Widely Used Hermann-Mauguin Notation, As Well As of The

Total Page:16

File Type:pdf, Size:1020Kb

Widely Used Hermann-Mauguin Notation, As Well As of The J. Japan. Assoc. Min. Petr. Econ. Geol. 71, 299-307, 1976. EXPRESSION OF SPACE GROUPS WITH NUMBERS OF TWO FIGURES AS THE KEYNOTE YUKIO TAKANO Coll. Gen. Educ., University of Tokyo, Tokyo YOSHIHIKO SHIMAZAKI Geologica Survey of Japan, Tokyo From 67 non-translation space groups, the authors separated 6 space groups having two each pairs of diffraction patterns . Classification numbers of two figures were given to the total 73 non-translation space groups, so as to express their crystal system, elements of symmetry and lattice type. The rest 157 space groups, derived from these non-translation space groups, were provided with letters (four in maximum) to be put before or after the classification numbers of the basic space groups, to express their screw axis and glide plane. With this new style of notation, 157 space groups can be expressed by not more than three letters inclusive of the basic numerals. Thus, almost all space groups are represented by the symbols that are two to four letters fewer than those of the existing Hermann-Mauguin notation. This new notation enables even the beginners to identify the crystal system and the point group to which the space group belongs. widely used Hermann-Mauguin notation, INTRODUCTION as well as of the combination of elements It is a recent tendency that descriptive of symmetry in 230 space groups. Con data of chemical compounds are often sequently, looking at the symbol of a certain required to be accompanied by crystallogr space group, they will recognize no more aphic data. However, the reseachers who than the type of lattice, such as primitive, are not concerned with crystallography will body-centred, face-centred, etc., and whe find it quite troublesome to describe crystal ther it is of holohedry class of so-and-so class and space group of a chemical com crystal system. Most of crystallographers pound, not to speak of its chemical com may have to consult the International ponent, density, crystal system, unit cell, Tables for X-ray Crystallography (1952), in or the number Z of molecules contained order to know the orientation and combina therein. Also for the researchers who see tion of elements of symmetry for that space the description of crystal class or space group. group, it would be fairly difficult to discern The Schoenflies symbols and the which crystal class of what crystal system Hermann-Mauguin symbols are the most the crystal belongs to, if it was represented popular notations for expressing space only by the space group. Even the cryst groups. These two types of notations are allographers themselves generally have a often used together, as recommended by loose sense of the expression based on the the International Union of Crystallography. (Manuscript received May 24, 1976) 300 Y. Takano and Y. Shimazaki The Schoenflies notation, contrived in 1891, ainted themselves thoroughly with the was historical in that it introduced 230 space meaning of these symbols and the order of groups mathematically, by arranging point description, the Hermann-Mauguin nota groups to the respective lattice points of the tion is much more convenient than the space lattice and supplementing them with Schoenflies notation. Nevertheless, it translation. For all of the 32 point groups must be pointed out that few crystallogra the space group symbol has a numeral, rang phers would be able to answer promptly ing from the minimum 1 (C3h) to the that Ia3 belongs to the cubic system and maximum 28 (D2h), on the right shoulder. Ccc2 to the orthorhombic system, both as a Therefore, the point group to which the hemihedry class. Many crystallographers space group belongs can be indicated by might be perplexed when asked to tell the eliminating the numeral. In this respect, point groups for Ccc2 and Ccca. For the the Schoenflies notation is convenient. beginners it would take some time to com But, since the numerals are merely the prehend that mmm, 23 and 32 in the Her space group numbers that are mathemati mann-Mauguin notation are the expression cally systematized, they offer no informa of their belonging to the orthorhombic, tion on elements of symmetry of the space cubic and trigonal systems respectively. group, such as screw axis and glide plane. The authors, with their many years' In other words, so far as crystallography is experience of teaching crystallography, concerned, the Schoenflies symbols are not have been exploring a new method for informative on space groups, and so they describing space groups, a method which is are undesirable for educating beginners in easy to understand for the natural scientists crystallography. who are often