Symmetry and Introduction to Group Theory

Total Page:16

File Type:pdf, Size:1020Kb

Symmetry and Introduction to Group Theory Solid State Theory Physics 545 Symmetry and Introduction to Group Theory StillddifdtltftSymmetry is all around us and is a fundamental property of nature. Syyymmetry and Introduction to Group py Theory The term symmetry is derived from the Greek word “symmetria” which means “measured together”. An object is symmetric if one part (e.g. one side) of it is the same* as all of the other parts. You know intuitively if somethinggy is symmetric but we req uire a precise method to describe how an object or molecule is symmetric. Group theory is a very powerful mathematical tool that allows us to rationalize and simppylify many yp problems in Chemistr y. A grou p consists of a set of symmetry elements (and associated symmetry operations) that completely describe the symmetry of an object. We will use some aspects of group theory to help us understand the bonding and spectroscopic features of molecules. Space transformations. Translation symmetry. " Crystallography is largely based Group Theory (symmetry). " Symmetry operations transform space into itself. Simplest symmetry operator is unity operator(=does nothing). (=Lattice is invariant with respect to symmetry operations) " Translation operator, TR, replaces radius vector of every point, r, by r’=r+R. Symmetry a state in which parts on opposite sides of a plane, line, or point display arrangements that are related to one another via a symmetry operation such as translation, rotation, reflection or inversion. Divided into two ppyarts by a plane Mirror plane (symmetry element) Have no symmetry remaining : Asymmetric units AtiAsymmetric unit Recall that the unit cell of a crystal is the smallest 3-D geometric figure that can be stacked without rotation to form the lattice. The asymmetric unit is the smallest part of a crystal structure from which the complete structure can be built using space group symmetry. The asymmetric unit may consist of only a part of a molecule, or it can contain more than one molecule, if the molecules not related by symmetry. Protein Crystal Contacts by Eric Martz , April 2001 . http://molvis.sdsc.edu/protexpl/xtlcon.htm Group Theory mathematical method a molecule’s symmetry information about its properties (i.e ., structure , spectra , polarity, chirality, etc… ) A-B-A is different from A-A-B. O C However, important aspects of the symmetry of H2O and CF2Cl2 are the same. Symmetry and Point Groups Point groups have symmetry about a single point at the center of mass of the system. Symmetry elements are geometric entities about which a symmetry operation can be performed. In a point group, all symmetry elements must pass through the center of mass (the point). A symmetry operation is the action that produces an object identical to the initial object. The symmetry elements and related operations that we will find in molecules are: Element Operation Rotation axis, Cn n-fold rotation Improper rotation axis, Sn n-fold improper rotation Plane of symmetry, σ Reflection Center of syyymmetry, i Inversion Identity, E The Identity operation does nothing to the object – it is necessary for mathematical completeness, as we will see later. There are two naming systems commonly used in describing symmetry elements 1The1. The Schoenflies notation used extensively by spectroscopists 2. The Hermann-Mauguin or international notation preferred by cystallographers Symmetry Operations/Elements A molecule or object is said to possess a particular operation if that operation when applied leaves the molecule unchanged. Each operation is performed relative to a point, line, or plane - called a symmetry element. There are 5 kinds of operations 1. Iden tity 2. n-Fold Rotations 3. Reflection 4. Inversion 5. Improper n-Fold Rotation The 5 Symmetry Elements Identity (C1 α E or 1) Rotation by 360° around anyyy randomly chosen axes throug h the molecule returns it to original position. Any direction in any object is a C1 axis; rotation by 360 ° restores original orientation. Schoenflies : C is the syygmbol given to a rotational axis 1 indicates rotation by 360° Hermann-Mauguin : 1 for 1-fold rotation Operation: act of rotating molecule through 360° Element: axis of symmetry (i .e . the rotation axis) . Symmet ry Eleme nts Rotation turns all the points in the asymmetric unit around one point, the center of rottitation. A rot ttiation d oes not ch ange the handedness of figures in the plane. The center of rotation is the only invariant point (point that maps onto itself). Good introductory symmetry websites http://mathforum.org/sum95/suzanne/symsusan.html