set A is the set whose members are all possible subsets ofA. For 1.2 BASIC CONCEPTS example, the power set of {1, 2} is { {}, Union of the sets A and B, denoted A ∪ B, {1}, {2}, {1,2} } . is the set of all objects that are a member 1.3 SOME ONTOLOGY of A, or B, or both. The union of {1, 2, 3} and {2, 3, 4} is the set {1, 2, 3, 4} . A set is pure if all of its members are sets, all members of its members are sets, and so on. Intersection of the sets A and B, For example, the set {{}} containing only the denoted A ∩ B, is the set of all objects that empty set is a nonempty pure set. In modern are members of both A and B. The set theory, it is common to restrict attention to intersection of {1, 2, 3} and{2, 3, 4} is the the von Neumann universe of pure sets, and set {2, 3} . Study on Sets Sujeet Kumar & Ashish Kumar Gupta P a g e | 1792 International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848 many systems of axiomatic set theory are Kripke–Platek set theory, which designed to axiomatize the pure sets only. omits the axioms of There are many technical advantages to this infinity, powerset, and choice, restriction, and little generality is lost, because and weakens the axiom schemata essentially all mathematical concepts can be of separation and replacement. modeled by pure sets. Sets in the von Neumann universe are organized into a Sets and proper classes. These cumulative hierarchy, based on how deeply include Von Neumann–Bernays–Gödel their members, members of members, etc. are set theory, which has the same strength nested. Each set in this hierarchy is assigned as ZFC for theorems about sets alone, (by transfinite recursion) an ordinal number α, and Morse-Kelley set theory and Tarski– known as its rank. The rank of a pure set X is Grothendieck set theory, both of which defined to be the least upper bound of all are stronger than ZFC. successors of ranks of members of X. For 1.5 APPLICATIONS example, the empty set is assigned rank 0, while the set {{}} containing only the empty Many mathematical concepts can be defined set is assigned rank 1. For each ordinal α, the precisely using only set theoretic concepts. For set Vα is defined to consist of all pure sets example, mathematical structures as diverse with rank less than α. The entire von Neumann as graphs, manifolds, rings, and vector universe is denoted V. spaces can all be defined as sets satisfying various (axiomatic) 1.4 AXIOMATRIC SET THEORY properties. Equivalence and order relations are Elementary set theory can be studied ubiquitous in mathematics, and the theory of informally and intuitively, and so can be mathematical relations can be described in set taught in primary schools using Venn theory. diagrams. The intuitive approach tacitly Set theory is also a promising foundational assumes that a set may be formed from the system for much of mathematics. Since the class of all objects satisfying any particular publication of the first volume of Principia defining condition. This assumption gives rise Mathematica, it has been claimed that most or to paradoxes, the simplest and best known of even all mathematical theorems can be derived which are Russell's paradox and the Burali- using an aptly designed set of axioms for set Forti paradox. Axiomatic set theory was theory, augmented with many definitions, originally devised to rid set theory of such using first or second order logic. For example, paradoxes. properties of the natural and real numbers can The most widely studied systems of axiomatic be derived within set theory, as each number set theory imply that all sets form a cumulative system can be identified with a set hierarchy. Such systems come in two flavors, of equivalence classes under a those whose ontologyconsists of: suitable equivalence relation whose field is some infinite set. Sets alone. This includes the most common axiomatic set theory, Zermelo– Set theory as a foundation for mathematical Fraenkel set theory (ZFC), which analysis, topology, abstract algebra, includes the axiom of choice. Fragments and discrete mathematics is likewise of ZFC include: uncontroversial; mathematicians accept that (in principle) theorems in these areas can be Zermelo set theory, which derived from the relevant definitions and the replaces the axiom schema of axioms of set theory. Few full derivations of replacement with that complex mathematical theorems from set of separation; theory have been formally verified, however, because such formal derivations are often General set theory, a small much longer than the natural language proofs fragment of Zermelo set mathematicians commonly present. One theory sufficient for the Peano verification project, Metamath, includes axioms and finite sets; Study on Sets Sujeet Kumar & Ashish Kumar Gupta P a g e | 1793 International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848 derivations of more than 10,000 theorems In fuzzy set theory this