forced to make crystallogra The Hermann-Maugiun notation, on the phic description in their reports, and is other hand, was formed in the present convenient for the crystallographers as century when analysis of crystal structure well. In the present paper the authors became popular. The notation makes it a report the results hitherto obtained and principle that the elements of symmetry for propose a new type of notation. primary description of point groups should be minimized. Elements of symmetry in NOTATION OF 67 LATTICE GROUPS space groups also are expressed in conformi ty with this principle. In the Hermann The authors thought that, in order to Mauguin notation of space groups, P, I, F make the space group symbols easily under and C denote primitive, body-centred and stood by natural scientists in general, such base-centred lattices respectively, 65, 43, symbols as P, I, F, C.... and m, c, b, a, 32 and 21 indicate screw axes, and c, b, a, n n, d.... should be avoided, because these symbols requirethe knowledgeof prescribed and d are glide planes. After the lattice rules for the usage. Also, giving considera indication, the symbols follow the prescribed tion to the occasion of putting the symbols order of description, beginning with the into the computer's memory, one of the data on the principal rotation axis, just authors decided to employ numbers of two like the symbols of point groups. There figuresas the keynote, like the case of classi fore, to the crystallographers who are acqu fication numbers for elements as proposed Expression of space groups with numbers of two figures as the keynote 301 previously (Takano, 1976). Since it is numbers) of one figure, 9 for the ones with practially impossible to identify all of 230 the mirror plane perpendicular and parallel space groups by numbers alone, the to the principal axis (holohedry class), 7 author gave classificationnumbers of two for the ones with the mirror plane parallel figures first to the basic 67 non-translation to the principal axis or rotoinversion axis, space groups. These 67 spacegroups among 5 for the ones with the mirror plane per 230 do not contain the glide planes repre pendicularly intersecting the principal axis, sented by c/2, b/2, n/2, etc., or screw axes 3 for the ones with 2-fold rotation axes represented by 1/2, 1/4, 1/6, etc., in the forming side axes, and 1 is used for the ones elements of symmetry denoted by the Her without the elements of symmetry except mann-Mauguin notation. As shown in center of symmetry. Table 1, the 67 non-translation space groups Other lattices than P-lattice are to be comprise32 for P-lattice, 15 for I-lattice, 8 expressed by even numbers, as mentioned for F-lattice, 6 for C-lattice, 5 for R-lattice before. So, I-lattice is represented by the and 1 for A-lattice.* number of P-lattice minus 1, F-lattice by Now, in numbering the lattices, the the number of P-lattice minus, 3. In mono authors made it a rule that P-lattice should clinic and trigonal systems where I-lattice have odd numbers and other lattices even is absent, C-lattice and R-lattice are expres numbers. With regard to ten figures, 0 is sed by the number of P-lattice minus 1. For assignedto the oblique system (triclinic and C-lattice in the orthorhombic system, the monoclinicsystems), 1 to the orthorhombic number of P-lattice minus 5 is given. For (rectangular) system with one 2-fold rota Amm2, number 10 is given. This way, all tion axis, and 2 to the orthorhombic system of 67 non-translation space groups are with three 2-fold rotation axes. Similarly provided with numbers of two figures. The 4, 3 and 6 are assigned to the ones with 4- authors propose to call these basic space fold, 3-fold and 6-fold rotation axes groups the lattice groups. These lattice respectively. In the case of the cubic groups divided by crystal system are as system, which consists of three 2-fold or follows: Triclinic 01, Monoclinic 02-07, 4-fold rotation axes, four 3-fold rotation Orthorhombic 10-29, Tetragonal 40-49, axes and six 2-fold rotation axes, the author Trigonal 30-37, Hexagonal 61-69, Cubic 50- used the sum of the numbers of the 59 (T, Th), 74-77 (Td) and 90-99 (0, Oh) components, that is, 5, 7 and 9 are the (Table 1), inclusive of the negative sign** numbers of ten figures to represent the used for roto-inversion axis, etc. cubic system (Smith and Kennard, 1974). Next, on the basis of expressing the SIX REVERSE LATTICE GROUPS elements of symmetry other than the prin By changing the rotation and the reflec cipal axis in P-lattice by numbers (odd tion into the screwing and the gliding for the * In Bravais 14 space lattices A-lattice is included in C-lattice , but Amm2 of the orthorhombic system must be distinguished from Cmm2 in the orientation of elements of symmetry.
