Ornamental Fish Culture Dr
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Fisheries Centre
Fisheries Centre The University of British Columbia Working Paper Series Working Paper #2015 - 80 Reconstruction of Syria’s fisheries catches from 1950-2010: Signs of overexploitation Aylin Ulman, Adib Saad, Kyrstn Zylich, Daniel Pauly and Dirk Zeller Year: 2015 Email: [email protected] This working paper is made available by the Fisheries Centre, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada. Reconstruction of Syria’s fisheries catches from 1950-2010: Signs of overexploitation Aylin Ulmana, Adib Saadb, Kyrstn Zylicha, Daniel Paulya, Dirk Zellera a Sea Around Us, Fisheries Centre, University of British Columbia, 2202 Main Mall, Vancouver, BC, V6T 1Z4, Canada b President of Syrian National Committee for Oceanography, Tishreen University, Faculty of Agriculture, P.O. BOX; 1408, Lattakia, Syria [email protected] (corresponding author); [email protected]; [email protected]; [email protected]; [email protected] ABSTRACT Syria’s total marine fisheries catches were estimated for the 1950-2010 time period using a reconstruction approach which accounted for all fisheries removals, including unreported commercial landings, discards, and recreational and subsistence catches. All unreported estimates were added to the official data, as reported by the Syrian Arab Republic to the United Nation’s Food and Agriculture Organization (FAO). Total reconstructed catch for 1950-2010 was around 170,000 t, which is 78% more than the amount reported by Syria to the FAO as their national catch. The unreported components added over 74,000 t of unreported catches, of which 38,600 t were artisanal landings, 16,000 t industrial landings, over 4,000 t recreational catches, 3,000 t subsistence catches and around 12,000 t were discards. -
§4-71-6.5 LIST of CONDITIONALLY APPROVED ANIMALS November
§4-71-6.5 LIST OF CONDITIONALLY APPROVED ANIMALS November 28, 2006 SCIENTIFIC NAME COMMON NAME INVERTEBRATES PHYLUM Annelida CLASS Oligochaeta ORDER Plesiopora FAMILY Tubificidae Tubifex (all species in genus) worm, tubifex PHYLUM Arthropoda CLASS Crustacea ORDER Anostraca FAMILY Artemiidae Artemia (all species in genus) shrimp, brine ORDER Cladocera FAMILY Daphnidae Daphnia (all species in genus) flea, water ORDER Decapoda FAMILY Atelecyclidae Erimacrus isenbeckii crab, horsehair FAMILY Cancridae Cancer antennarius crab, California rock Cancer anthonyi crab, yellowstone Cancer borealis crab, Jonah Cancer magister crab, dungeness Cancer productus crab, rock (red) FAMILY Geryonidae Geryon affinis crab, golden FAMILY Lithodidae Paralithodes camtschatica crab, Alaskan king FAMILY Majidae Chionocetes bairdi crab, snow Chionocetes opilio crab, snow 1 CONDITIONAL ANIMAL LIST §4-71-6.5 SCIENTIFIC NAME COMMON NAME Chionocetes tanneri crab, snow FAMILY Nephropidae Homarus (all species in genus) lobster, true FAMILY Palaemonidae Macrobrachium lar shrimp, freshwater Macrobrachium rosenbergi prawn, giant long-legged FAMILY Palinuridae Jasus (all species in genus) crayfish, saltwater; lobster Panulirus argus lobster, Atlantic spiny Panulirus longipes femoristriga crayfish, saltwater Panulirus pencillatus lobster, spiny FAMILY Portunidae Callinectes sapidus crab, blue Scylla serrata crab, Samoan; serrate, swimming FAMILY Raninidae Ranina ranina crab, spanner; red frog, Hawaiian CLASS Insecta ORDER Coleoptera FAMILY Tenebrionidae Tenebrio molitor mealworm, -
The Pandas Are Coming, the Pandas Are Coming!!! by DRAS Member Derek P.S
WTFish?: The Pandas Are Coming, The Pandas Are Coming!!! by DRAS Member Derek P.S. Tustin ometimes it is interesting living in the Greater Toronto Area, isn’t it? S Recently deemed to be the fourth largest city in North America (leaping past Chicago by 84,000 people) behind Mexico City, New York and Los Angeles, we truly are a world class city. (Interestingly enough, the Greater Toronto Area, that being the recognized metropolitan area of the city and those living in the immediate suburbs, is actually the 51st largest metropolitan area in the world with 6,139,000 people. Tokyo is first with 37,126,000 and Chicago is 28th, with 9,121,000(1). So we still have some catching up to do...) And since I seem to be heading off on tangents today, have you ever considered what makes a city “world class”? According to some, it is a “city generally considered to be an important node in the global economic system.”