Eucalyptus Morrisbyi

Total Page:16

File Type:pdf, Size:1020Kb

Eucalyptus Morrisbyi Eucalyptus morrisbyi Image removed, due to copyright morrisbys gum T A S M A N I A N T H R E A T E N E D S P E C I E S L I S T I N G S T A T E M E N T Scientific name: Eucalyptus morrisbyi Brett, Pap. & Proc. Roy. Soc. Tasmania 129: pl. 14–15 (1939) Common name: morrisbys gum Group: vascular plant, dicotyledon, family Myrtaceae Status: Threatened Species Protection Act 1995: endangered Environment Protection and Biodiversity Conservation Act 1999: Endangered Distribution Biogeographic origin: endemic to Tasmania Tasmanian Natural Resource Management Region: South Tasmanian IBRA bioregions (V6): South East Images removed due to copyright Figure 1. Distribution of Eucalyptus morrisbyi, showing Plate 1. Eucalyptus morrisbyi: buds, capsules, adult & IBRA bioregions juvenile leaves (scale bar=2cm) Threatened Species Section – Department of Primary Industries, Parks, Water and Environment Listing Statement for Eucalyptus morrisbyi (morrisbys gum) SUMMARY: Eucalyptus morrisbyi (morrisbys gum) seed. The Calverts Hill stand in particular has a is a small tree endemic to Tasmania’s southeast. large number of seedlings that have been It is only known from two locations 21 km repressed by continuous browsing to ground apart; in the Government Hills near Risdon, level and potentially may be many years old. and the fragmented Cremorne subpopulation Plants in the Risdon stand have resprouted which now consists of a main stand at Calverts from lignotubers following a major dieback Hill and several small remnant stands following event and genetic testing of stems has past clearing for residential and agricultural demonstrated considerable clonality in the purposes. The Risdon and the main Calverts stand (Jones et al. 2005). Hill stands have suffered rapid dramatic declines in recent decades with the loss of all Eucalyptus morrisbyi is susceptible to drought, but a few mature trees which are all located at being the first of the local eucalypts to show Calverts Hill. The Risdon stand is now signs of stress following drought events, with considered to be functionally extinct as it no stress symptoms particularly evident in trees longer produces seed. This leaves the species growing on drier sites. Stressed plants including with fewer than 30 mature trees in the wild that any regrowth are more susceptible to vertebrate produce seed. The species appears to have been and insect browsing, often rapidly resulting in contracting to wetter gullies over time, death or dieback. exacerbated by the recent warmer and drier conditions associated with climate change. The There are considerable genetic differences species is highly palatable and once stressed, between the Calverts Hill and Risdon stands. recovery is hampered by vertebrate and insect Plants from the Risdon stand are less palatable browsing that if left unchecked leads to the to vertebrate browsing as demonstrated in death of trees within years. The smaller mixed plantings (Mann et al. 2012). However, roadside stands in the Cremorne area are plants from the Risdon stand have been shown additionally at risk from clearing to improve to be more susceptible to myrtle rust road safety and the small Lumeah Point stand (Austropuccinia psidii) (newly introduced to cannot expand due to existing urban Tasmania) than those from Calverts Hill (Potts development. While at imminent risk of et al. 2016). Plants from the two stands can be extinction in the wild, the species is not likely to distinguished using molecular techniques (Jones face extinction in the short to medium term due et al. 2005). Some molecular differences are also to ornamental and ex situ plantings. The most evident between plants from the Calverts Hill immediate needs are to protect wild and stand and its associated remnant stands in the planted seedlings at Calverts Hill to allow them Cremorne area. Despite the small size of the to reach maturity and to ensure that the genetic Risdon subpopulation, variation remains high variability of the species is maintained by and it is not showing signs of inbreeding. This supplementing and managing seed collections may be a consequence of inbreeding being that can be used for future conservation limited by the high levels of self-incompatibility actions. shown by the species (Potts & Savva 1988) and the longevity of the existing genotypes. Although