Recommended publications
  • Download English-US Transcript (PDF)
    MITOCW | ocw-3.60-13oct2005-pt2-220k_512kb.mp4 PROFESSOR: To mention, most everyone did extremely well on the quiz. But I sense that there's still some of you who have not yet come to terms with crystallographic directions and planes, and you feel a little bit awkward in distinguishing brackets around the HKL and parentheses around HKL. And there are some people who generally get that straightened out, but when I said point group, suddenly pictures of lattices with fourfold axes and twofold axes adorning them came in, and that isn't involved in a point group at also. Again, a point group the symmetry about point. A space group is symmetry spread out through all of space and infinite numbers. So let me say a little bit about resources. I don't know whether you've been following what we've been doing in the notes from Buerger's book that I passed out. That was hard to do is because we did the plane groups, and he doesn't touch them at all. So now we're back following once again Buerger's treatment quite closely. So read the book. And if you like, I can tell you with the end of each lecture, this stuff is on pages 57 through 62. The other thing. As you'll notice, this nonintrusive gentleman in the back is making videotapes of all the lectures. These are eventually going to go up on the website as OpenCourseWare. We were just speaking about that, and it takes a while before they get up, but I have a disk of every lecture.
    [Show full text]
  • Crystallography: Symmetry Groups and Group Representations B
    EPJ Web of Conferences 22, 00006 (2012) DOI: 10.1051/epjconf/20122200006 C Owned by the authors, published by EDP Sciences, 2012 Crystallography: Symmetry groups and group representations B. Grenier1 and R. Ballou2 1SPSMS, UMR-E 9001, CEA-INAC / UJF-Grenoble, MDN, 38054 Grenoble, France 2Institut Néel, CNRS / UJF, 25 rue des Martyrs, BP. 166, 38042 Grenoble Cedex 9, France Abstract. This lecture is aimed at giving a sufficient background on crystallography, as a reminder to ease the reading of the forthcoming chapters. It more precisely recalls the crystallographic restrictions on the space isometries, enumerates the point groups and the crystal lattices consistent with these, examines the structure of the space group, which gathers all the spatial invariances of a crystal, and describes a few dual notions. It next attempts to familiarize us with the representation analysis of physical states and excitations of crystals. 1. INTRODUCTION Crystallography covers a wide spectrum of investigations: i- it aspires to get an insight into crystallization phenomena and develops methods of crystal growths, which generally pertains to the physics of non linear irreversible processes; ii- it geometrically describes the natural shapes and the internal structures of the crystals, which is carried out most conveniently by borrowing mathematical tools from group theory; iii- it investigates the crystallized matter at the atomic scale by means of diffraction techniques using X-rays, electrons or neutrons, which are interpreted in the dual context of the reciprocal space and transposition therein of the crystal symmetries; iv- it analyzes the imperfections of the crystals, often directly visualized in scanning electron, tunneling or force microscopies, which in some instances find a meaning by handling unfamiliar concepts from homotopy theory; v- it aims at providing means for discerning the influences of the crystal structure on the physical properties of the materials, which requires to make use of mathematical methods from representation theory.