(2) Given Toronto’s impact on the national economy, and the subsequent influence within the international economic community, it can easily be argued that Toronto is such a city. But there are also cultural factors that come into play. Toronto is blessed with many such attractions, but the one that stands out in my mind is the Toronto Zoo. Sometimes I think we all take for granted what a wonderful facility we have right next door. The Toronto Zoo is consistently ranked as one of the top ten zoos in the world (3, 4, 5), and acknowledged as being one of the largest zoos in the world (6). -
Early Stages of Fishes in the Western North Atlantic Ocean Volume
ISBN 0-9689167-4-x Early Stages of Fishes in the Western North Atlantic Ocean (Davis Strait, Southern Greenland and Flemish Cap to Cape Hatteras) Volume One Acipenseriformes through Syngnathiformes Michael P. Fahay ii Early Stages of Fishes in the Western North Atlantic Ocean iii Dedication This monograph is dedicated to those highly skilled larval fish illustrators whose talents and efforts have greatly facilitated the study of fish ontogeny. The works of many of those fine illustrators grace these pages. iv Early Stages of Fishes in the Western North Atlantic Ocean v Preface The contents of this monograph are a revision and update of an earlier atlas describing the eggs and larvae of western Atlantic marine fishes occurring between the Scotian Shelf and Cape Hatteras, North Carolina (Fahay, 1983). The three-fold increase in the total num- ber of species covered in the current compilation is the result of both a larger study area and a recent increase in published ontogenetic studies of fishes by many authors and students of the morphology of early stages of marine fishes. It is a tribute to the efforts of those authors that the ontogeny of greater than 70% of species known from the western North Atlantic Ocean is now well described. Michael Fahay 241 Sabino Road West Bath, Maine 04530 U.S.A. vi Acknowledgements I greatly appreciate the help provided by a number of very knowledgeable friends and colleagues dur- ing the preparation of this monograph. Jon Hare undertook a painstakingly critical review of the entire monograph, corrected omissions, inconsistencies, and errors of fact, and made suggestions which markedly improved its organization and presentation. -
Tese Inpa.Pdf
INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA UNIVERSIDADE FEDERAL DO AMAZONAS PROGRAMA DE PÓS-GRADUAÇÃO EM GENÉTICA, CONSERVAÇÃO E BIOLOGIA EVOLUTIVA ESTRUTURAÇÃO E DINÂMICA POPULACIONAL DE Pellona castelnaeana, VALENCIENNES, 1847, E EVIDÊNCIAS DE UNIDADES EVOLUTIVAS EM Pellona flavipinnis (VALENCIENNES, 1837) NA BACIA AMAZÔNICA ALINE MOURÃO XIMENES Manaus, Amazonas Novembro de 2014 ALINE MOURÃO XIMENES ESTRUTURAÇÃO E DINÂMICA POPULACIONAL DE Pellona castelnaeana, VALENCIENNES, 1847, E EVIDÊNCIAS DE UNIDADES EVOLUTIVAS EM Pellona flavipinnis (VALENCIENNES, 1837) NA BACIA AMAZÔNICA ORIENTADORA: DRA. IZENI PIRES FARIAS CO-ORIENTADOR: DR. EMIL JOSÉ HERNÁNDEZ RUZ Dissertação apresentada ao Programa de Pós-Graduação do Instituto Nacional de Pesquisas da Amazônia como parte dos requisitos para obtenção do título de Mestre em Genética, Conservação e Biologia Evolutiva. Manaus, Amazonas Novembro de 2014 ii FICHA CATALOGRÁFICA CDD 597.092 X4 Ximenes, Aline Mourão Estruturação e dinâmica populacional de Pellona castelnaeana, valenciennes, 1847, e evidências de unidades evolutivas em Pellona / Aline Mourão Ximenes. --- Manaus: [s.n.], 2014. xii, 86 f. : il. color. Dissertação (Mestrado) --- INPA/UFAM, Manaus, 2014. Orientador : Izeni Pires Farias. Coorientador : Emil José Hernández Ruz. Área de concentração : Genética, Conservação e Biologia Evolutiva. 1. DNA mitocondrial. 2. Microssatélites. 3. Apapás. I. Título. Sinopse: Foram caracterizados locos de microssatélites para estudo de genética de população em Pellona. Utilizou-se esses microssatélites e região D-loop para o estudo de dinâmica populacional e estrutura genética de Pellona castelnaeana, os resultados a partir da região D-loop indicaram que esta forma uma população panmítica na bacia Amazônica e os resultados a partir dos microssátiles mostraram um padrão de estruturação em megarregiões, ambos microssatélites e região D-loop foram concordantes em indicar que as corredeiras do alto rio Madeira atuaram restrigindo o fluxo gênico em P. -