condition was relaxed starting from the ZFC axioms and using first by Lotfi A. Zadeh so an object has a degree of order logic. membership in a set, a number between 0 and 1. For example, the degree of membership of a 1.6 AREAS OF STUDY person in the set of "tall people" is more Combinatorial set theory flexible than a simple yes or no answer and can be a real number such as 0.75. Main article: Infinitarycombinatorics Inner model theory[edit] Combinatorial set theory concerns extensions of finite combinatorics to infinite Main article: Inner model theory sets. This includes the study of cardinal An inner model of Zermelo–Fraenkel set arithmetic and the study of extensions theory (ZF) is a transitive class that includes of Ramsey's theorem such as the Erdős–Rado all the ordinals and satisfies all the axioms of theorem. ZF. The canonical example is the constructible Descriptive set theory universe L developed by Gödel. One reason that the study of inner models is of interest is Main article: Descriptive set theory that it can be used to prove consistency results. For example, it can be shown that regardless Descriptive set theory is the study of subsets of whether a model V of ZF satisfies of the real line and, more generally, subsets the continuum hypothesisor the axiom of of Polish spaces. It begins with the study choice, the inner model L constructed inside of pointclasses in the Borel hierarchy and the original model will satisfy both the extends to the study of more complex generalized continuum hypothesis and the hierarchies such as the projective axiom of choice.
Recommended publications
  • Does the Category of Multisets Require a Larger Universe Than
    Pure Mathematical Sciences, Vol. 2, 2013, no. 3, 133 - 146 HIKARI Ltd, www.m-hikari.com Does the Category of Multisets Require a Larger Universe than that of the Category of Sets? Dasharath Singh (Former affiliation: Indian Institute of Technology Bombay) Department of Mathematics, Ahmadu Bello University, Zaria, Nigeria [email protected] Ahmed Ibrahim Isah Department of Mathematics Ahmadu Bello University, Zaria, Nigeria [email protected] Alhaji Jibril Alkali Department of Mathematics Ahmadu Bello University, Zaria, Nigeria [email protected] Copyright © 2013 Dasharath Singh et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract In section 1, the concept of a category is briefly described. In section 2, it is elaborated how the concept of category is naturally intertwined with the existence of a universe of discourse much larger than what is otherwise sufficient for a large part of mathematics. It is also remarked that the extended universe for the category of sets is adequate for the category of multisets as well. In section 3, fundamentals required for adequately describing a category are extended to defining a multiset category, and some of its distinctive features are outlined. Mathematics Subject Classification: 18A05, 18A20, 18B99 134 Dasharath Singh et al. Keywords: Category, Universe, Multiset Category, objects. 1. Introduction to categories The history of science and that of mathematics, in particular, records that at times, a by- product may turn out to be of greater significance than the main objective of a research.
    [Show full text]
  • Set Theory, by Thomas Jech, Academic Press, New York, 1978, Xii + 621 Pp., '$53.00
    BOOK REVIEWS 775 BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 3, Number 1, July 1980 © 1980 American Mathematical Society 0002-9904/80/0000-0 319/$01.75 Set theory, by Thomas Jech, Academic Press, New York, 1978, xii + 621 pp., '$53.00. "General set theory is pretty trivial stuff really" (Halmos; see [H, p. vi]). At least, with the hindsight afforded by Cantor, Zermelo, and others, it is pretty trivial to do the following. First, write down a list of axioms about sets and membership, enunciating some "obviously true" set-theoretic principles; the most popular Hst today is called ZFC (the Zermelo-Fraenkel axioms with the axiom of Choice). Next, explain how, from ZFC, one may derive all of conventional mathematics, including the general theory of transfinite cardi­ nals and ordinals. This "trivial" part of set theory is well covered in standard texts, such as [E] or [H]. Jech's book is an introduction to the "nontrivial" part. Now, nontrivial set theory may be roughly divided into two general areas. The first area, classical set theory, is a direct outgrowth of Cantor's work. Cantor set down the basic properties of cardinal numbers. In particular, he showed that if K is a cardinal number, then 2", or exp(/c), is a cardinal strictly larger than K (if A is a set of size K, 2* is the cardinality of the family of all subsets of A). Now starting with a cardinal K, we may form larger cardinals exp(ic), exp2(ic) = exp(exp(fc)), exp3(ic) = exp(exp2(ic)), and in fact this may be continued through the transfinite to form expa(»c) for every ordinal number a.