    [Show full text]
  • Part 1: Supplementary Material Lectures 1-4
    Crystal Structure and Dynamics Paolo G. Radaelli, Michaelmas Term 2013 Part 1: Supplementary Material Lectures 1-4 Web Site: http://www2.physics.ox.ac.uk/students/course-materials/c3-condensed-matter-major-option Contents 1 Frieze patterns and frieze groups 2 2 Symbols for frieze groups 3 2.1 A few new concepts from frieze groups . .4 2.2 Frieze groups in the ITC . .6 3 Wallpaper groups 8 3.1 A few new concepts for Wallpaper Groups . .8 3.2 Lattices and the “translation set” . .8 3.3 Bravais lattices in 2D . .9 3.3.1 Oblique system . .9 3.3.2 Rectangular system . .9 3.3.3 Square system . 10 3.3.4 Hexagonal system . 10 3.4 Primitive, asymmetric and conventional Unit cells in 2D . 10 3.5 The 17 wallpaper groups . 10 3.6 Analyzing wallpaper and other 2D art using wallpaper groups . 10 1 4 Point groups in 3D 12 4.1 The new generalized (proper & improper) rotations in 3D . 13 4.2 The 3D point groups with a 2D projection . 13 4.3 The other 3D point groups: the 5 cubic groups . 15 5 The 14 Bravais lattices in 3D 17 6 Notation for 3D point groups 19 6.0.1 Notation for ”projective” 3D point groups . 19 7 Glide planes in 3D 21 8 “Real” crystal structures 21 8.1 Cohesive forces in crystals — atomic radii . 21 8.2 Close-packed structures . 22 8.3 Packing spheres of different radii . 23 8.4 Framework structures . 24 8.5 Layered structures . 25 8.6 Molecular structures .
    [Show full text]
  • Space Groups and Lattice Complexes ; —
    Mm 1W 18 072 if "^^^"^ Space Groups and Lattice Complexes ; — — Werner FISHER Mineralogisches Institut der Philipps-Universitat D-3550 Marburg/Lahn, German Federal Republic Hans BURZLAFF Lehrstuhl fiir Kristallographie der Friedrich-Alexander-Universitat Erlangen-Niirnberg D-8520 Erlangen, German Federal Republic Erwin HELLNER Fachbereich Geowissenschaften der Philipps-Universitat D-3550 Marburg/Lahn, German Federal Republic J. D. H. DONNAY Department de Geologic, Universite'de Montreal CP 6128 Montreal 101, Quebec, Canada Formerly, The Johns Hopkins University, Baltimore, Maryland Prepared under the auspices of the Commission on International Tables, International Union of Crystallography, and the Office of Standard Reference Data, National Bureau of Standards. U.S. DEPARTMENT OF COMMERCE, Frederick B. Dent, Secreiory NATIONAL BUREAU OF STANDARDS, Richard W. Roberts, Dnecior Issued May 1973 Library of Congress Catalog Number: 73-600099 National Bureau of Standards Monograph 134 Nat. Bur. Stand. (U.S.), Monogr. 134, 184 pages (May 1973) CODEN: NBSMA6 For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402 (Order by SD Catalog No. C13,44:134). Price: $4.10, domestic postpaid; $3.75, GPO Bookstore Stock Number 0303-01143 Abstract The lattice complex is to the space group what the site set is to the point group - an assemblage of symmetry- related equivalent points. The symbolism introduced by Carl Hermann has been revised and extended. A total of 402 lattice complexes are derived from 67 Weissenberg com- plexes. The Tables list site sets and lattice complexes in standard and alternate representations. They answer the following questions: What are the co-ordinates of the points in a given lattice complex? In which space groups can a given lattice complex occur? What are the lattice complexes that can occur in a given space group? The higher the symmetry of the crystal structures is, the more useful the lattice- complex approach should be on the road to the ultimate goal of their classification.
    [Show full text]
  • A Point Group Character Tables
    A Point Group Character Tables Appendix A contains Point Group Character (Tables A.1–A.34) to be used throughout the chapters of this book. Pedagogic material to assist the reader in the use of these character tables can be found in Chap. 3. The Schoenflies symmetry (Sect. 3.9) and Hermann–Mauguin notations (Sect. 3.10) for the point groups are also discussed in Chap. 3. Some of the more novel listings in this appendix are the groups with five- fold symmetry C5, C5h, C5v, D5, D5d, D5h, I, Ih. The cubic point group Oh in Table A.31 lists basis functions for all the irreducible representations of Oh and uses the standard solid state physics notation for the irreducible representations. Table A.1. Character table for group C1 (triclinic) C1 (1) E A 1 Table A.2. Character table for group Ci = S2 (triclinic) S2 (1) Ei 2 2 2 x ,y ,z ,xy,xz,yz Rx,Ry,Rz Ag 11 x, y, z Au 1 −1 Table A.3. Character table for group C1h = S1 (monoclinic) C1h(m) Eσh 2 2 2 x ,y ,z ,xy Rz,x,y A 11 xz, yz Rx,Ry,z A 1 −1 480 A Point Group Character Tables Table A.4. Character table for group C2 (monoclinic) C2 (2) EC2 2 2 2 x ,y ,z ,xy Rz,z A 11 (x, y) xz, yz B 1 −1 (Rx,Ry) Table A.5. Character table for group C2v (orthorhombic) C2v (2mm) EC2 σv σv 2 2 2 x ,y ,z z A1 1111 xy Rz A2 11−1 −1 xz Ry,x B1 1 −11−1 yz Rx,y B2 1 −1 −11 Table A.6.