Etroplus Suratensis) Ecological Risk Screening Summary
Green Chromide Cichlid (Etroplus suratensis) Ecological Risk Screening Summary U.S. Fish and Wildlife Service, April 2011 Revised, September 2018 Web Version, 6/5/2019 Photo: P. Corbett. Licensed under CC BY 2.0. Available: https://flic.kr/p/tmiiei. (September 2018). 1 Native Range and Status in the United States Native Range From Froese and Pauly (2018): “Western Indian Ocean: India and Sri Lanka.” 1 From Abraham (2011): “Etroplus suratensis is distributed in the coastal regions of peninsular India and Sri Lanka. In India, the wild populations have been recorded from the states of Kerala and Tamil Nadu.” Status in the United States This species has not been reported as introduced or established in the United States. This species is in trade in the United States. From Imperial Tropicals (2015): “Green Chromide Cichlid (Etroplus suratensis) […] $ 19.99” From Bluegrass Aquatics (2019): “Green Chromide Cichlid – REGULAR $26.98” Means of Introductions in the United States This species has not been reported as introduced or established in the United States. 2 Biology and Ecology Taxonomic Hierarchy and Taxonomic Standing From ITIS (2018): “Kingdom Animalia Subkingdom Bilateria Infrakingdom Deuterostomia Phylum Chordata Subphylum Vertebrata Infraphylum Gnathostomata Superclass Actinopterygii Class Teleostei Superorder Acanthopterygii Order Perciformes Suborder Labroidei Family Cichlidae Genus Etroplus Species Etroplus suratensis (Bloch, 1790)” From Fricke et al. (2018): “Current status: Valid as Etroplus suratensis (Bloch 1790). Cichlidae: Etroplinae.” 2 Size, Weight, and Age Range From Froese and Pauly (2018): “Max length : 40.0 cm TL male/unsexed; [Menon 1999]; common length : 20.0 cm TL male/unsexed; [Pethiyagoda 1991]” Environment From Froese and Pauly (2018): “Brackish; benthopelagic; depth range 10 - ? m. -
Updated Checklist of Marine Fishes (Chordata: Craniata) from Portugal and the Proposed Extension of the Portuguese Continental Shelf
European Journal of Taxonomy 73: 1-73 ISSN 2118-9773 http://dx.doi.org/10.5852/ejt.2014.73 www.europeanjournaloftaxonomy.eu 2014 · Carneiro M. et al. This work is licensed under a Creative Commons Attribution 3.0 License. Monograph urn:lsid:zoobank.org:pub:9A5F217D-8E7B-448A-9CAB-2CCC9CC6F857 Updated checklist of marine fishes (Chordata: Craniata) from Portugal and the proposed extension of the Portuguese continental shelf Miguel CARNEIRO1,5, Rogélia MARTINS2,6, Monica LANDI*,3,7 & Filipe O. COSTA4,8 1,2 DIV-RP (Modelling and Management Fishery Resources Division), Instituto Português do Mar e da Atmosfera, Av. Brasilia 1449-006 Lisboa, Portugal. E-mail: [email protected], [email protected] 3,4 CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal. E-mail: [email protected], [email protected] * corresponding author: [email protected] 5 urn:lsid:zoobank.org:author:90A98A50-327E-4648-9DCE-75709C7A2472 6 urn:lsid:zoobank.org:author:1EB6DE00-9E91-407C-B7C4-34F31F29FD88 7 urn:lsid:zoobank.org:author:6D3AC760-77F2-4CFA-B5C7-665CB07F4CEB 8 urn:lsid:zoobank.org:author:48E53CF3-71C8-403C-BECD-10B20B3C15B4 Abstract. The study of the Portuguese marine ichthyofauna has a long historical tradition, rooted back in the 18th Century. Here we present an annotated checklist of the marine fishes from Portuguese waters, including the area encompassed by the proposed extension of the Portuguese continental shelf and the Economic Exclusive Zone (EEZ). The list is based on historical literature records and taxon occurrence data obtained from natural history collections, together with new revisions and occurrences. -
Constraints on the Timescale of Animal Evolutionary History
