Development of a Sensor for Corona Current Measurement Under High-Voltage Direct-Current Transmission Lines

Total Page:16

File Type:pdf, Size:1020Kb

Development of a Sensor for Corona Current Measurement Under High-Voltage Direct-Current Transmission Lines Research Article International Journal of Distributed Sensor Networks 2016, Vol. 12(8) Development of a sensor for corona Ó The Author(s) 2016 DOI: 10.1177/1550147716664243 current measurement under high- ijdsn.sagepub.com voltage direct-current transmission lines Encheng Xin and Haiwen Yuan Abstract A sensor-based distributed measurement system is designed for collecting and monitoring the corona current under the extremely high-voltage direct-current transmission lines. It is highly significant for researching the corona characteristics of extremely high-voltage direct-current transmission lines to reduce the corona effect, operating loss, and environmen- tal impact. A new shared memory strategy has been studied based on field-programmable gate array and ARM. Based on field-programmable gate array technology, the fiber-optic transmission scheme for wide-frequency corona current high- speed signal has been set up to ensure the safety and the reliability of corona current measurement system. The pro- posed system has been used in China’s state grid high-voltage direct-current test base and the in situ power transmission projects. Based on the experimental results, the proposed measurement system demonstrates that it can adapt to the complex electromagnetic environment under the transmission lines and can accomplish the accurate, flexible, and stable demands of the electric-field measurement. Keywords Sensor, corona current, high voltage direct current, data acquisition Date received: 12 March 2016; accepted: 20 June 2016 Academic Editor: Yonghe Liu Introduction because of the weak signal and wide bandwidth of the corona current, the value of corona current is difficult The electromagnetic environment (such as audible noise, to be measured accurately. The traditional corona cur- radio interference, and total electric field) caused by cor- rent measurement system bandwidth is low (usually ona discharge not only restricts the conductor selection 2 MHz or less), and measuring performance cannot and structural design of transmission line parameters meet the voltage level and gradually increased research but also often brings environmental issues. With the needs. Only a few papers have reported work on the improvement of the energy saving and environmental measurement of the corona current by far. In Greason protection requirements of the transmission line, only et al.1 and Kucerovsky et al.,2 the authors used an opti- relying on measurement and analysis of corona effect, cally decoupled data acquisition module to measure the such as audible noise, radio interference, and corona loss, has not met the engineering requirements to study the electromagnetic environment of transmission lines. School of Automation Science and Electrical Engineering, Beihang We need to continue in-depth study of the problem of University, Beijing, China corona discharge, such as the relationship between cor- Corresponding author: ona current and corona effect aspects. Encheng Xin, School of Automation Science and Electrical Engineering, The basic mechanism of the corona discharge can be Beihang University, Beijing 100191, China. obtained by measuring the corona current. However, Email: [email protected] Creative Commons CC-BY: This article is distributed under the terms of the Creative Commons Attribution 3.0 License (http://www.creativecommons.org/licenses/by/3.0/) which permits any use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (http://www.uk.sagepub.com/aboutus/ openaccess.htm). 2 International Journal of Distributed Sensor Networks corona current generated in a pin-plane gap, but its maximum sampling rate is 16 kHz and can only cover a bandwidth of 8 kHz. In Liu et al.,3 a corona loss monitoring system is proposed. It used an optical power supply electronic current transformer to acquire the corona current signals and transmitted the signals by optical fibers. This method can measure current in ultra-high-voltage (UHV) environment safely. But, the measuring bandwidth of the system is still limited to 7.5 kHz. In Wang and Zhang,4 a commercial low- Figure 1. The equivalent circuit model of corona discharge. inductance resistance is used to measure the corona cur- rent. After improving the sampling rate of the data acquisition system, the signal acquisition width can reach Theoretical overview up to 4.5 MHz. However, besides the sampling rate, the Principle of sensor measurement distributed parameters of the resistance sensor also affect the integrity of the corona current to a great extent, If there is corona phenomenon generating in transmis- which is less well considered in the present methods. sion line, it will have corona current in it. Corona cur- Moreover, relevant studies on the corona current mea- rent will cause power loss. In general, corona current is surement described in Mihailovic