    [Show full text]
  • A Family Symmetry and the Golden Ratio Prediction for Solar Neutrino
    A5 Family Symmetry and the Golden Ratio Prediction for Solar Neutrino Mixing Alexander Stuart UW-Madison July 28th, 2009 Based on: L. Everett and A. Stuart, 0812.1057 [hep-ph], to appear in PRD The Standard Model • Triumph of modern science, but incomplete. Predicts massless neutrinos. • How can we mix neutrinos into our recipe? July 28, 2009 http://www.particleadventure.org/frameless/standard_model.html 2 Figuring Out the Ingredients July 28, 2009 3 Generating Small Neutrino Masses • Dirac neutrinos: add right handed neutrino to SM: but very small Yukawa coupling (~ ) • Majorana neutrinos: seesaw mechanism (Minkowski; Gell-Mann, Ramond, Slansky; Yanagida) Effective Majorana neutrino mass terms (LL couplings) July 28, 2009 4 Flavor Symmetry • Postulate a flavor symmetry (continuous or discrete) to explain mixings and masses. – Use symmetry to forbid mass term at renormalized level and generate mass at higher level through SSB of a flavon field. Y. Kajiyama, M. Raidal, and A. Strumia ( ); L.L. Everett and A. J. Stuart ( ); A. Adulpravitchai, A. Blum, W. Rodejohann ( ) Icosahedral Group is not crystallographic point group so there was work to be done. July 28, 2009 5 The Icosahedral Group, • An icosahedron is the Platonic solid that consists of 20 equilateral triangles. → f = 20 • 20 triangles each have 3 sides → 60 edges but 2 triangles/edge → 30 edges → e=30 • 20 triangles each have 3 vertices → 60 vertices but 5 vertices/edge → v= 12 • Are we right? • Icosahedral group consists of all rotations that take vertices to vertices on an icosahedron. ( i.e. ) July 28, 2009 6 http://upload.wikimedia.org/wikipedia/commons/e/eb/Icosahedron.jpg Conjugacy Classes of Rotation by each angle forms its own conjugacy class.
    [Show full text]
  • Isometries in Three Space and the Seven Solid Crystal Systems
    California State University, San Bernardino CSUSB ScholarWorks Theses Digitization Project John M. Pfau Library 1995 Isometries in three space and the seven solid crystal systems Iris Magee Follow this and additional works at: https://scholarworks.lib.csusb.edu/etd-project Part of the Mathematics Commons Recommended Citation Magee, Iris, "Isometries in three space and the seven solid crystal systems" (1995). Theses Digitization Project. 1110. https://scholarworks.lib.csusb.edu/etd-project/1110 This Project is brought to you for free and open access by the John M. Pfau Library at CSUSB ScholarWorks. It has been accepted for inclusion in Theses Digitization Project by an authorized administrator of CSUSB ScholarWorks. For more information, please contact [email protected]. ISOMETRIES IN THE SEVEN SOLID CRYSTAL SYSTEMS A Project ■. Presented to the Faculty of Galifornia State University, Sari Bernardino in Partial Fulfillment of the Reguirements for the Degree Master of Arts ^,in':;^: . ­ Mathematics Iris Magee September 1995 ISOMETRIES IN THREE SPACE AND THE SEVEN SOLID CRYSTAL SYSTEMS A Project Presented to the California state University, V San Bernardino by Iris Magee September 1995 Approved by: DrVJoan T* Hallett, Chair, Mathematics D te riffin Dr.Peter D. Williams .ABSTRACT ■; My project is exppsitpry on crystallographic groups. T look at the isometries of three spaced with my main concentration on both direct and opposite isometries of finite order. I show that isometries are described by products of reflections. The introduction of regular polyhedra and their rotations will also be included in this review of direct finite isometries. Iprove that the number of orbits of the direct finite isometries must be 2 or 3.