Eucalyptus morrisbyi hybridises with IDENTIFICATION AND ECOLOGY Eucalyptus viminalis in the wild, studies have not Eucalyptus morrisbyi is a small tree, growing to a revealed significant contamination of its gene height of approximately 6 to 12 m. Seedlings pool. take about ten years to produce flowers, a relatively long time for eucalypts. Peak Description flowering occurs from February to May While Eucalyptus morrisbyi is generally rough (Williams and Potts 1996). The species is more barked at the base of the trunk, the old bark is or less well adapted to fire, which stimulates shed further up leaving the upper part of the release of seed from capsules for regeneration. trunk and the branches smooth and brown, If flowering is compromised, the canopy held white-grey or pink-grey in colour. The bluish- seedbank is only viable for about two years as green juvenile leaves are glaucous, unstalked capsules become too woody to release their Threatened Species Section – Department of Primary Industries, Parks, Water and Environment 2 Listing Statement for Eucalyptus morrisbyi (morrisbys gum) and rounded, 2 to 3 cm long and 2 to 4 cm prone, low rainfall area. It is associated with wide. They are arranged in opposite pairs. The poor soils, with the Calverts Hill and associated adult leaves are stalked, less glaucous and remnant stands occurring on recent sands arranged alternately. They are about 5 to 10 cm overlying dolerite and the Risdon stand on long and 1.5 to 4 cm wide. The flower buds Permian mudstone. The species tends to occur have a pointed cap and are glaucous and shortly in relatively pure stands with a number of other stalked. They arise in clusters of three from the eucalypt species occurring nearby. leaf axils. The flowers are cream and develop into cylindrical, glaucous, woody capsules, RESERVATION STATUS 9 to 11 mm long and 6 mm wide (Plate 1). Eucalyptus morrisbyi is formally protected in the [description based on Curtis & Morris 1975] Calverts Hill Nature Reserve and the East Risdon State Reserve. The Lumeah Point stand Survey techniques is on a coastal reserve that has been leased to This small tree can be identified at any time of the Clarence City Council for recreational use. the year, though mature trees (with capsules) are required to confirm the identity of this POPULATION PARAMETERS species. Number of subpopulations = 2 (1 reproductive) Number of locations = 2 (1 reproductive) Confusing Species Extent of occurrence ~45 km2 Eucalyptus morrisbyi can be confused with the Area of occupancy ~ 12.5 ha closely related Eucalyptus gunnii (cider gum), and (0.5 ha for mature individuals) Eucalyptus cordata (heart leaved silver gum). It Area of occupancy (as per IUCN criteria) = 8 km2 can be distinguished from Eucalyptus gunnii by (or 4 km2 as reproductive in only 1 location) its coastal lowland habitat and presence of No. of mature individuals < 30 warty protuberances on buds and capsules. It Eucalyptus morrisbyi is known only from two can be distinguished from Eucalyptus cordata by subpopulations in the wild (Table 1). In the its smaller capsules that occur in the axils of Cremorne area, the subpopulation has been adult leaves only. Refer also to Wiltshire and fragmented into the Calverts Hill stand, and Potts (2007). Eucalyptus morrisbyi can hybridise several small remnant stands approximately with Eucalyptus viminalis and some stands and 2 km away. The species is no longer present at older plantings contain a significant proportion some sites where it was collected in the past in of hybrid trees. The hybrids are readily the Cremorne area. Numbers in the smaller distinguished by their narrower and less remnant stands have been supplemented by glaucous juvenile leaves. plantings and other plantings in the area have been made. A census of trees in the Risdon DISTRIBUTION AND HABITAT subpopulation in 1996 showed 69 trees with Eucalyptus morrisbyi is endemic to Tasmania with adult foliage though less than 20 of these were wild occurrences known only from the carrying seed. This stand is now functionally Cremorne area, with a main stand at Calverts extinct with only weak, spindly, non- Hill and several small nearby remnant stands, as reproductive lignotuber regrowth remaining. well as from a small subpopulation 21 km away The Calverts Hill stand is close to being in the Government Hills near Risdon (Figure 1, functionally extinct. There were 