Interplanetary Travel
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mission to Jupiter
This book attempts to convey the creativity, Project A History of the Galileo Jupiter: To Mission The Galileo mission to Jupiter explored leadership, and vision that were necessary for the an exciting new frontier, had a major impact mission’s success. It is a book about dedicated people on planetary science, and provided invaluable and their scientific and engineering achievements. lessons for the design of spacecraft. This The Galileo mission faced many significant problems. mission amassed so many scientific firsts and Some of the most brilliant accomplishments and key discoveries that it can truly be called one of “work-arounds” of the Galileo staff occurred the most impressive feats of exploration of the precisely when these challenges arose. Throughout 20th century. In the words of John Casani, the the mission, engineers and scientists found ways to original project manager of the mission, “Galileo keep the spacecraft operational from a distance of was a way of demonstrating . just what U.S. nearly half a billion miles, enabling one of the most technology was capable of doing.” An engineer impressive voyages of scientific discovery. on the Galileo team expressed more personal * * * * * sentiments when she said, “I had never been a Michael Meltzer is an environmental part of something with such great scope . To scientist who has been writing about science know that the whole world was watching and and technology for nearly 30 years. His books hoping with us that this would work. We were and articles have investigated topics that include doing something for all mankind.” designing solar houses, preventing pollution in When Galileo lifted off from Kennedy electroplating shops, catching salmon with sonar and Space Center on 18 October 1989, it began an radar, and developing a sensor for examining Space interplanetary voyage that took it to Venus, to Michael Meltzer Michael Shuttle engines. -
Vostok by Andrew J
Mercury's Competition: Vostok by Andrew J. LePage May 15, 2000 All through 1959 and into 1960, America's very single space suit-clad cosmonaut in a semi reclined public Mercury manned space program was making ejection seat which served a dual purpose: During the slow but steady progress (see Giving Mercury early phases of ascent, this seat could safely eject the Wings in the September 1, 1999 issue of cosmonaut away from the craft in case of a problem. SpaceViews). While it was quite clear that the Soviet Because of weight restrictions, the capsule could not Union also planned to send men into space, it was carry a large enough parachute to guarantee a soft difficult to sort the facts from the stream of enough landing for the pilot at the end of a normal propaganda. That began to change on May 15, 1960 mission. Instead a forced landing procedure was with the launch of Korabl Sputnik 1 (Spaceship developed where, after reentry was done, the Satellite 1) also referred to as "Sputnik 4" in the cosmonaut ejected from the descent module at an West. altitude of 7 kilometers (23,000 feet). He then used his own parachute to make a soft landing separate Carrying a dummy cosmonaut in a 312 by 369 from the more quickly falling descent module. kilometer (194 by 229 mile) orbit inclined 65 degrees to the equator, Korabl Sputnik 1 was the long awaited During the flight, the cabin interior maintained an inaugural flight of Mercury's competition. Although oxygen-nitrogen atmosphere at a pressure of one bar the actual configuration of the spacecraft would (15 psi) like on the ground. -
The Quest to Understand the Pioneer Anomaly