    [Show full text]
  • Richard Dedekind English Version
    RICHARD DEDEKIND (October 6, 1831 – February 12, 1916) by HEINZ KLAUS STRICK, Germany The biography of JULIUS WILHELM RICHARD DEDEKIND begins and ends in Braunschweig (Brunswick): The fourth child of a professor of law at the Collegium Carolinum, he attended the Martino-Katherineum, a traditional gymnasium (secondary school) in the city. At the age of 16, the boy, who was also a highly gifted musician, transferred to the Collegium Carolinum, an educational institution that would pave the way for him to enter the university after high school. There he prepared for future studies in mathematics. In 1850, he went to the University at Göttingen, where he enthusiastically attended lectures on experimental physics by WILHELM WEBER, and where he met CARL FRIEDRICH GAUSS when he attended a lecture given by the great mathematician on the method of least squares. GAUSS was nearing the end of his life and at the time was involved primarily in activities related to astronomy. After only four semesters, DEDEKIND had completed a doctoral dissertation on the theory of Eulerian integrals. He was GAUSS’s last doctoral student. (drawings © Andreas Strick) He then worked on his habilitation thesis, in parallel with BERNHARD RIEMANN, who had also received his doctoral degree under GAUSS’s direction not long before. In 1854, after obtaining the venia legendi (official permission allowing those completing their habilitation to lecture), he gave lectures on probability theory and geometry. Since the beginning of his stay in Göttingen, DEDEKIND had observed that the mathematics faculty, who at the time were mostly preparing students to become secondary-school teachers, had lost contact with current developments in mathematics; this in contrast to the University of Berlin, at which PETER GUSTAV LEJEUNE DIRICHLET taught.
    [Show full text]
  • Biography Paper – Georg Cantor
    Mike Garkie Math 4010 – History of Math UCD Denver 4/1/08 Biography Paper – Georg Cantor Few mathematicians are house-hold names; perhaps only Newton and Euclid would qualify. But there is a second tier of mathematicians, those whose names might not be familiar, but whose discoveries are part of everyday math. Examples here are Napier with logarithms, Cauchy with limits and Georg Cantor (1845 – 1918) with sets. In fact, those who superficially familier with Georg Cantor probably have two impressions of the man: First, as a consequence of thinking about sets, Cantor developed a theory of the actual infinite. And second, that Cantor was a troubled genius, crippled by Freudian conflict and mental illness. The first impression is fundamentally true. Cantor almost single-handedly overturned the Aristotle’s concept of the potential infinite by developing the concept of transfinite numbers. And, even though Bolzano and Frege made significant contributions, “Set theory … is the creation of one person, Georg Cantor.” [4] The second impression is mostly false. Cantor certainly did suffer from mental illness later in his life, but the other emotional baggage assigned to him is mostly due his early biographers, particularly the infamous E.T. Bell in Men Of Mathematics [7]. In the racially charged atmosphere of 1930’s Europe, the sensational story mathematician who turned the idea of infinity on its head and went crazy in the process, probably make for good reading. The drama of the controversy over Cantor’s ideas only added spice. 1 Fortunately, modern scholars have corrected the errors and biases in older biographies.