Palaeontologia Electronica palaeo-electronica.org Constraints on the timescale of animal evolutionary history Michael J. Benton, Philip C.J. Donoghue, Robert J. Asher, Matt Friedman, Thomas J. Near, and Jakob Vinther ABSTRACT Dating the tree of life is a core endeavor in evolutionary biology. Rates of evolution are fundamental to nearly every evolutionary model and process. Rates need dates. There is much debate on the most appropriate and reasonable ways in which to date the tree of life, and recent work has highlighted some confusions and complexities that can be avoided. Whether phylogenetic trees are dated after they have been estab- lished, or as part of the process of tree finding, practitioners need to know which cali- brations to use. We emphasize the importance of identifying crown (not stem) fossils, levels of confidence in their attribution to the crown, current chronostratigraphic preci- sion, the primacy of the host geological formation and asymmetric confidence intervals. Here we present calibrations for 88 key nodes across the phylogeny of animals, rang- ing from the root of Metazoa to the last common ancestor of Homo sapiens. Close attention to detail is constantly required: for example, the classic bird-mammal date (base of crown Amniota) has often been given as 310-315 Ma; the 2014 international time scale indicates a minimum age of 318 Ma. Michael J. Benton. School of Earth Sciences, University of Bristol, Bristol, BS8 1RJ, U.K. [email protected] Philip C.J. Donoghue. School of Earth Sciences, University of Bristol, Bristol, BS8 1RJ, U.K. [email protected] Robert J. -
Cambodian Journal of Natural History
Cambodian Journal of Natural History Artisanal Fisheries Tiger Beetles & Herpetofauna Coral Reefs & Seagrass Meadows June 2019 Vol. 2019 No. 1 Cambodian Journal of Natural History Editors Email: [email protected], [email protected] • Dr Neil M. Furey, Chief Editor, Fauna & Flora International, Cambodia. • Dr Jenny C. Daltry, Senior Conservation Biologist, Fauna & Flora International, UK. • Dr Nicholas J. Souter, Mekong Case Study Manager, Conservation International, Cambodia. • Dr Ith Saveng, Project Manager, University Capacity Building Project, Fauna & Flora International, Cambodia. International Editorial Board • Dr Alison Behie, Australia National University, • Dr Keo Omaliss, Forestry Administration, Cambodia. Australia. • Ms Meas Seanghun, Royal University of Phnom Penh, • Dr Stephen J. Browne, Fauna & Flora International, Cambodia. UK. • Dr Ou Chouly, Virginia Polytechnic Institute and State • Dr Chet Chealy, Royal University of Phnom Penh, University, USA. Cambodia. • Dr Nophea Sasaki, Asian Institute of Technology, • Mr Chhin Sophea, Ministry of Environment, Cambodia. Thailand. • Dr Martin Fisher, Editor of Oryx – The International • Dr Sok Serey, Royal University of Phnom Penh, Journal of Conservation, UK. Cambodia. • Dr Thomas N.E. Gray, Wildlife Alliance, Cambodia. • Dr Bryan L. Stuart, North Carolina Museum of Natural Sciences, USA. • Mr Khou Eang Hourt, National Authority for Preah Vihear, Cambodia. • Dr Sor Ratha, Ghent University, Belgium. Cover image: Chinese water dragon Physignathus cocincinus (© Jeremy Holden). The occurrence of this species and other herpetofauna in Phnom Kulen National Park is described in this issue by Geissler et al. (pages 40–63). News 1 News Save Cambodia’s Wildlife launches new project to New Master of Science in protect forest and biodiversity Sustainable Agriculture in Cambodia Agriculture forms the backbone of the Cambodian Between January 2019 and December 2022, Save Cambo- economy and is a priority sector in government policy. -
Indiana Aquatic Nuisance Species (ANS) Management Plan
Indiana Aquatic Nuisance Species (ANS) Management Plan Aruana caught by angler in Lake George, Lake County, Indiana Photo credit: Brian Breidert, IDNR Indiana Department of Natural Resources Funded by: Division of Fish and Wildlife Edited by: Phil Seng and Gwen White, D.J. Case & Associates, Mishawaka, Indiana October 1, 2003 Indiana Aquatic Nuisance Species (ANS) Management Plan Table of Contents Page Executive summary 3 Introduction 6 Why should we be concerned? 6 Why are we hearing about more nuisance exotics? 6 Are all exotic species causing problems? 7 Why do some of these species become nuisances? 7 What principles should guide invasive species management in Indiana? 8 Which species are top priorities for management in Indiana? 8 Table 1. Aquatic nuisance species on the watch list and detected 9 Nuisance fish 10 Nuisance insects and crustaceans 13 Nuisance mussels and snails 14 Diseases, pathogens and parasites 15 Aquarium pets caught from Indiana waters 17 Nuisance plants 20 Which programs are engaged in management of invasive species? 