The quest to understand the Pioneer anomaly I Michael Martin Nieto, Theoretical Division (MS-8285) Los Alamos National Laboratory Los Alarnos, New Mexico 87545 USA E-mail: [email protected] +a l1 l I l uring the 1960's, when the Jet Propulsion Laboratory (JPL) Pioneer 10 was launched on 2 March 1972 local time, aboard D first started thinking about what eventually became the an Atlas/Centaur/TE364-4launch vehicle (see Fig. l).It was the "Grand Tours" of the outer planets (the Voyager missions of the first craft launched into deep space and was the first to reach an 1970's and 1980's),the use of planetary flybys for gravity assists of outer giant planet, Jupiter,on 4 Dec. 1973 [l, 21. Later it was the first spacecraft became of great interest. The concept was to use flybys to leave the "solar system" (past the orbit of Pluto or, should we now of the major planets to both mowthe direction of the spacecraft say, Neptune). The Pioneer project, eventually extending over and also to add to its heliocentric velocity in a manner that was decades, was managed at NASAIAMES Research Center under the unfeasible using only chemical fuels. The first time these ideas were hands of four successive project managers, the legendary Charlie put into practice in deep space was with the Pioneers. Hall, Richard Fimrnel, Fred Wirth, and the current Larry Lasher. While in its Earth-Jupiter cruise, Pioneer 10 was still bound to the solar system. By 9 January 1973 Pjoneer l0 was at a distance of 3.40 AU (Astronomical Units'), beyond the asteroid belt. -
European Astronaut Selection ESA Prepares for the Missions of the 21 St Century
European Astronaut Selection ESA prepares for the missions of the 21 st century With the selection of its first astronauts ESA’s human spaceflight activities in 1978 and the first Spacelab mission are now entering a new era, with ESA in 1983, the European Space Agency astronauts working aboard the (ESA) took its first steps into human International Space Station (ISS), spaceflight. The advent of the Columbus Columbus starting operations, and orbital laboratory project required a the new ‘ATV’ cargo ship delivering second selection of astronauts in 1992. fresh supplies to the Station. The exploration of the Solar System will be one of humanity’s most exciting adventures in the near future. All of the world’s spacefaring nations are preparing for this huge enterprise, and an astronaut corps is essential for Europe, thanks to ESA, to take part in this endeavour. Now is the time for ESA to seek new talents to reinforce its astronaut team, to prepare for missions to the ISS, the Moon and beyond. T The Selection | How? When? Where? h e S e l e c t i o n How can I apply? You can apply online via the ESA web portal (www.esa.int/ astronautselection). Registration is in two steps: • pre-registration: provide identity information and a JAR-FCL 3, Class 2 medi- cal examination certificate, from an Aviation Medical Examiner who has been certified by his/her national Aviation Medical Authority; • a password then allows you to access the application form. T The Selection | How? When? Where? h e S e l e • initial selection according to basic criteria; c t i What are the o • psychological tests for selected candidates; n • second round of psychological tests and interviews; steps in the • medical tests; selection • job interview. -
Aeronautics and Space Report of the President
Aeronautics and Space Report of the President 1971 Activities NOTE TO READERS: ALL PRINTED PAGES ARE INCLUDED, UNNUMBERED BLANK PAGES DURING SCANNING AND QUALITY CONTROL CHECK HAVE BEEN DELETED Aeronautics and Space Report of the President 197 I Activities i W Executive Office of the President National Aeronautics and Space Council Washington, D.C. 20502 PRESIDENT’S MESSAGE OF TRANSMITTAL To the Congress of the United States: I am pleased to transmit herewith a report of our national progress in aero- nautics and space activities during 1971. This report shows that we have made forward strides toward each of the six objectives which I set forth for a balanced space program in my statement of March 7, 1970. Aided by the improvements we have made in mobility, our explorers on the moon last summer produced new, exciting and useful evidence on the structure and origin of the moon. Several phenomena which they uncovered are now under study. Our unmanned nearby observation of Mars is similarly valuable and significant for the advancement of science. During 1971, we gave added emphasis to aeronautics activities which contribute substantially to improved travel conditions, safety and security, and we gained in- creasing recognition that space and aeronautical research serves in many ways to keep us in the forefront of man’s technological achievements. There can be little doubt that the investments we are now making in explora- tions of the unknown are but a prelude to the accomplishments of mankind in future generations. THEWHITE HOUSE, March 1972 iii Table of Contents Page Page I . Progress Toward U.S. -