1915 mature Table 1). A number of conservation plantings trees in the Calverts Hill stand in 1991 and only have been made and Eucalyptus morrisbyi has seven mature trees were still alive in early 2018 been widely planted as a specimen tree and (one dying) following a dramatic decline that ornamental. started after 2005 (and was first reported in 2014 at which time 70 to 80% of mature trees In natural stands, Eucalyptus morrisbyi occurs in had already died). Seed-bearing mature coastal, dry sclerophyll woodland on gentle to individuals can still be found in the small hilly slopes where it tends to be restricted to remnant patches in the Cremorne area though gullies that offer some relief in this drought Threatened Species Section – Department of Primary Industries, Parks, Water and Environment 3 Listing
Recommended publications
  • Eucalyptus Gunnii Subsp. Divaricata (Mcaulay & Brett) B.M
    Listing StatementEucalyptus for Eucalyptus gunnii gunnii subsp. subsp. divaricata (miena divaricata cider gum) miena cider gum T A S M A N I A N T H R E A T E N E D S P E C I E S L I S T I N G S T A T E M E N T Image by B. Potts Scientific name: Eucalyptus gunnii subsp. divaricata (McAulay & Brett) B.M. Potts, Pap. Proc. R. Soc. Tasm . 135: 57 (2001) Common name: miena cider gum (Wapstra et al. 2005) Group: vascular plant, dicotyledon, family Myrtaceae Status: Threatened Species Protection Act 1995 : endangered Environment Protection and Biodiversity Conservation Act 1999 : Endangered Distribution Endemic status: Endemic to Tasmania Tasmanian NRM Region: South Figure 1. Distribution of specimens attributed to Plate 1 . Eucalyptus gunnii subsp. divaricata Eucalyptus gunnii subsp. divaricata . The northern and (Image by J. Calder) western most records require verification. 1 Threatened Species Section – Department of Primary Industries, Parks, Water and Environment Listing Statement for Eucalyptus gunnii subsp. divaricata (miena cider gum) IDENTIFICATION AND ECOLOGY in drought conditions or in stands disturbed by Eucalyptus gunnii subsp. divaricata is a small to stock grazing. While Eucalyptus gunnii subsp. medium sized tree in the Myrtaceae family divaricata is highly frost resistant, it is the first (Plate 1). It is endemic to Tasmania’s Central eucalypt in the area to display symptoms Plateau where it mostly grows on the edges of following drought, leading to the death of frost hollows (Potts et al. 2001). Eucalyptus gunnii mature trees in relatively large patches since the subsp.
    [Show full text]
  • Phytothérapie Anti-Infectieuse Springer Paris Berlin Heidelberg New York Hong Kong Londres Milan Tokyo Paul Goetz Kamel Ghedira
    Phytothérapie anti-infectieuse Springer Paris Berlin Heidelberg New York Hong Kong Londres Milan Tokyo Paul Goetz Kamel Ghedira Phytothérapie anti-infectieuse Paul Goetz Docteur en médecine Enseignant en phytothérapie Faculté de médecine Paris XIII-Bobigny 58, route des Romains 67200 Strasbourg Kamel Ghedira Professeur à la faculté de pharmacie Université de Monastir Laboratoire de Pharmacognosie Rue Avicenne 5000 Monastir-Tunisie ISBN : 978-2-8178-0057-8 Springer Paris Berlin Heidelberg New York © Springer-Verlag France, Paris, 2012 Springer-Verlag est membre du groupe Springer Science + Business Media Cet ouvrage est soumis au copyright. Tous droits réservés, notamment la reproduction et la repré- sentation, la traduction, la réimpression, l’exposé, la reproduction des illustrations et des tableaux, la transmission par voie d’enregistrement sonore ou visuel, la reproduction par microfilm ou tout autre moyen ainsi que la conservation des banques de données. La loi française sur le copyright du 9 septembre 1965 dans la version en vigueur n’autorise une reproduction intégrale ou partielle que dans certains cas, et en principe moyennant le paiement des droits. Toutes représentation, reproduction, contrefaçon ou conservation dans une banque de données par quelques procédé que ce soit est sanctionnée par la loi pénale sur le copyright. L’utilisation dans cet ouvrage de désignations, dénominations commerciales, marques de fabrique, etc. même sans spécification ne signifie pas que ces termes soient libres de la législation sur les marques de fabrique et la protection des marques et qu’ils puissent être utilisés par chacun. La maison d’édition décline toute responsabilité quant à l’exactitude des indications de dosage et des modes d’emplois.