http://www.ucs.mun.ca/~mathed/Geometry/Transformations/symmetry.html Rotation axes (Cn or n) Rotations through angles other than 360°. Operation: act of rotation Element: rotation axis Symbol for a symmetry element for which the operation is a rotation of 360°/n C2 = 180° , C3 = 120° , C4 = 90° , C5 = 72° , C6 = 60° rotation, etc. Schoenflies : Cn Hermann–Mauguin : n. The molecule has an n-fold axis of symmetry. An objjypect may possess several rotation axes and in such a case the one (or more) with the greatest value of n is called the principal axes of rotation. n-fold rotation - a rotation of 360°/n about the Cn axis (n = 1 to ∞) O(1) 180° O(1) H(2) H(3) H(3) H(2) In water there is a C2 axis so we can perform a 2-fold (180°) rotation to get the identical arrangement of atoms. H(3) H(4) H(2) 120° 120° N(1) N(1) N(1) H(4) H(2) H(4) H(3) H(2) H(3) In ammonia there is a C3 axis so we can perform 3-fold (120°) rotations to get identical arrangement of atoms. The Principal axis in an objjgect is the highest order rotation axis. It is usually easy to identify the principle axis and this is typically assigned to the z-axis if we are using Cartesian coordinates. Ethane, C2H6 Benzene, C6H6 The principal axis is the three-fold The principal axis is the six-fold axis axis containing the C-C bond. througggh the center of the ring. The principal axis in a tetrahedron is a three-fold axis going through one vertex and the center of the object. Symmet ry Eleme nts Reflection flips all points in the asymmetric unit over a line, which is called the mirror , and thereby changes the handedness of any figures in the asymmetric unit. The poi nt s al ong th e mi rror li ne are all invariant points (points that map onto themselves) under a reflection. Mirror p lanes ( ⌠ or m) Mirror reflection through a plane. Operation: act of reflection Element: mirror plane Schoenflies notation: Horizontal mirror plane ( ⌠h) : plane perpendicular to the principal rotation axis Vertical mirror plane ( ⌠v) : plane includes principal rotation axis Diagonal mirror pp(lane ( ⌠d))p : plane includes princi pal rotation axis and bisects the angle between a pair of 2-fold rotation axes that are normal (perpendicular) to principal rotation axis. ShSchoen flies : ⌠h, ⌠v, ⌠d Hermann–Mauguin : m Reflection across a plane of symmetry, σ (mirror plane) O(1) σv O(1) H(2) H(3) H(3) H(2) These mirror planes are called “vertical” mirror planes, σv, because they contain the principal axis. O(1) σv O(1) The reflection illustrated in the top diagram is through a mirror plane H(2) H(3) H(2) H(3) perpendicular to the plane of the water molecule. The plane shown on the bottom is in the same plane as the Handedness is changed by reflection! water molecule. Notes about reflection operations: - A reflection operation exchanges one half of the object with the reflection of the other half. - Reflection ppylanes may be vertical, horizontal or dihedral (more on σd later). - Two successive reflections are equivalent to the identity operation (nothing is moved). σ h A “horizontal” mirror plane, σh,is, is perpendicular to the principal axis. This must be the xy-plane if the z- axis is the ppprincipal axis. σ σ In benzene, the σh is in the plane d d of the molecule – it “reflects” each atom onto itself. σh Vertical and dihedral mirror planes of geometric shapes. σv σv Symmet ry Eleme nts Inversion every point on one side of a center of symmetry has a siilimilar poiitnt at an equal distance on the opposite side of the center of symmetry. CtCentres of fi inversi on ( cent re of symmet ry, i or 1 ) Operation: inversion through this point Element: point Straight line drawn through centre of inversion from any point of the molecule will meet an equi val ent poi nt at an equal di st ance b eyond th e cent er. Schoenflies : i Hermann–Mauguin : 1 Molecules possessing a center of inversion are centrosymmetric Inversion and centers of symmetry, i (inversion centers) In this operation, every part of the object is reflected through the inversion center, which must be at the center of mass of the object. 1 F Cl 22F Cl 1 2 Br i Br 1 1 221 12Br Br 1 Cl F22Cl F1 i [x, y, z] [-x, -y, -z] We w ill no t cons ider the ma tr ix approac h to eac h o f the symme try opera tions in this course but it is particularly helpful for understanding what the inversion operation does. The inversion operation takes a point or object at [x, y, z] to [-x, -y, -z]. Aftii(iAxes of rotary inversion (improper rot ttiSation Sn or n ) Involves a combination or elements and operations Schoenflies : Sn Element: axis of rotatory reflection The operation is a combination of rotation by 360°/n (Cn) followed by reflection in a plane normal ( ⌠h) to the Sn axis.