23 What regulatory authorities control management of exotic species? 29 Federal role 30 Regional role 32 State role 33 Designing an integrated comprehensive regulatory approach 33 What can Hoosiers do to prevent and control the impacts of ANS? 40 Index to the strategic management plan 41 Description of strategic management plan 44 How will we know if we succeed? 58 Literature cited 60 Glossary of terms 63 List of agency and organization acronyms 64 Appendix A. List of introduced fish and crayfish 65 Appendix B. List of invasive aquatic plants 67 Appendix C. Priority list of ANS in the Great Lakes basin 69 Appendix D. -
January 13, 2015 London Aquaria Society Tommy Lam from Shrimp Fever Will Be Coming to Do a Presentation for Us
Volume 59, Issue 1 January 13, 2015 London Aquaria Society www.londonaquariasociety.com Tommy Lam from Shrimp Fever will be coming to do a presentation for us. Golden and Dwarf (Nannostomus beckfordi) and that can fit into it. For my pets, Pencilfish Profile dwarf pencilfish (Nannostomus I usually offer them occasional marginatus). Generally they are feed of brine shrimps and I add www.allabout-aquariumfish.com rather shy and would some- the finely crushed food flakes Guest post contributed by Mark Edgar (California) times become motionless, swim- that are specially made for tiny ming at the same spot. The tank fish. Sometimes I even took the Pencilfish is a tiny and that houses the fish should be a effort to introduce a variety of peaceful community fish charac- well-planted aquarium with at foods to enrich their diet such terized by its thin body which is least 50 percent of overall area as growing live daphnia or col- made up of three different color covered with dense vegetation lect these from ponds coupled stripes. There are quite a num- to provide a good hiding spot. I together with mosquito larva if ber of different species that even took the effort to add I happen to bump across these form the pencilfish family group some small empty clay pots so as well. What I notice is that of fish and each has its own dif- that the fish feels more like at my pencilfish simply love these ferent appearances depending home for them. Pencilfish prefer until I find myself unable to on the location on which they to move in groups and if possi- find constant food supply to were caught. -
Towards a Regional Information Base for Lake Tanganyika Research
RESEARCH FOR THE MANAGEMENT OF THE FISHERIES ON LAKE GCP/RAF/271/FIN-TD/Ol(En) TANGANYIKA GCP/RAF/271/FIN-TD/01 (En) January 1992 TOWARDS A REGIONAL INFORMATION BASE FOR LAKE TANGANYIKA RESEARCH by J. Eric Reynolds FINNISH INTERNATIONAL DEVELOPMENT AGENCY FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Bujumbura, January 1992 The conclusions and recommendations given in this and other reports in the Research for the Management of the Fisheries on Lake Tanganyika Project series are those considered appropriate at the time of preparation. They may be modified in the light of further knowledge gained at subsequent stages of the Project. The designations employed and the presentation of material in this publication do not imply the expression of any opinion on the part of FAO or FINNIDA concerning the legal status of any country, territory, city or area, or concerning the determination of its frontiers or boundaries. PREFACE The Research for the Management of the Fisheries on Lake Tanganyika project (Tanganyika Research) became fully operational in January 1992. It is executed by the Food and Agriculture organization of the United Nations (FAO) and funded by the Finnish International Development Agency (FINNIDA). This project aims at the determination of the biological basis for fish production on Lake Tanganyika, in order to permit the formulation of a coherent lake-wide fisheries management policy for the four riparian States (Burundi, Tanzania, Zaïre and Zambia). Particular attention will be also given to the reinforcement of the skills and physical facilities of the fisheries research units in all four beneficiary countries as well as to the buildup of effective coordination mechanisms to ensure full collaboration between the Governments concerned.