et al.,5 Bull et al.,6 small and unit length line corona loss is also less severe, Zhang et al.,7 and Kucerovsky et al.8 are mostly carried but the transmission line is so long that corona loss can- out under a test voltage that is less than 500 kV. The cor- not be neglected. Corona-caused power loss can be cal- ona current data available mostly have been measured in culated by the corona current, and corona-equivalent the experimental environment, and the data are generally circuit is essentially equivalent to a nonlinear resistor– not verified in high-voltage direct-current (HVDC) trans- capacitor (RC) circuit as shown in Figure 1. mission lines. With the development of the UHV trans- In Figure 1, Von is the corona onset voltage, C1 is mission technology, the anti-breakdown requirement of the geometric capacitance of the conductor configura- the measurement system becomes much more rigorous tion, C2 is the additional nonlinear capacitance due to under the UHV environment, and it is necessary to find corona, C3 is the capacitance representing the charge a new method to measure the UHV corona current. loss to the air, and G is the nonlinear conductance rep- The object of this article is to describe the develop- resenting corona loss. The measuring equipment is ment of a new sampling resistance sensor for corona placed between the power generation and the transmis- current measurement in a wide band under UHV envi- sion conductor. When the voltage of high-voltage DC ronment which the impedance could keep invariable generator is below the corona onset voltage Von, when the frequencies vary between the ranges of 0 and C2 = C3 = G = 0. Only capacitance charging current 10 MHz. To start with, a new structure, which is spe- with the wire-to-ground and a small amount of leakage cially designed according to the UHV dielectric break- current exist. When the voltage of high-voltage DC down and wide-band measuring requirements of the generator is above the corona onset voltage Von, the sensor, is introduced. Then, the synchronous dynamic nonlinear conductance G will increase rapidly, while C2 random-access memory (SDRAM) controller and the and C3 increase very slowly, and subsequently, large related first input first output (FIFO) settings accord- corona current appears with increasing voltage. The ingly have been introduced during the development corona current on the conductor is equal to the current of the wide-frequency corona current measurement sys- through the resistor minus the leakage current of insu- tem, and the large-capacity cache problems involved in lators. The quantity of leakage current is negligible the wide-frequency corona current data acquisition sys- compared with the corona current. Therefore, only cor- tem have effectively been solved based on Field- ona current is measured through the high-frequency Programmable Gate Array (FPGA) and advanced sensor and its data are recorded. RISC machines (ARM) technologies. Finally, the high- voltage discharge and frequency characteristic tests prove the UHV dielectric breakdown performance and Dielectric breakdown performance the wide-band measuring characteristics of the designed The surface electric-field intensity of the sensor work- sensor, respectively. The test results in an actual ultra- ing under the UHV environment should be lower than high-voltage direct-current (UHVDC) transmission line the dielectric breakdown intensity of air. According to demonstrate that the sensor can accurately measure the the Peek equation,9,10 the breakdown intensity of the corona current under the UHV environment. air around the conductor can be given by Xin and Yuan 3 K positive ions will be gathered on electrode surface. Eon =30md 1 + pffiffiffiffiffi ð1Þ rd When the electric field continues to strengthen, positive ions will be sucked into the electrode to form a pulse where Eon and K are the empirical constants depending current and flow to both sides of the wire. With nega- on the nature of the applied voltage; r is the radius of tive charge continues to spread into the surrounding the conductor (cm); m is the roughness factor of the space, electrode surface electric-field intensity increases, conductor, which is usually between 0.75 and 0.85; and and the next corona ionization process will happen and d is the atmospheric correction coefficient given by next pulse current. A series of pulse group will appear for the circulation. When normal polarity corona 0:386P d = ð2Þ occurs, negative ion or electron is sucked into the elec- 273 + t trode, and the same repetitive pulsed corona current where t is the atmosphere temperature (K) and P is the will be formed. atmospheric pressure (mmHg). With corona discharge,16–18 a series of impulse cur- When t is 298 K, the breakdown intensity Eon is rent will inject transmission lines. Pulse current is 30 kV/cm. So, the sensor designed surface electric-field double-exponential distribution with time.18–21 It can intensity should be lower than 30 kV/cm when the vol- be represented by the following formula tage reaches up to 800 kV on the transmission lines.