    [Show full text]
  • The Logic of Brouwer and Heyting
    THE LOGIC OF BROUWER AND HEYTING Joan Rand Moschovakis Intuitionistic logic consists of the principles of reasoning which were used in- formally by L. E. J. Brouwer, formalized by A. Heyting (also partially by V. Glivenko), interpreted by A. Kolmogorov, and studied by G. Gentzen and K. G¨odel during the first third of the twentieth century. Formally, intuitionistic first- order predicate logic is a proper subsystem of classical logic, obtained by replacing the law of excluded middle A ∨¬A by ¬A ⊃ (A ⊃ B); it has infinitely many dis- tinct consistent axiomatic extensions, each necessarily contained in classical logic (which is axiomatically complete). However, intuitionistic second-order logic is inconsistent with classical second-order logic. In terms of expressibility, the intu- itionistic logic and language are richer than the classical; as G¨odel and Gentzen showed, classical first-order arithmetic can be faithfully translated into the nega- tive fragment of intuitionistic arithmetic, establishing proof-theoretical equivalence and clarifying the distinction between the classical and constructive consequences of mathematical axioms. The logic of Brouwer and Heyting is effective. The conclusion of an intuitionistic derivation holds with the same degree of constructivity as the premises. Any proof of a disjunction of two statements can be effectively transformed into a proof of one of the disjuncts, while any proof of an existential statement contains an effec- tive prescription for finding a witness. The negation of a statement is interpreted as asserting that the statement is not merely false but absurd, i.e., leads to a contradiction. Brouwer objected to the general law of excluded middle as claim- ing a priori that every mathematical problem has a solution, and to the general law ¬¬A ⊃ A of double negation as asserting that every consistent mathematical statement holds.
    [Show full text]
  • On Families of Mutually Exclusive Sets
    ANNALS OF MATHEMATICS Vol. 44, No . 2, April, 1943 ON FAMILIES OF MUTUALLY EXCLUSIVE SETS BY P . ERDÖS AND A. TARSKI (Received August 11, 1942) In this paper we shall be concerned with a certain particular problem from the general theory of sets, namely with the problem of the existence of families of mutually exclusive sets with a maximal power . It will turn out-in a rather unexpected way that the solution of these problems essentially involves the notion of the so-called "inaccessible numbers ." In this connection we shall make some general remarks regarding inaccessible numbers in the last section of our paper . §1. FORMULATION OF THE PROBLEM . TERMINOLOGY' The problem in which we are interested can be stated as follows : Is it true that every field F of sets contains a family of mutually exclusive sets with a maximal power, i .e . a family O whose cardinal number is not smaller than the cardinal number of any other family of mutually exclusive sets contained in F . By a field of sets we understand here as usual a family F of sets which to- gether with every two sets X and Y contains also their union X U Y and their difference X - Y (i.e. the set of those elements of X which do not belong to Y) among its elements . A family O is called a family of mutually exclusive sets if no set X of X of O is empty and if any two different sets of O have an empty inter- section. A similar problem can be formulated for other families e .g .
    [Show full text]
  • Paradefinite Zermelo-Fraenkel Set Theory
    Paradefinite Zermelo-Fraenkel Set Theory: A Theory of Inconsistent and Incomplete Sets MSc Thesis (Afstudeerscriptie) written by Hrafn Valt´yrOddsson (born February 28'th 1991 in Selfoss, Iceland) under the supervision of Dr Yurii Khomskii, and submitted to the Examinations Board in partial fulfillment of the requirements for the degree of MSc in Logic at the Universiteit van Amsterdam. Date of the public defense: Members of the Thesis Committee: April 16, 2021 Dr Benno van den Berg (chair) Dr Yurii Khomskii (supervisor) Prof.dr Benedikt L¨owe Dr Luca Incurvati Dr Giorgio Venturi Contents Abstract iii Acknowledgments iv Introduction v I Logic 1 1 An Informal Introduction to the Logic 2 1.1 Simple partial logic . .2 1.2 Adding an implication . .4 1.3 Dealing with contradictions . .5 2 The Logic BS4 8 2.1 Syntax . .8 2.2 Semantics . .8 2.3 Defined connectives . 10 2.4 Proofs in BS4............................. 14 3 Algebraic Semantics 16 3.1 Twist-structures . 16 3.2 Twist-valued models . 18 II Paradefinite Zermelo{Fraenkel Set Theory 20 4 The Axioms 21 4.1 Extensionality . 21 4.2 Classes and separation . 22 4.3 Classical sets . 24 4.4 Inconsistent and incomplete sets . 29 4.5 Replacement . 31 4.6 Union . 32 4.7 Pairing . 33 i 4.8 Ordered pairs and relations . 34 4.9 Functions . 36 4.10 Power set . 37 4.11 Infinity and ordinals . 39 4.12 Foundation . 40 4.13 Choice . 41 4.14 The anti-classicality axiom . 42 4.15 The theories PZFC and BZF C .................. 43 5 A model of BZF C 44 5.1 T/F-models of set theory .