Recommended publications
  • 1-Crystal Symmetry and Classification-1.Pdf
    R. I. Badran Solid State Physics Fundamental types of lattices and crystal symmetry Crystal symmetry: What is a symmetry operation? It is a physical operation that changes the positions of the lattice points at exactly the same places after and before the operation. In other words, it is an operation when applied to an object leaves it apparently unchanged. e.g. A translational symmetry is occurred, for example, when the function sin x has a translation through an interval x = 2 leaves it apparently unchanged. Otherwise a non-symmetric operation can be foreseen by the rotation of a rectangle through /2. There are two groups of symmetry operations represented by: a) The point groups. b) The space groups (these are a combination of point groups with translation symmetry elements). There are 230 space groups exhibited by crystals. a) When the symmetry operations in crystal lattice are applied about a lattice point, the point groups must be used. b) When the symmetry operations are performed about a point or a line in addition to symmetry operations performed by translations, these are called space group symmetry operations. Types of symmetry operations: There are five types of symmetry operations and their corresponding elements. 85 R. I. Badran Solid State Physics Note: The operation and its corresponding element are denoted by the same symbol. 1) The identity E: It consists of doing nothing. 2) Rotation Cn: It is the rotation about an axis of symmetry (which is called "element"). If the rotation through 2/n (where n is integer), and the lattice remains unchanged by this rotation, then it has an n-fold axis.
    [Show full text]
  • Arxiv:1910.10745V1 [Cond-Mat.Str-El] 23 Oct 2019 2.2 Symmetry-Protected Time Crystals
    A Brief History of Time Crystals Vedika Khemania,b,∗, Roderich Moessnerc, S. L. Sondhid aDepartment of Physics, Harvard University, Cambridge, Massachusetts 02138, USA bDepartment of Physics, Stanford University, Stanford, California 94305, USA cMax-Planck-Institut f¨urPhysik komplexer Systeme, 01187 Dresden, Germany dDepartment of Physics, Princeton University, Princeton, New Jersey 08544, USA Abstract The idea of breaking time-translation symmetry has fascinated humanity at least since ancient proposals of the per- petuum mobile. Unlike the breaking of other symmetries, such as spatial translation in a crystal or spin rotation in a magnet, time translation symmetry breaking (TTSB) has been tantalisingly elusive. We review this history up to recent developments which have shown that discrete TTSB does takes place in periodically driven (Floquet) systems in the presence of many-body localization (MBL). Such Floquet time-crystals represent a new paradigm in quantum statistical mechanics — that of an intrinsically out-of-equilibrium many-body phase of matter with no equilibrium counterpart. We include a compendium of the necessary background on the statistical mechanics of phase structure in many- body systems, before specializing to a detailed discussion of the nature, and diagnostics, of TTSB. In particular, we provide precise definitions that formalize the notion of a time-crystal as a stable, macroscopic, conservative clock — explaining both the need for a many-body system in the infinite volume limit, and for a lack of net energy absorption or dissipation. Our discussion emphasizes that TTSB in a time-crystal is accompanied by the breaking of a spatial symmetry — so that time-crystals exhibit a novel form of spatiotemporal order.
    [Show full text]
  • Translational Symmetry and Microscopic Constraints on Symmetry-Enriched Topological Phases: a View from the Surface
    PHYSICAL REVIEW X 6, 041068 (2016) Translational Symmetry and Microscopic Constraints on Symmetry-Enriched Topological Phases: A View from the Surface Meng Cheng,1 Michael Zaletel,1 Maissam Barkeshli,1 Ashvin Vishwanath,2 and Parsa Bonderson1 1Station Q, Microsoft Research, Santa Barbara, California 93106-6105, USA 2Department of Physics, University of California, Berkeley, California 94720, USA (Received 15 August 2016; revised manuscript received 26 November 2016; published 29 December 2016) The Lieb-Schultz-Mattis theorem and its higher-dimensional generalizations by Oshikawa and Hastings require that translationally invariant 2D spin systems with a half-integer spin per unit cell must either have a continuum of low energy excitations, spontaneously break some symmetries, or exhibit topological order with anyonic excitations. We establish a connection between these constraints and a remarkably similar set of constraints at the surface of a 3D interacting topological insulator. This, combined with recent work on symmetry-enriched topological phases with on-site unitary symmetries, enables us to develop a framework for understanding the structure of symmetry-enriched topological phases with both translational and on-site unitary symmetries, including the effective theory of symmetry defects. This framework places stringent constraints on the possible types of symmetry fractionalization that can occur in 2D systems whose unit cell contains fractional spin, fractional charge, or a projective representation of the symmetry group. As a concrete application, we determine when a topological phase must possess a “spinon” excitation, even in cases when spin rotational invariance is broken down to a discrete subgroup by the crystal structure. We also describe the phenomena of “anyonic spin-orbit coupling,” which may arise from the interplay of translational and on-site symmetries.