Recommended publications
  • Plasma Physics 1 APPH E6101x Columbia University Fall, 2015
    Lecture22: Atmospheric Plasma Plasma Physics 1 APPH E6101x Columbia University Fall, 2015 1 http://www.plasmatreat.com/company/about-us.html 2 http://www.tantec.com 3 http://www.tantec.com/atmospheric-plasma-improved-features.html 4 5 6 PHYSICS OF PLASMAS 22, 121901 (2015) Preface to Special Topic: Plasmas for Medical Applications Michael Keidar1,a) and Eric Robert2 1Mechanical and Aerospace Engineering, Department of Neurological Surgery, The George Washington University, Washington, DC 20052, USA 2GREMI, CNRS/Universite d’Orleans, 45067 Orleans Cedex 2, France (Received 30 June 2015; accepted 2 July 2015; published online 28 October 2015) Intense research effort over last few decades in low-temperature (or cold) atmospheric plasma application in bioengineering led to the foundation of a new scientific field, plasma medicine. Cold atmospheric plasmas (CAP) produce various chemically reactive species including reactive oxygen species (ROS) and reactive nitrogen species (RNS). It has been found that these reactive species play an important role in the interaction of CAP with prokaryotic and eukaryotic cells triggering various signaling pathways in cells. VC 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4933406] There is convincing evidence that cold atmospheric topic section, there are several papers dedicated to plasma plasmas (CAP) interaction with tissue allows targeted cell re- diagnostics. moval without necrosis, i.e., cell disruption. In fact, it was Shashurin and Keidar presented a mini review of diag- determined that CAP affects cells via a programmable pro- nostic approaches for the low-frequency atmospheric plasma cess called apoptosis.1–3 Apoptosis is a multi-step process jets.
    [Show full text]
  • Download (PDF)
    Nanotechnology Education - Engineering a better future NNCI.net Teacher’s Guide To See or Not to See? Hydrophobic and Hydrophilic Surfaces Grade Level: Middle & high Summary: This activity can be school completed as a separate one or in conjunction with the lesson Subject area(s): Physical Superhydrophobicexpialidocious: science & Chemistry Learning about hydrophobic surfaces found at: Time required: (2) 50 https://www.nnci.net/node/5895. minutes classes The activity is a visual demonstration of the difference between hydrophobic and hydrophilic surfaces. Using a polystyrene Learning objectives: surface (petri dish) and a modified Tesla coil, you can chemically Through observation and alter the non-masked surface to become hydrophilic. Students experimentation, students will learn that we can chemically change the surface of a will understand how the material on the nano level from a hydrophobic to hydrophilic surface of a material can surface. The activity helps students learn that how a material be chemically altered. behaves on the macroscale is affected by its structure on the nanoscale. The activity is adapted from Kim et. al’s 2012 article in the Journal of Chemical Education (see references). Background Information: Teacher Background: Commercial products have frequently taken their inspiration from nature. For example, Velcro® resulted from a Swiss engineer, George Mestral, walking in the woods and wondering why burdock seeds stuck to his dog and his coat. Other bio-inspired products include adhesives, waterproof materials, and solar cells among many others. Scientists often look at nature to get ideas and designs for products that can help us. We call this study of nature biomimetics (see Resource section for further information).
    [Show full text]
  • Terminology for Electrostatic Precipitators
    PUBLICATION ICAC-EP-1 NOVEMBER 2000 _____________________________________________________ TERMINOLOGY FOR ELECTROSTATIC PRECIPITATORS TERMINOLOGY FOR ELECTROSTATIC PRECIPITATORS Publication ICAC-EP-1 Date Adopted: November 2000 ICAC The Institute of Clean Air Companies (ICAC), the nonprofit national association of companies that supply stationary source air pollution monitoring and control systems, equipment, and services, was formed in 1960 to promote the industry and encourage improvement of engineering and technical standards. The Institute's mission is to assure a strong and workable air quality policy that promotes public health, environmental quality, and industrial progress. As the representative of the air pollution control industry, the Institute seeks to evaluate and respond to regulatory initiatives and establish technical standards to the benefit of all. ICAC Copyright © ICAC, Inc., 2000. All rights reserved. 1660 L Street, NW Washington, DC 20036-5603 Telephone: 202.457.0911 Facsimile: 202.331.1388 Website: www.icac.com Summary: This document provides definitions of key common terms related to electrostatic precipitators and their operation in the U.S. marketplace, and includes illustrations of common precipitators. The terminology is arranged by major system component areas, and concludes with a section on general and miscellaneous electrostatic precipitator terms. This document is written by and for members of the air pollution control industry as well as for the regulatory community and others seeking to better understand this industry and this particular air pollution control technology. This document is part of an ICAC technical standards series that addresses electrostatic precipitators (see ICAC publications list). As appropriate, terminology specific to dry and wet electrostatic precipitators is listed and defined.