    [Show full text]
  • Lecture 9 Point Group Symmetries Elena Orlova
    Lecture 9 Point group symmetries WHAT IS SYMMETRY E.EOrlo Orlovaovvaa The term Symmetry has Greek origins. For the Greeks it meant the harmony of parts , proportions Symmetry in plane Symmetry in 2D space and rhythm. Symmetry in 3D space Point group symmetries Another more mathematical way, that is related to our image analysis and crystallography is: Symmetry in space – symmetry in projections An object can be divided by a point, or line, or radiation lines or planes into to or more parts EXACTLY SIMILAR in size and shape, and in Image processing Practical Course position relative to the dividing element. Repetition for cryo microscopy Birkbeck College of exactly similar parts facing each other or a centre. Sep 5 - Sept 15, 2017 London Why is it Important? Symmetry around us We can classify molecules (biocomplexes) according to the level of their symmetry elements, so they can be grouped together having the same set of symmetry elements. This classification is very important, because it allows to make some general conclusions about molecular properties without extra calculation. On the atomic level it helps to reveal the molecular properties without any calculations. We will be able to decide if a molecule has a dipole moment or not , and to know how these property are reflected on their surfaces. What sort of interaction hold biomolecules together in huge biocomlexes such as viruses, secretion systems, etc. Biological objects We say that such an object is symmetric with The person - hereafter referred respect to a given operation if this operation, to as ‘it’ has a mirror plane, when applied to the object, does not appear provided it stands straight (and to change it.
    [Show full text]
  • Symmetry Operations, Symmetry Elements, and Point Groups
    1.3 Summary of Symmetry Operations, Symmetry Elements, and Point Groups. Rotation axis. A rotation by 360˚/n that brings a three-dimensional body into an ^ equivalent configuration comprises a Cn symmetry operation. If this operation is performed a ^ ^ ^ 2 second time, the product CnCn equals a rotation by 2(360˚/n), which may be written as Cn . If n ^ ^ m is even, n/2 is integral and the rotation reduces to Cn/2. In general, a Cn operation is reduced ^ 6 ^ 2 by dividing m and n by their least common divisor (e.g., C9 = C3 ). Continued rotation by 360˚/n generates the set of operations: ^ ^ 2 ^ 3 ^ 4 ... ^ n Cn, Cn , Cn , Cn , Cn ^ n ^ ^ n+m ^ m where Cn = rotation by a full 360˚ = E the identity. Therefore Cn = Cn . Operations resulting from a Cn symmetry axis comprise a group that is isomorphic to the cyclic group of order n. If a molecule contains no other symmetry elements than Cn, this set constitutes the symmetry point group for that molecule and the group specified is denoted Cn. When additional symmetry elements are present, Cn forms a proper subgroup of the complete symmetry point group. Molecules that possess only a Cn symmetry element are rare, an example being + Co(NH2CH2CH2NH2)2Cl2 , which possesses a sole C2 symmetry element. N Cl N Co Cl N N ^ One special type of Cn operation exists only for linear molecules (e.g., HCl). Rotation by any angle around the internuclear axis defines a symmetry operation. This element is called ^ f C• axis and an infinite number of operations C• are associated with the element where f denotes rotation in decimal degrees.