    [Show full text]
  • CBD Sixth National Report
    Australia’s Sixth National Report to the Convention on Biological Diversity 2014 2018 ‒ 24 March 2020 © Commonwealth of Australia 2020 Ownership of intellectual property rights Unless otherwise noted, copyright (and any other intellectual property rights) in this publication is owned by the Commonwealth of Australia (referred to as the Commonwealth). Creative Commons licence All material in this publication is licensed under a Creative Commons Attribution 4.0 International Licence except content supplied by third parties, logos and the Commonwealth Coat of Arms. Inquiries about the licence and any use of this document should be emailed to [email protected]. Cataloguing data This report should be attributed as: Australia’s Sixth National Report to the Convention on Biological Diversity 2014‒2018, Commonwealth of Australia, Canberra, 2020 CC BY 4.0. ISBN 978-1-76003-255-5 This publication is available at http://www.environment.gov.au/biodiversity/international/un-convention-biological-diversity. Department of Agriculture, Water and the Environment GPO Box 858 Canberra ACT 2601 Telephone 1800 900 090 Web awe.gov.au The Australian Government acting through the Department of Agriculture, Water and the Environment has exercised due care and skill in preparing and compiling the information and data in this publication. Notwithstanding, the Department of Agriculture, Water and the Environment, its employees and advisers disclaim all liability, including liability for negligence and for any loss, damage, injury, expense or cost incurred by any person as a result of accessing, using or relying on any of the information or data in this publication to the maximum extent permitted by law.
    [Show full text]
  • The Taxonomy, Phylogeny and Impact of Mycosphaerella Species on Eucalypts in South-Western Australia
    The Taxonomy, Phylogeny and Impact of Mycosphaerella species on Eucalypts in South-Western Australia By Aaron Maxwell BSc (Hons) Murdoch University Thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy School of Biological Sciences and Biotechnology Murdoch University Perth, Western Australia April 2004 Declaration I declare that the work in this thesis is of my own research, except where reference is made, and has not previously been submitted for a degree at any institution Aaron Maxwell April 2004 II Acknowledgements This work forms part of a PhD project, which is funded by an Australian Postgraduate Award (Industry) grant. Integrated Tree Cropping Pty is the industry partner involved and their financial and in kind support is gratefully received. I am indebted to my supervisors Associate Professor Bernie Dell and Dr Giles Hardy for their advice and inspiration. Also, Professor Mike Wingfield for his generosity in funding and supporting my research visit to South Africa. Dr Hardy played a great role in getting me started on this road and I cannot thank him enough for opening my eyes to the wonders of mycology and plant pathology. Professor Dell’s great wit has been a welcome addition to his wealth of knowledge. A long list of people, have helped me along the way. I thank Sarah Jackson for reviewing chapters and papers, and for extensive help with lab work and the thinking through of vexing issues. Tania Jackson for lab, field, accommodation and writing expertise. Kar-Chun Tan helped greatly with the RAPD’s research. Chris Dunne and Sarah Collins for writing advice.
    [Show full text]
  • Phenetic Affinities, Variability and Conservation Status of a Rare Tasmanian Endemic, Eucalyptus Morrisbyi R.G
    213 PHENETIC AFFINITIES, VARIABILITY AND CONSERVATION STATUS OF A RARE TASMANIAN ENDEMIC, EUCALYPTUS MORRISBYI R.G. BRETT by R.J.E. Wiltshire, B.M. Potts and J.B. Reid (with seven tables and six text-figures) Eucalyptus morrisbyi is a rare Tasmanian endemic confined to one larger population (c. 2000 mature individuals) and two smaller populations (c. 15 and 16 mature individuals) in southeastern Tasmania. Morphological studies within the informal superspecies "Gunnii" reveal Eucalyptus morrisbyi has closest affinities to low altitude populations of E. gunnii in southeastern Tasmania and yet has distinct, phenetic differences from that species. Levels of variation in E. morrisbyi populations appear comparable to other species despite their small population size. A low frequency of hybridisation occurs with E. viminalis in natural stands but is unlikely to have affected the level of variability in the Calverts Hill and Risdon Hill natural populations. In contrast, it is shown that a high frequency of seedlings grown from a planted and a remnant stand of E. morrisbyi have affinities with E. viminalis. Several of the planted trees appeared to be hybrids and some progeny from phenotypically normal trees also appeared to be of hybrid origin. These results suggest that the genetic integrity of the species may be compromised by injudicious selection of seed for propagation from plantings and could be a major problem for the ex situ conservation of this and other rare and endangered species. Recommendations are given to enhance the conservation of this endangered Tasmanian endemic. Key Words: rare endemic, endangered species, conservation, Eucalyptus morrisbyi, Tasmania. In BANKS, M.R.