Jacques Tiziou Space Collection
Jacques Tiziou Space Collection Isaac Middleton and Melissa A. N. Keiser 2019 National Air and Space Museum Archives 14390 Air & Space Museum Parkway Chantilly, VA 20151 [email protected] https://airandspace.si.edu/archives Table of Contents Collection Overview ........................................................................................................ 1 Administrative Information .............................................................................................. 1 Biographical / Historical.................................................................................................... 1 Scope and Contents........................................................................................................ 2 Arrangement..................................................................................................................... 2 Names and Subjects ...................................................................................................... 2 Container Listing ............................................................................................................. 4 Series : Files, (bulk 1960-2011)............................................................................... 4 Series : Photography, (bulk 1960-2011)................................................................. 25 Jacques Tiziou Space Collection NASM.2018.0078 Collection Overview Repository: National Air and Space Museum Archives Title: Jacques Tiziou Space Collection Identifier: NASM.2018.0078 Date: (bulk 1960s through -
Development of an Inflatable Airlock for Deep Space Exploration
National Aeronautics and Space Administration DEVELOPMENT OF AN INFLATABLE AIRLOCK FOR DEEP SPACE EXPLORATION Douglas A. Litteken NASA Johnson Space Center Thomas C. Jones NASA Langley Research Center AIAA SPACE Forum Orlando, Florida September 18, 2018 OUTLINE • Introduction • History of Inflatable Airlock Development • Design Considerations for Inflatable Airlocks • Generic Airlock Considerations for Space Applications • Inflatable Airlock Specific Considerations • Conclusions and Future Work 9/18/2018 D. Litteken, NASA/JSC/ES2 | AIAA SPACE 2018 2 OUTLINE • Introduction • History of Inflatable Airlock Development • Design Considerations for Inflatable Airlocks • Generic Airlock Considerations for Space Applications • Inflatable Airlock Specific Considerations • Conclusions and Future Work 9/18/2018 D. Litteken, NASA/JSC/ES2 | AIAA SPACE 2018 3 INTRODUCTION • Airlocks have been used for EVAs (extravehicular activities) since 1965 • Airlock designs including integrated, single, and dual-chamber, along with various volumes and hatch shapes have been used Type In Service Name Dimensions Volume Mass EVA Hatch From To /Chamber L x D (ft) (ft3) (lbm) Shape Opening (in) 1965 1965 Voskhod 2 Volga Inflatable 8.2 x 3.9 88.3 551 Circular 26 1965 1966 Gemini Capsule Integral 19.0 x 9.8 90 8490 Trapezoid 15 x 51 x 37 1969 1972 Apollo Ascent Module Integral 3.5 x 7.7 159 4740 Square 32 x 32 1973 1974 Skylab Airlock Single 12.8 x 5.4 322 16936 Trapezoid 15 x 51 x 37 1983 2011 Shuttle Airlock Single 6.9 x 5.3 150 827 D-Shape 40 1989 2001 Mir Kvant Airlock Single 19.0 x 13.1 1413 21164 Circular 39 2001 Present ISS Pirs Airlock Single 16.1 x 8.4 460 7892 Circular 39 2001 Present ISS Quest Airlock Dual 18.0 x 13.1 1200 21896 D-Shape 40 9/18/2018 D. -
Please Type Your Paper Title Here In