    [Show full text]
  • Study of the Corona Discharge Pheno- Menon for Application in Pathogen and Narcotic Detection in Aerosol
    Study of the corona discharge pheno- menon for application in pathogen and narcotic detection in aerosol GLEB LOBOV Degree project in Microsystem Technology Second level, 30 HEC Stockholm, Sweden 2012 XR-EE-MST 2012-001 Study of the corona discharge phenomenon for application in pathogen and narcotic detection in aerosol Master Thesis by Gleb Lobov Supervisors: Gaspard Pardon, Niklas Sandström Examiner: Wouter van der Wijngaart Microsystem Technology KTH Royal Institute of Technology Stockholm, Sweden January 2012 3 4 Abstract Within this master thesis work, a novel application of a corona discharge is presented. The phenomenon of an electro-hydro-dynamic (EHD) flow is used for the precipitation of airborne particles onto a restricted surface of a non-coronizing electrode. The non-coronizing electrode surface can be replaced by a liquid interface, by which aerosol particles can be transferred from the airflow into a liquid solution, allowing for further analysis. Due to a small volume of the liquid container, the increased concentration of trapped particles will potentially enhance the resolution of the detection system. Aerosol droplets can originate from a human breath, which opens the possibility to utilize the system for narcotics or viruses detection. In this work, effort was laid on adapting a simulation model and an experimental set-up to the concept of the airborne particle trapping. Electrical measurements were conducted to characterize the set-up, through which the main limitations of the input parameters of the system could be extracted. Moreover, an approach for the determination of the upper limit of the applicable voltage was introduced. The data collected was used to build general conclusions and recommendations, relevant to the further research on this topic.
    [Show full text]
  • The Corona Discharge
    Numerical and analytical studies of critical radius in new geometries for corona discharge in air and CO2-rich environments Jacob A. Engle, Jeremy A. Riousset Department of Physical Sciences, Center for Space and Atmospheric Research (CSAR), Embry-Riddle Aeronautical University, Daytona Beach, FL CEDAR 2017 ([email protected]) Abstract II. Model Formulation In this work, we focus on plasma discharge produced between two electrodes with a high potential Objectives Geometry Cartesian Spherical Cylindrical difference, resulting in ionization of the neutral gas particles and creating a current in the gas • Apply Paschen theory to Cartesian, 푥2 푅2 푅2 medium. This process, when done at low current and low temperature can create corona and “glow” Analytical 훼eff푑푥 = ln(푄) 훼eff푑푟 = ln(푄) 훼eff푑푟 = ln(푄) 푥1 푅1 푅1 discharges, which can be observed as a luminescent, or “glow,” emission. The parallel plate geometry spherical, and cylindrical geometries; 푥1 = 0 R2 →c; V(R2) = 0 R2 →c; V(R2) = 0 −퐵푝 used in Paschen theory is particularly well suited to model experimental laboratory scenario. V(c) = 0; V(c) = 0 • Obtain analytical expressions for critical 훼eff(퐸) = 퐴푝푒 퐸 However, it is limited in its applicability to lightning rods and power lines (Moore et al., 2000). −퐵푝 −퐵푝 푑 = 푥 − 푥 훼 (퐸) = 퐴푝푒 퐸 훼 (퐸) = 퐴푝푒 퐸 Franklin’s sharp tip and Moore et al.’s rounded tip fundamentally differ in the radius of curvature of 2 1 eff eff radius and Stoletov’s point; 휕푉 = 0: Stoletov′s point 휕푉 ′ 휕푉 ′ the upper end of the rod. Hence, we propose to expand the classic Cartesian geometry into spherical 휕푑 = 0: Stoletov s point = 0: Stoletov s point • Develop numerical models for 휕푅1 휕푅1 geometries.