    [Show full text]
  • Completeness
    Completeness The strange case of Dr. Skolem and Mr. G¨odel∗ Gabriele Lolli The completeness theorem has a history; such is the destiny of the impor- tant theorems, those for which for a long time one does not know (whether there is anything to prove and) what to prove. In its history, one can di- stinguish at least two main paths; the first one covers the slow and difficult comprehension of the problem in (what historians consider) the traditional development of mathematical logic canon, up to G¨odel'sproof in 1930; the second path follows the L¨owenheim-Skolem theorem. Although at certain points the two paths crossed each other, they started and continued with their own aims and problems. A classical topos of the history of mathema- tical logic concerns the how and the why L¨owenheim, Skolem and Herbrand did not discover the completeness theorem, though they proved it, or whe- ther they really proved, or perhaps they actually discovered, completeness. In following these two paths, we will not always respect strict chronology, keeping the two stories quite separate, until the crossing becomes decisive. In modern pre-mathematical logic, the notion of completeness does not appear. There are some interesting speculations in Kant which, by some stretching, could be realized as bearing some relation with the problem; Kant's remarks, however, are probably more related with incompleteness, in connection with his thoughts on the derivability of transcendental ideas (or concepts of reason) from categories (the intellect's concepts) through a pas- sage to the limit; thus, for instance, the causa prima, or the idea of causality, is the limit of implication, or God is the limit of disjunction, viz., the catego- ry of \comunance".
    [Show full text]
  • The Wadge Hierarchy : Beyond Borel Sets
    Unicentre CH-1015 Lausanne http://serval.unil.ch Year : 2016 The Wadge Hierarchy : Beyond Borel Sets FOURNIER Kevin FOURNIER Kevin, 2016, The Wadge Hierarchy : Beyond Borel Sets Originally published at : Thesis, University of Lausanne Posted at the University of Lausanne Open Archive http://serval.unil.ch Document URN : urn:nbn:ch:serval-BIB_B205A3947C037 Droits d’auteur L'Université de Lausanne attire expressément l'attention des utilisateurs sur le fait que tous les documents publiés dans l'Archive SERVAL sont protégés par le droit d'auteur, conformément à la loi fédérale sur le droit d'auteur et les droits voisins (LDA). A ce titre, il est indispensable d'obtenir le consentement préalable de l'auteur et/ou de l’éditeur avant toute utilisation d'une oeuvre ou d'une partie d'une oeuvre ne relevant pas d'une utilisation à des fins personnelles au sens de la LDA (art. 19, al. 1 lettre a). A défaut, tout contrevenant s'expose aux sanctions prévues par cette loi. Nous déclinons toute responsabilité en la matière. Copyright The University of Lausanne expressly draws the attention of users to the fact that all documents published in the SERVAL Archive are protected by copyright in accordance with federal law on copyright and similar rights (LDA). Accordingly it is indispensable to obtain prior consent from the author and/or publisher before any use of a work or part of a work for purposes other than personal use within the meaning of LDA (art. 19, para. 1 letter a). Failure to do so will expose offenders to the sanctions laid down by this law.
    [Show full text]
  • Georg Cantor English Version
    GEORG CANTOR (March 3, 1845 – January 6, 1918) by HEINZ KLAUS STRICK, Germany There is hardly another mathematician whose reputation among his contemporary colleagues reflected such a wide disparity of opinion: for some, GEORG FERDINAND LUDWIG PHILIPP CANTOR was a corruptor of youth (KRONECKER), while for others, he was an exceptionally gifted mathematical researcher (DAVID HILBERT 1925: Let no one be allowed to drive us from the paradise that CANTOR created for us.) GEORG CANTOR’s father was a successful merchant and stockbroker in St. Petersburg, where he lived with his family, which included six children, in the large German colony until he was forced by ill health to move to the milder climate of Germany. In Russia, GEORG was instructed by private tutors. He then attended secondary schools in Wiesbaden and Darmstadt. After he had completed his schooling with excellent grades, particularly in mathematics, his father acceded to his son’s request to pursue mathematical studies in Zurich. GEORG CANTOR could equally well have chosen a career as a violinist, in which case he would have continued the tradition of his two grandmothers, both of whom were active as respected professional musicians in St. Petersburg. When in 1863 his father died, CANTOR transferred to Berlin, where he attended lectures by KARL WEIERSTRASS, ERNST EDUARD KUMMER, and LEOPOLD KRONECKER. On completing his doctorate in 1867 with a dissertation on a topic in number theory, CANTOR did not obtain a permanent academic position. He taught for a while at a girls’ school and at an institution for training teachers, all the while working on his habilitation thesis, which led to a teaching position at the university in Halle.