    [Show full text]
  • Lepidoptera: Geometridae), a Defoliator of Eucalyptus Martin J
    Research Collection Journal Article Identification, synthesis and activity of sex pheromonegland components of the autumn gum moth (Lepidoptera:Geometridae), a defoliator of Eucalyptus Author(s): Steinbauer, Martin J.; Östrand, Fredrik; Bellas, Tom E.; Nilson, Anna; Andersson, Fredrik; Hedenström, Erik; Lacey, Michael J.; Schiestl, P. Florian Publication Date: 2004 Permanent Link: https://doi.org/10.3929/ethz-b-000422591 Originally published in: Chemoecology 14(3-4), http://doi.org/10.1007/s00049-004-0281-5 Rights / License: In Copyright - Non-Commercial Use Permitted This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library Chemoecology14:217–223 (2004) 0937–7409/04/040217–7 CHEMOECOLOGY © Birkhäuser Verlag, Basel, 2004 DOI 10.1007/s00049-004-0281-5 Identification, synthesis and activity of sex pheromone gland components of the autumn gum moth (Lepidoptera: Geometridae), a defoliator of Eucalyptus Martin J. Steinbauer1, Fredrik Östrand2, Tom E. Bellas3, Anna Nilsson4, Fredrik Andersson4, Erik Hedenström4, Michael J. Lacey3 and Florian P. Schiestl5,6 1Co-operative Research Centre (CRC) for Sustainable Production Forestry and CSIRO Entomology, GPO Box 1700, Canberra, ACT 2601, Australia 2Chemical Ecology and Ecotoxicology, Department of Ecology, Lund University, SE-223 62 Lund, Sweden 3CSIRO Entomology, GPO Box 1700, Canberra, ACT 2601, Australia 4Department of Natural and Environmental Sciences, Mid Sweden University, SE-851 70 Sundsvall, Sweden 5Department of Evolutionary Biology, University of Vienna and School of Botany and Zoology, Australian National University, Canberra, ACT 0200, Australia 6Present address: Geobotanical Institute ETH, 107 Zollikerstrasse, CH-8008 Zürich, Switzerland Summary. The autumn gum moth, Mnesampela privata Introduction (Guenée) (Lepidoptera: Geometridae), is native to Australia and can be a pest of plantation eucalypts.
    [Show full text]
  • Genetic Diversity and Adaptation in Eucalyptus Pauciflora
    Genetic diversity and adaptation in Eucalyptus pauciflora Archana Gauli (M.Sc.) A thesis submitted in fulfilment of the requirements for the Degree of Doctor of Philosophy School of Biological Sciences, University of Tasmania June, 2014 Declarations This thesis contains no material which has been accepted for a degree or diploma by the University or any other institution, except by way of background information and duly acknowledged in the thesis, and to the best of the my knowledge and belief no material previously published or written by another person except where due acknowledgement is made in the text of the thesis, nor does the thesis contain any material that infringes copyright. Archana Gauli Date Authority of access This thesis may be made available for loan and limited copying and communication in accordance with the Copyright Act 1968. Archana Gauli Date Statement regarding published work contained in thesis The publishers of the paper comprising Chapter 2 and Chapter 3 hold the copyright for that content, and access to the material should be sought from the respective journals. The remaining non-published content of the thesis may be made available for loan and limited copying and communication in accordance with the Copyright Act 1968. Archana Gauli Date i Statement of publication Chapter 2 has been published as: Gauli A, Vaillancourt RE, Steane DA, Bailey TG, Potts BM (2014) The effect of forest fragmentation and altitude on the mating system of Eucalyptus pauciflora (Myrtaceae). Australian Journal of Botany 61, 622-632. Chapter 3 has been accepted for publication as: Gauli A, Steane DA, Vaillancourt RE, Potts BM (in press) Molecular genetic diversity and population structure in Eucalyptus pauciflora subsp.