    [Show full text]
  • Evidence of a Corona Discharge Induced by Natural High Voltage Due to Vertical Potential Gradient Dunpin Hong, H
    Evidence of a corona discharge induced by natural high voltage due to vertical potential gradient Dunpin Hong, H. Rabat, M. Kirkpatrick, E. Odic, Nofel Merbahi, J Giacomoni, Olivier Eichwald To cite this version: Dunpin Hong, H. Rabat, M. Kirkpatrick, E. Odic, Nofel Merbahi, et al.. Evidence of a corona discharge induced by natural high voltage due to vertical potential gradient. Plasma Research Express, 2019, 1 (1), pp.015013. 10.1088/2516-1067/ab0563. hal-02100144 HAL Id: hal-02100144 https://hal.archives-ouvertes.fr/hal-02100144 Submitted on 15 Apr 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. EVIDENCE OF A CORONA DISCHARGE INDUCED BY NATURAL HIGH VOLTAGE DUE TO VERTICAL POTENTIAL GRADIENT D. HONG1*, H. RABAT1, M.J. KIRKPATRICK2, E. ODIC2, N. MERBAHI3, J. GIACOMONI4 AND O. EICHWALD3 ¹GREMI, UMR7344, Univ. of Orleans, CNRS, 45067 Orleans, France ²GeePs | Group of electrical engineering - Paris, CNRS, CentraleSupélec, Univ. Paris-Sud, Université Paris-Saclay, Sorbonne Université, 3 & 11 rue Joliot-Curie, Plateau de Moulon 91192 Gif- sur-Yvette CEDEX, France 3LAPLACE, Univ. of Toulouse, UMR5213, 31062, Toulouse, France 4AEROPHILE, 106 avenue Félix Faure, 75015 PARIS, France *corresponding author: [email protected] ABSTRACT This paper describes a study evidencing the creation of a corona discharge induced by natural high voltage found above the earth’s surface due to the vertical potential gradient at an altitude of 125 meters.
    [Show full text]
  • News and Notes
    Bulletin American Meteorological Society Miller, L. Jay, 1972: Dual-Doppler radar observations of Snider, J. B., 1972: Ground-based sensing of temperature circulation in snow conditions. Proc. 15th Radar Meteor. profiles from angular and multi-spectral emission measure- Conf., Amer. Meteor. Soc. ments. J. Appl. Meteor11, 958-967. Owens, J. C., 1969: Optical Doppler measurement of micro- scale wind velocity. Proc. IEEE, 57, 530-536. Strauch, R. G., V. E. Derr, and R. E. Cupp, 1971: Atmo- Richter, J. H., 1969: High resolution tropospheric radar spheric temperature measurement using Raman lidar. sounding. Radio Sci., 4, 1261-1268. Appl Opt., 10, 2665-1669. Salzman, J. A., W. J. Masica, and T. A. Coney, 1971: Deter- V. E. Derr, and R. E. Cupp, 1972: Atmospheric water mination of gas temperatures from laser-Raman scattering. vapor meaesurement using Raman lidar. Remote Sensing NASA TN D-6336. of Environment (in press). Schotland, R. M., 1969: Some aspects of remote atmospheric sensing by laser radar. Rept. of Remote Atrnos. Probing Wyngaard, J. E., Y. Izumi, and S. A. Collins, Jr., 1971: Be- Panel, Committee on Atrnos. Sci., Nat'l Acad, of Sci-Natl havior of the refractive-index-structure parameter near the Res. Council, 2, 179-200. ground. J. Opt. Soc. Amer., 61, 1646-1650. news and notes Lightning suppression by seeding with two chaff dispensers and field mills to measure electric field strength. Flying below cloud level, the NOAA scientists During a six-week long experiment, scientists from the waited until their instruments registered a field greater than National Oceanic and Atmospheric Administration attempted 30,000 volts per meter, a magnitude at which corona dis- to suppress lightning by seeding thunderstorms with fine charge will occur, When this happens the chaff dispensers aluminized fibers over a 200 mis area of northeastern Colo- are activated and the threadlike fibers are carried into the rado.