    [Show full text]
  • The Development of Mathematical Logic from Russell to Tarski: 1900–1935
    The Development of Mathematical Logic from Russell to Tarski: 1900–1935 Paolo Mancosu Richard Zach Calixto Badesa The Development of Mathematical Logic from Russell to Tarski: 1900–1935 Paolo Mancosu (University of California, Berkeley) Richard Zach (University of Calgary) Calixto Badesa (Universitat de Barcelona) Final Draft—May 2004 To appear in: Leila Haaparanta, ed., The Development of Modern Logic. New York and Oxford: Oxford University Press, 2004 Contents Contents i Introduction 1 1 Itinerary I: Metatheoretical Properties of Axiomatic Systems 3 1.1 Introduction . 3 1.2 Peano’s school on the logical structure of theories . 4 1.3 Hilbert on axiomatization . 8 1.4 Completeness and categoricity in the work of Veblen and Huntington . 10 1.5 Truth in a structure . 12 2 Itinerary II: Bertrand Russell’s Mathematical Logic 15 2.1 From the Paris congress to the Principles of Mathematics 1900–1903 . 15 2.2 Russell and Poincar´e on predicativity . 19 2.3 On Denoting . 21 2.4 Russell’s ramified type theory . 22 2.5 The logic of Principia ......................... 25 2.6 Further developments . 26 3 Itinerary III: Zermelo’s Axiomatization of Set Theory and Re- lated Foundational Issues 29 3.1 The debate on the axiom of choice . 29 3.2 Zermelo’s axiomatization of set theory . 32 3.3 The discussion on the notion of “definit” . 35 3.4 Metatheoretical studies of Zermelo’s axiomatization . 38 4 Itinerary IV: The Theory of Relatives and Lowenheim’s¨ Theorem 41 4.1 Theory of relatives and model theory . 41 4.2 The logic of relatives .
    [Show full text]
  • Equivalents to the Axiom of Choice and Their Uses A
    EQUIVALENTS TO THE AXIOM OF CHOICE AND THEIR USES A Thesis Presented to The Faculty of the Department of Mathematics California State University, Los Angeles In Partial Fulfillment of the Requirements for the Degree Master of Science in Mathematics By James Szufu Yang c 2015 James Szufu Yang ALL RIGHTS RESERVED ii The thesis of James Szufu Yang is approved. Mike Krebs, Ph.D. Kristin Webster, Ph.D. Michael Hoffman, Ph.D., Committee Chair Grant Fraser, Ph.D., Department Chair California State University, Los Angeles June 2015 iii ABSTRACT Equivalents to the Axiom of Choice and Their Uses By James Szufu Yang In set theory, the Axiom of Choice (AC) was formulated in 1904 by Ernst Zermelo. It is an addition to the older Zermelo-Fraenkel (ZF) set theory. We call it Zermelo-Fraenkel set theory with the Axiom of Choice and abbreviate it as ZFC. This paper starts with an introduction to the foundations of ZFC set the- ory, which includes the Zermelo-Fraenkel axioms, partially ordered sets (posets), the Cartesian product, the Axiom of Choice, and their related proofs. It then intro- duces several equivalent forms of the Axiom of Choice and proves that they are all equivalent. In the end, equivalents to the Axiom of Choice are used to prove a few fundamental theorems in set theory, linear analysis, and abstract algebra. This paper is concluded by a brief review of the work in it, followed by a few points of interest for further study in mathematics and/or set theory. iv ACKNOWLEDGMENTS Between the two department requirements to complete a master's degree in mathematics − the comprehensive exams and a thesis, I really wanted to experience doing a research and writing a serious academic paper.
    [Show full text]