Estimating the Reliability of a Soyuz Spacecraft Mission Michael G. Lutomskia*, Steven J. Farnham IIb, and Warren C. Grantb aNASA-JSC, Houston, TX – [email protected] bARES Corporation, Houston, TX Abstract: Once the US Space Shuttle retires in 2010, the Russian Soyuz Launcher and Soyuz Spacecraft will comprise the only means for crew transportation to and from the International Space Station (ISS). The U.S. Government and NASA have contracted for crew transportation services to the ISS with Russia. The resulting implications for the US space program including issues such as astronaut safety must be carefully considered. Are the astronauts and cosmonauts safer on the Soyuz than the Space Shuttle system? Is the Soyuz launch system more robust than the Space Shuttle? Is it safer to continue to fly the 30 year old Shuttle fleet for crew transportation and cargo resupply than the Soyuz? Should we extend the life of the Shuttle Program? How does the development of the Orion/Ares crew transportation system affect these decisions? The Soyuz launcher has been in operation for over 40 years. There have been only two loss of life incidents and two loss of mission incidents. Given that the most recent incident took place in 1983, how do we determine current reliability of the system? Do failures of unmanned Soyuz rockets impact the reliability of the currently operational man-rated launcher? Does the Soyuz exhibit characteristics that demonstrate reliability growth and how would that be reflected in future estimates of success? NASA’s next manned rocket and spacecraft development project is currently underway. -
Deep Space Chronicle Deep Space Chronicle: a Chronology of Deep Space and Planetary Probes, 1958–2000 | Asifa
dsc_cover (Converted)-1 8/6/02 10:33 AM Page 1 Deep Space Chronicle Deep Space Chronicle: A Chronology ofDeep Space and Planetary Probes, 1958–2000 |Asif A.Siddiqi National Aeronautics and Space Administration NASA SP-2002-4524 A Chronology of Deep Space and Planetary Probes 1958–2000 Asif A. Siddiqi NASA SP-2002-4524 Monographs in Aerospace History Number 24 dsc_cover (Converted)-1 8/6/02 10:33 AM Page 2 Cover photo: A montage of planetary images taken by Mariner 10, the Mars Global Surveyor Orbiter, Voyager 1, and Voyager 2, all managed by the Jet Propulsion Laboratory in Pasadena, California. Included (from top to bottom) are images of Mercury, Venus, Earth (and Moon), Mars, Jupiter, Saturn, Uranus, and Neptune. The inner planets (Mercury, Venus, Earth and its Moon, and Mars) and the outer planets (Jupiter, Saturn, Uranus, and Neptune) are roughly to scale to each other. NASA SP-2002-4524 Deep Space Chronicle A Chronology of Deep Space and Planetary Probes 1958–2000 ASIF A. SIDDIQI Monographs in Aerospace History Number 24 June 2002 National Aeronautics and Space Administration Office of External Relations NASA History Office Washington, DC 20546-0001 Library of Congress Cataloging-in-Publication Data Siddiqi, Asif A., 1966 Deep space chronicle: a chronology of deep space and planetary probes, 1958-2000 / by Asif A. Siddiqi. p.cm. – (Monographs in aerospace history; no. 24) (NASA SP; 2002-4524) Includes bibliographical references and index. 1. Space flight—History—20th century. I. Title. II. Series. III. NASA SP; 4524 TL 790.S53 2002 629.4’1’0904—dc21 2001044012 Table of Contents Foreword by Roger D. -
Mission Overview the Pioneer Mission Set the Stage for U.S. Space
Mission Overview The Pioneer mission set the stage for U.S. space exploration. Pioneer 1 was the first manmade object to escape the Earth's gravitational field. Later Pioneer 4 was the first spacecraft to fly to the moon, Pioneer 10 was the first to Jupiter, Pioneer 11 was the first to Saturn and Pioneer 12 was the first U.S. spacecraft to orbit another planet, Venus. The following table summarizes the Pioneer spacecraft and scientific objectives of the Pioneer mission. Name Launch Mission Status (as of 1998) ----------------------------------------------------------------- Pioneer 1 1958-10-11 Moon Reached altitude of 72765 miles Pioneer 2 1958-11-08 Moon Reached altitude of 963 miles Pioneer 3 1958-12-02 Moon Reached altitude of 63580 miles Pioneer 4 1959-03-03 Moon Passed by moon into solar orbit Pioneer 5 1960-03-11 Solar Orbit Entered solar orbit Pioneer 6 1965-12-16 Solar Orbit Still operating Pioneer 7 1966-08-17 Solar Orbit Still operating Pioneer 8 1967-12-13 Solar Orbit Still operating Pioneer 9 1967-11-08 Solar Orbit Signal lost in 1983 Pioneer E 1969-08-07 Solar Orbit Launch failure Pioneer10 1972-03-02 Jupiter Communication terminated 1998 Pioneer11 1972-03-02 Jupiter/Saturn Communication terminated 1997 Pioneer12 1978-05-20 Venus Entered Venus atmos. 1992-10-08 The focus of this document is on Pioneer Venus (12), the last spacecraft in a mission of firsts in space exploration. Probe Separation: Pioneer Venus separated into two spacecraft on Aug 8, 1978: an Orbiter (PVO) and a Multiprobe. The latter was separated into five separate vehicles near Venus. -