    [Show full text]
  • 01/02 Annual Report (PDF, 6741KB)
    M 56 CBC for Sustarnable Production Forestry — Annual Report 2001/02 Publications Genetic Improvement Program McGowen MH, Wiltshire RJ, Potts BM, Vaillancourt RE (2001). The origin of Eucalyptus vernicosa, a Books and book chapters unique shrub eucalypt. Biological Journal of the Auckland LD, Bui T, Zhou Y, Shepherd M, Williams CG Linnean Society 74, 397-405. (2002). Transpecific recovery of pine microsatellite. In ‘Conifer Microsatellite Handbook’. (Eds CG Williams McKinnon GE, Vaillancourt RE, Tilyard PA, Potts BM and LD Auckland) pp. 27-28. (Texas A & M University: (2001). Maternal inheritance of the chloroplast genome College Station, Texas, USA) in Eucalyptus globulus and interspecific hybrids, Genome 44, 831-835. Refereed publications Costa e Silva J, Dutkowski GW, Gilmour AR (2001). Patterson B, Vaillancourt RE, Potts BM (2001). Analysis of early tree height in forest genetic trials is Eucalypt seed collectors: beware of sampling seedlots enhanced by including a spatially correlated residual. from low in the canopy! Australian Forestry 64, 139- Canadian Journal of Forest Research 31, 1887-1893. 142. Dungey HS, Potts BM (2002). Susceptibility of Potts BM, Potts WC, Kantvilas G (2001). The Miena some Eucalyptus species and their hybrids to possum cider gum, Eucalyptus gunnii subsp. (livaricata damage. Australian Forestry 65, 16-23. (Myrtaceae): a taxon in rapid decline. Proceedings of the Royal Society of Tasmania 135, 57-6l. Freeman JS, Jackson HD, Steane DA, McKinnon GE, Dutkowski GW, Potts BM, Vaillancourt RE (2001). Pound LM, Wallwork MAB, Potts BM, Sedgley M _iii_.-_,_ Chloroplast DNA phylogeography of Eucalyptus (2002). Self-incompatibility in Eucalyptus globulus globulus. Australian Journal ofBotany 49, 585-589.
    [Show full text]
  • Tmcm1de1.Pdf
    Departament de Biologia Facultat de Ciències Hybridization patterns in Balearic endemic plants assessed by molecular and morphological markers — Ph. D. Thesis — Miquel Àngel Conesa Muñoz Supervisors: Dr. Maurici Mus Amézquita (Universitat de les Illes Balears) Dr. Josep Antoni Rosselló Picornell (Universitat de València) May 2010 Palma de Mallorca El doctor Maurici Mus Amézquita, professor titular de la Universitat de les Illes Balears, i el doctor Josep Antoni Rosselló Picornell, professor titular de la Universitat de València, CERTIFIQUEN: Que D. Miquel Àngel Conesa Muñoz ha realitzat, baix la seva direcció en el Laboratori de Botànica de la Universitat de les Illes Balears i en el Departament de Botànica del Jardí Botànic de la Universitat de València, el treball per optar al grau de Doctor en Biologia de les Plantes en Condicions Mediterrànies, amb el títol: “HYBRIDIZATION PATTERNS IN BALEARIC ENDEMIC PLANTS ASSESSED BY MOLECULAR AND MORPHOLOGICAL MARKERS” Considerant finalitzada la present memòria, autoritzem la seva presentació amb la finalitat de ser jutjada pel tribunal corresponent. I per tal que així consti, signem el present certificat a Palma de Mallorca, a 27 de maig de 2010. Dr. Maurici Mus Dr. Josep A. Rosselló 1 2 A la meva família, als meus pares. 3 4 Agraïments - Acknowledgements En la vida tot arriba. A moments semblava que no seria així, però aquesta tesi també s’ha acabat. Per arribar avui a escriure aquestes línies, moltes persones han patit amb mi, per mi, o m’han aportat el seu coneixement i part del seu temps. Així doncs, merescut és que els recordi aquí. Segurament deixaré algú, que recordaré quan ja sigui massa tard per incloure’l.