    [Show full text]
  • Unitary Reflection Groups for Quantum Fault Tolerance
    Unitary reflection groups for quantum fault tolerance Michel Planat† and Maurice Kibler‡ † Institut FEMTO-ST, CNRS, 32 Avenue de l’Observatoire, F-25044 Besan¸con, France ‡Universit´ede Lyon, F-69622, Lyon, France; Universit´eLyon 1, Villeurbanne; CNRS/IN2P3, UMR5822, IPNL Abstract. This paper explores the representation of quantum computing in terms of unitary reflections (unitary transformations that leave invariant a hyperplane of a vector space). The symmetries of qubit systems are found to be supported by Euclidean real reflections (i.e., Coxeter groups) or by specific imprimitive reflection groups, introduced (but not named) in a recent paper [Planat M and Jorrand Ph 2008, J Phys A: Math Theor 41, 182001]. The automorphisms of multiple qubit systems are found to relate to some Clifford operations once the corresponding group of reflections is identified. For a short list, one may point out the Coxeter systems of type B3 and G2 (for single qubits), D5 and A4 (for two qubits), E7 and E6 (for three qubits), the complex reflection groups G(2l, 2, 5) and groups No 9 and 31 in the Shephard-Todd list. The relevant fault tolerant subsets of the Clifford groups (the Bell groups) are generated by the Hadamard gate, the π/4 phase gate and an entangling (braid) gate [Kauffman L H and Lomonaco S J 2004 New J. of Phys. 6, 134]. Links to the topological view of quantum computing, the lattice approach and the geometry of smooth cubic surfaces are discussed. arXiv:0807.3650v3 [quant-ph] 24 Feb 2009 PACS numbers: 03.67.Pp, 03.67.Lx, 02.20.-a, 03.65.Vf, 02.40.Dr 1.
    [Show full text]
  • Crystallography: Symmetry Groups and Group Representations Béatrice Grenier, Rafik Ballou
    Crystallography: Symmetry groups and group representations Béatrice Grenier, Rafik Ballou To cite this version: Béatrice Grenier, Rafik Ballou. Crystallography: Symmetry groups and group representations. EDP Sciences. Contribution of Symmetries in Condensed Matter, EPJ Web of Conferences, pp.00006, 2012, EPJ Web of Conferences, 10.1051/epjconf/20122200006. hal-00963925 HAL Id: hal-00963925 https://hal.archives-ouvertes.fr/hal-00963925 Submitted on 22 Mar 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. EPJ Web of Conferences 22, 00006 (2012) DOI: 10.1051/epjconf/20122200006 C Owned by the authors, published by EDP Sciences, 2012 Crystallography: Symmetry groups and group representations B. Grenier1 and R. Ballou2 1SPSMS, UMR-E 9001, CEA-INAC / UJF-Grenoble, MDN, 38054 Grenoble, France 2Institut Néel, CNRS / UJF, 25 rue des Martyrs, BP. 166, 38042 Grenoble Cedex 9, France Abstract. This lecture is aimed at giving a sufficient background on crystallography, as a reminder to ease the reading of the forthcoming chapters. It more precisely recalls the crystallographic restrictions on the space isometries, enumerates the point groups and the crystal lattices consistent with these, examines the structure of the space group, which gathers all the spatial invariances of a crystal, and describes a few dual notions.
    [Show full text]
  • Download English-US Transcript (PDF)
    MITOCW | ocw-3.60-04oct2005-pt2-220k_512kb.mp4 PROFESSOR: Any questions about where we left off-- up to where we left off? OK, what I'll do then is give you a few more examples of the combinations in 22 to show which ones we have to retain as frameworks for crystallographic point groups and which ones exist as groups but which involve rotational symmetries that are not permitted to a lattice. So we've seen a combination of three orthogonal twofold axes and then projection that would look like this. And the international symbol for that point group is just a running list of the different axes that are present, 222. The next group in the sequence would be 3 2 2, where we took a 120 degree rotation. We combine that with a twofold axis perpendicular to it and the new twofold axis comes out and reminds you again of things that are quite clear but which are easy to forget-- that this angle here is 1/2 of 2 pi over 3. Don't forget that 1/2. So the neighboring twofold axis is 60 degrees away and then if we allow these axes to operate on each other, the net symmetry consistent set of axes looks like this. But let us look at a solid that has this symmetry. And such a solid would be a trigonal-- triangular prism. And again we can use the corners of this polyhedron as the reference locations of our motifs. So let us put a first motif here, number 1.
    [Show full text]