    [Show full text]
  • Glow Corona Discharges and Their Effect on Lightning Attachment: Revisited
    2012 International Conference on Lightning Protection (ICLP), Vienna, Austria Glow Corona Discharges and Their Effect on Lightning Attachment: revisited Marley Becerra School of Engineering, Royal Institute of Technology –KTH– Stockholm, Sweden Power Technology Department, ABB Corporate Research Västerås, Sweden [email protected] Abstract— Previous studies in the literature have suggested that has been recently suggested that air terminals can shield glow corona discharges could be potentially used to control the themselves due to the generated glow corona [10]. frequency of lightning flashes to grounded objects. Such studies use simplified one-dimensional corona drift models or basic Based on these studies, different non-conventional lightning empirical equations derived from high voltage experiments to protection systems based on the generation or suppression of assess the effect of glow corona on the initiation of both streamers glow corona have been released into the market. Thus, it is and upward connecting leaders under the influence of a claimed that multi-point corona configurations (better known descending lightning leader. In order to revisit the theoretical as a dissipation array system) can prevent lighting strikes to basis of these studies, a two-dimensional glow corona drift model objects “protected” with such a system. In addition, lightning has been implemented together with a self-consistent upward rods specially designed to avoid glow corona generation are leader inception and propagation model –SLIM–. A 60 m tall claimed to be more efficient than conventional sharp or blunt lightning rod is used as a study case. It is found that the shielding lightning rods. However, there is an ongoing debate in the effect of the glow corona space charge has been strongly lightning protection community about the validity of these overestimated in the literature.
    [Show full text]
  • Evaluation of Ozone Generation in Volume Spiral-Tubular Dielectric Barrier Discharge Source
    energies Article Evaluation of Ozone Generation in Volume Spiral-Tubular Dielectric Barrier Discharge Source Pawel Zylka Department of Electrical Engineering Fundamentals, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland; [email protected] Received: 13 January 2020; Accepted: 3 March 2020; Published: 5 March 2020 Abstract: Ozone, due to its high reactivity cannot be stockpiled, and thus requires to be generated on-demand. The paper reports on laboratory studies of O3 generation in a volume dielectric barrier discharge (DBD) tubular flow-through system with a coaxial-spiral electrode arrangement. Its performance is experimentally verified and compared to a commercial surface DBD O3 source fitted with a three-electrode floating supply arrangement. The presented volume DBD design is capable of steadily producing up to 4180 ppmv O3 at 1 Nl/min unprocessed atmospheric air intake and 10 kV 1.6 kHz sinusoidal high voltage supply corresponding to 67 g/kWh O3 production yield increasing to 93 g/kWh at 100 Nl/min air intake. The effects of high voltage supply tuning are also investigated and discussed together with finite element method simulation results. Keywords: ozone; temperature; destruction; dielectric barrier discharge; surface discharge 1. Introduction Ozone has been recently extensively applied as a potent oxidizing agent in many fields of science, technology and everyday life including chemical synthesis, semiconductor surface treatment, water disinfection, destruction of pollutants and odor removal, purification of products, decolorization (bleaching), vermin and insects control, automotive fuel afterburning, skin treatment and dental care, just to name a few [1–4]. However, at the same time, ozone is considered a highly toxic gas—its PEL (Permissible Exposure Limit) and REL (Recommended EL) health limits are as low as 0.1 ppm (0.2 mg/m3) while IDLH (Immediate Danger Lethal Dose) is set at 5 ppm [5].
    [Show full text]
  • Solid State Tesla Coils and Their Uses
    Solid State Tesla Coils and Their Uses Sean Soleyman Electrical Engineering and Computer Sciences University of California at Berkeley Technical Report No. UCB/EECS-2012-265 http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-265.html December 14, 2012 Copyright © 2012, by the author(s). All rights reserved. Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission. Solid State Tesla Coils and Their Uses by Sean Soleyman Research Project Submitted to the Department of Electrical Engineering and Computer Sciences, University of California at Berkeley, in partial satisfaction of the requirements for the degree of Master of Science, Plan II. Approval for the Report and Comprehensive Examination: Committee: Jaijeet Roychowdhury Research Advisor 2012/12/13 (Date) Michael Lustig ,tG/t; (Date) Abstract – The solid state Tesla coil is a recently- discovered high voltage power supply. It has similarities to both the traditional Tesla coil and to the modern switched-mode flyback converter. This report will document the design, operation, and construction of such a system. Possible industrial applications for the device will also be considered. I. INTRODUCTION – THE TESLA COIL For reasons that will be discussed later, the traditional Tesla coil now has very few practical Around 1891, Nikola Tesla designed a system uses other than the production of sparks and special consisting of two coupled resonant circuits.