China's Shiyan Weixing Satellite Programme, 2014-2017
SPACE CHRONICLE A BRITISH INTERPLANETARY SOCIETY PUBLICATION Vol. 71 No.1 2018 MONUMENTAL STATUES TO LOCAL LIVING COSMONAUTS CHINA’S SHIYAN WEIXING SPEKTR AND RUSSIAN SPACE SCIENCE SATELLITE PROGRAMME FIRST PICTURES OF EARTH FROM A SOVIET SPACECRAFT REPORTING THE RIGHT STUFF? Press in Moscow During the Space Race SINO-RUSSIAN ISSUE ISBN 978-0-9567382-2-6 JANUARY 20181 Submitting papers to From the editor SPACE CHRONICLE DURING THE WEEKEND of June 3rd and 4th 2017, the 37th annual Sino- Chinese Technical Forum was held at the Society’s Headquarters in London. Space Chronicle welcomes the submission Since 1980 this gathering has grown to be one of the most popular events in the for publication of technical articles of general BIS calendar and this year was no exception. The 2017 programme included no interest, historical contributions and reviews less than 17 papers covering a wide variety of topics, including the first Rex Hall in space science and technology, astronautics Memorial Lecture given by SpaceFlight Editor David Baker and the inaugural Oleg and related fields. Sokolov Memorial Paper presented by cosmonaut Anatoli Artsebarsky. GUIDELINES FOR AUTHORS Following each year’s Forum, a number of papers are selected for inclusion in a special edition of Space Chronicle. In this issue, four such papers are presented ■ As concise as the content allows – together with an associated paper that was not part the original agenda. typically 5,000 to 6,000 words. Shorter papers will also be considered. Longer The first paper, Spektr and Russian Space Science by Brian Harvey, describes the papers will only be considered in Spektr R Radio Astron radio observatory – Russia’s flagship space science project. -
Descriptions of Planetary and He1 Iocent R Ic Spacecraft and Investigations
NATIONAL SPACE SCIENCE DATA CENTER WORLD DATA CENTER A for ROCKETS6 AND SATELLITES 88-07 DATA CATALOG SERIES FOR SPACE SCIENCE AND APPLICATIOINS FLIGHT MISSIONS Volume 1A Descriptions of Planetary and He1iocent r ic Spacecraft and Investigations Second Edition March 1988 ~ CATEGORIES PACECRAFT USED FN THIS PLANETARY AND HELIOCENTRIC This category includes probes to the various planets of the solar system and probes designed to make measurements of the characteristics of interplanetary space. Also included are the probes that will pass out of the solar system into interstellar space. NSSDC/WDC-A-R&S 88-07 DATA CATALOG SE:RIES FOR SPACE SCIENCE AND APPLICATIONS FLIGHT MISSIONS Volume 1A DESCRIPTIONS OF P:LANETARY AND HELIOCENTRIC SPACECRAFT AND INVESTIGATIONS Edited By Winifred Sawtell Cameron Robert W. Vostreys Second Edition March 1988 National Space Science Data Center (NSSDC) / World Data Center A for Rc'ckets and Satellites (WDC-A-R&S National Aeronautics and Space Administration Goddard Space Flight Center Greenbelt, Maryland 20771 PREFACE TO THE SECOND EDITION The decision to reprint Volume 1A of the Data Catalog Series for Space Science and Applications Flight Missions was made primarily because it was no longer available when its companion, Volume lB, was completed in April 1987. Although Volume 1A was printed in September 1982, in this second edition no changes were made to the original text, since it described spacecraft and experiments as they actually were durin~qthe acquisition of the data in Volume 1B‘. The only significantarevisionmade in the second edition was the addition of Appendix E, which is an index showing the pages in Volume 1A where one can find descriptions of the spacecraft and experiments corresponding to the data sets described in Volume 1B.