    [Show full text]
  • Eucalyptus That Are Ideal for British Gardens
    Barks, shoots and leaves Grafton Nursery grows hardy forms of Antipodean Eucalyptus that are ideal for British gardens WORDS JOHN HOYLAND PHOTOGRAPHS JASON INGRAM Gower Hilary Collins checks the growth on a selection of the hardy eucalyptus grown at Grafton Nursery. Nearby assistant grower Adam Barnes keeps the more mature trees in check with some careful pruning. 68 FOR CUTTING 1 Eucalyptus ‘Shannon Blue’ VERY FEW TREES ARE AS FASCINATING A hybrid bred for the floristry trade, this vigorous plant has stems of rounded, glaucous, silver AS EUCALYPTS: THEY ARE HIGHLY leaves. It can be grown as a hedge and retains EVOLVED AND EXTREMELY VARIED its colour through the winter. Unpruned height 10m. RHS H5†. 2 Eucalyptus nicholii An airy tree with narrow, almost feathery, sage- green leaves. Its common name – narrow-leaved black peppermint – references its strongly aromatic foliage. Unpruned height 12m. RHS H5. 3 Eucalyptus pulverulenta ‘Baby Blue’ ardeners can be blinkered, disregarding a whole A compact, bushy cultivar that can be grown in a pot. The silvery-grey stems are long-lasting genus because of the faults of a few members. when cut for flower arrangements. Unpruned Eucalyptus has suffered this fate, largely because of height 5m. RHS H5. the thuggish behaviour of Eucalyptus gunnii, the most widely available species, which will grow to huge 4 Eucalyptus gunnii proportions in a very short time. “There are far better The most widely grown species in the UK. It has peeling cream and brown bark, rounded, species,” says grower Hilary Collins. “Beautiful glaucous-blue juvenile leaves and elliptic or eucalypts for small terraces or large pots, those for sickle-shaped, grey-green adult leaves.
    [Show full text]
  • Genetic Variability and Leaf Waxes of Some Eucalyptus Species with Horticultural Potential
    29. *t Genetic Variability and Leaf Waxes of some Eucalyptus Species with Horticultural Potential Michelle Gabrielle Wirthensohn B.Ag.Sc. (Hons) Submitted in fulfîllment of the requirements for the degree of Doctor of Philosophy Department of Horticulture, Viticulture and Oenology Waite Agricultural Research Institute University of Adelaide September 1998 Eucalyptus macrocarpa Anne.ndix Table of Contents Abstract I Declaration iv Acknowledgements v List of Tables vi List of Figures viii Glossary xi Chapter 1 General lntroduction I The genus EucalYPtus 2 Lignotubers and mallee 3 Leaf phases 4 Leaf waxes 5 Wax structure 5 Wax chemistry 5 Ontogenetic variation 8 Wax extraction and seParation t0 Functions of epicuticular wax l0 Glaucousness 10 Environmental adaPtations 11 Influencing factors on epicuticular wax t2 Light t2 Temperature and other environmental effects 12 Etfect of agricultural chemicals on leaf waxes 13 Taxonomic significance of wax structure and composition 13 Thesis aims I4 Chapter 2 Plant Material t6 Species Descriptions and Taxonomy l9 Ghapter 3 Species Evaluation and Pruning lntroduction 25 Materials and Methods Species evaluation 26 Pruning trial on E. globulus 26 Pruning trial on 16 species ol Eucalyptus 27 Pruning trial on E. gunnii 27 Results Species evaluation 28 Pruning trial on E. globulus 28 Pruning trial on 16 species ol Eucalyptus 28 Pruning trial on E. gunnii 30 Discussion 47 Chapter 4 Postharvest Treatment of Gut Stems lntroduction 51 Materials and Methods Plant material 5l Vase life 52 Pulsing 52 Pulsing and
    [Show full text]
  • Flora and Vegetation Of
    __________________________________________________________________________________________ FLORA AND VEGETATION OF AVIVA LEASE AREA Prepared for: URS Australia Pty Ltd on behalf of Aviva Corporation Ltd Prepared by: Mattiske Consulting Pty Ltd February 2009 MATTISKE CONSULTING PTY LTD URS0808/195/08 MATTISKE CONSULTING PTY LTD __________________________________________________________________________________________ TABLE OF CONTENTS Page 1. SUMMARY ................................................................................................................................................ 1 2. INTRODUCTION ...................................................................................................................................... 3 2.1 Location .............................................................................................................................................. 3 2.2 Climate ................................................................................................................................................ 3 2.3 Landforms and Soils ........................................................................................................................... 4 2.4 Vegetation ........................................................................................................................................... 4 2.5 Declared Rare, Priority and Threatened Species ................................................................................. 4 2.6 Threatened Ecological Communities (TEC’s) ...................................................................................
    [Show full text]