    [Show full text]
  • Experimental Investigation of the Corona Discharge in Electrical Transmission Due to AC/DC Electric Fields
    MATEC Web of Conferences 50 , 001 04 (2016) DOI: 10.1051/matecconf/201650001 04 C Owned by the authors, published by EDP Sciences, 2016 Experimental Investigation of the Corona Discharge in Electrical Transmission due to AC/DC Electric Fields Phanupong Fuangpian, Taimoor Zafar , Sayan Ruankorn and Thanapong Suwanasri The Sirindhorn International Thai-German Graduate School of Engineering, King Mongkut’s University of Technology North Bangkok, Bangkok, Thailand Abstract. Nowadays, using of High Voltage Direct Current (HVDC) transmission to maximize the transmission efficiency, bulk power transmission, connection of renewable power source from wind farm to the grid is of prime concern for the utility. However, due to the high electric field stress from Direct Current (DC) line, the corona discharge can easily be occurred at the conductor surface leading to transmission loss. Therefore, the polarity effect of DC lines on corona inception and breakdown voltage should be investigated. In this work, the effect of DC polarity and Alternating Current (AC) field stress on corona inception voltage and corona discharge is investigated on various test objects, such as High Voltage (HV) needle, needle at ground plane, internal defect, surface discharge, underground cable without cable termination, cable termination with simulated defect and bare overhead conductor. The corona discharge is measured by partial discharge measurement device with high-frequency current transformer. Finally, the relationship between supply voltage and discharge intensity on each DC polarity and AC field stress can be successfully determined. 1 Introduction generation and underground cable with simulated defect. The third group of test object is bare overhead conductor High Voltage Direct Current has been used in electrical in the small scale model to observe the effect of AC/DC transmission for several decades for bulk electric power electric field stress.
    [Show full text]
  • Dielectric-Barrier Discharges: Their History, Discharge Physics, and Industrial Applications
    Plasma Chemistry and Plasma Processing, Vol. 23, No. 1, March 2003 ( 2003) Inûited Reûiew Dielectric-barrier Discharges: Their History, Discharge Physics, and Industrial Applications Ulrich Kogelschatz1 Receiûed April 5, 2002; reûised May 7, 2002 Dielectric-barrier discharges (silent discharges) are used on a large industrial scale. They combine the adûantages of non-equilibrium plasma properties with the ease of atmospheric-pressure operation. A prominent feature is the simple scalability from small laboratory reactors to large industrial installations with megawatt input powers. Efficient and cost-effectiûe all-solid-state power supplies are aûailable. The preferred frequency range lies between 1 kHz and 10 MHz, the preferred pressure range between 10 kPa and 500 kPa. Industrial applications include ozone gener- ation, pollution control, surface treatment, high power CO2 lasers, ultraûiolet excimer lamps, excimer based mercury-free fluorescent lamps, and flat large-area plasma displays. Depending on the application and the operating conditions the discharge can haûe pronounced filamentary structure or fairly diffuse appearance. History, discharge physics, and plasma chemistry of dielectric-barrier discharges and their applications are discussed in detail. KEY WORDS: Dielectric-barrier discharges; silent discharges; non-equilibrium plasmas; ozone synthesis; pollution control; surface treatment; CO2 lasers; excimer lamps; plasma displays. 1. HISTORY OF DIELECTRIC-BARRIER DISCHARGES Dielectric-barrier discharges, or simply barrier discharges, have been known for more than a century. First experimental investigations were reported by Siemens(1) in 1857. They concentrated on the generation of ozone. This was achieved by subjecting a flow of oxygen or air to the influ- ence of a dielectric-barrier discharge (DBD) maintained in a narrow annular gap between two coaxial glass tubes by an alternating electric field of suf- ficient amplitude.
    [Show full text]