    [Show full text]
  • About Symmetries in Physics
    LYCEN 9754 December 1997 ABOUT SYMMETRIES IN PHYSICS Dedicated to H. Reeh and R. Stora1 Fran¸cois Gieres Institut de Physique Nucl´eaire de Lyon, IN2P3/CNRS, Universit´eClaude Bernard 43, boulevard du 11 novembre 1918, F - 69622 - Villeurbanne CEDEX Abstract. The goal of this introduction to symmetries is to present some general ideas, to outline the fundamental concepts and results of the subject and to situate a bit the following arXiv:hep-th/9712154v1 16 Dec 1997 lectures of this school. [These notes represent the write-up of a lecture presented at the fifth S´eminaire Rhodanien de Physique “Sur les Sym´etries en Physique” held at Dolomieu (France), 17-21 March 1997. Up to the appendix and the graphics, it is to be published in Symmetries in Physics, F. Gieres, M. Kibler, C. Lucchesi and O. Piguet, eds. (Editions Fronti`eres, 1998).] 1I wish to dedicate these notes to my diploma and Ph.D. supervisors H. Reeh and R. Stora who devoted a major part of their scientific work to the understanding, description and explo- ration of symmetries in physics. Contents 1 Introduction ................................................... .......1 2 Symmetries of geometric objects ...................................2 3 Symmetries of the laws of nature ..................................5 1 Geometric (space-time) symmetries .............................6 2 Internal symmetries .............................................10 3 From global to local symmetries ...............................11 4 Combining geometric and internal symmetries ...............14
    [Show full text]
  • Download English-US Transcript (PDF)
    MITOCW | ocw-3.60-13oct2005-pt2-220k_512kb.mp4 PROFESSOR: To mention, most everyone did extremely well on the quiz. But I sense that there's still some of you who have not yet come to terms with crystallographic directions and planes, and you feel a little bit awkward in distinguishing brackets around the HKL and parentheses around HKL. And there are some people who generally get that straightened out, but when I said point group, suddenly pictures of lattices with fourfold axes and twofold axes adorning them came in, and that isn't involved in a point group at also. Again, a point group the symmetry about point. A space group is symmetry spread out through all of space and infinite numbers. So let me say a little bit about resources. I don't know whether you've been following what we've been doing in the notes from Buerger's book that I passed out. That was hard to do is because we did the plane groups, and he doesn't touch them at all. So now we're back following once again Buerger's treatment quite closely. So read the book. And if you like, I can tell you with the end of each lecture, this stuff is on pages 57 through 62. The other thing. As you'll notice, this nonintrusive gentleman in the back is making videotapes of all the lectures. These are eventually going to go up on the website as OpenCourseWare. We were just speaking about that, and it takes a while before they get up, but I have a disk of every lecture.
    [Show full text]
  • Crystallography: Symmetry Groups and Group Representations B
    EPJ Web of Conferences 22, 00006 (2012) DOI: 10.1051/epjconf/20122200006 C Owned by the authors, published by EDP Sciences, 2012 Crystallography: Symmetry groups and group representations B. Grenier1 and R. Ballou2 1SPSMS, UMR-E 9001, CEA-INAC / UJF-Grenoble, MDN, 38054 Grenoble, France 2Institut Néel, CNRS / UJF, 25 rue des Martyrs, BP. 166, 38042 Grenoble Cedex 9, France Abstract. This lecture is aimed at giving a sufficient background on crystallography, as a reminder to ease the reading of the forthcoming chapters. It more precisely recalls the crystallographic restrictions on the space isometries, enumerates the point groups and the crystal lattices consistent with these, examines the structure of the space group, which gathers all the spatial invariances of a crystal, and describes a few dual notions. It next attempts to familiarize us with the representation analysis of physical states and excitations of crystals. 1. INTRODUCTION Crystallography covers a wide spectrum of investigations: i- it aspires to get an insight into crystallization phenomena and develops methods of crystal growths, which generally pertains to the physics of non linear irreversible processes; ii- it geometrically describes the natural shapes and the internal structures of the crystals, which is carried out most conveniently by borrowing mathematical tools from group theory; iii- it investigates the crystallized matter at the atomic scale by means of diffraction techniques using X-rays, electrons or neutrons, which are interpreted in the dual context of the reciprocal space and transposition therein of the crystal symmetries; iv- it analyzes the imperfections of the crystals, often directly visualized in scanning electron, tunneling or force microscopies, which in some instances find a meaning by handling unfamiliar concepts from homotopy theory; v- it aims at providing means for discerning the influences of the crystal structure on the physical properties of the materials, which requires to make use of mathematical methods from representation theory.
    [Show full text]
  • 5.2 Symmetries • Symmetries Can Be Used to Classify Electromagnetic Modes and to Make Statements About the System‘S General Behaviour
    5.2 Symmetries • Symmetries can be used to classify electromagnetic modes and to make statements about the system‘s general behaviour. • Example: inversion symmetry: Consider a 2D metal cavity that looks like this: J. D. Joannopoulos et al., Photonic Crystals – Molding the flow of light, Princeton University Press (2008). 1 • The shape is somewhat arbitrary, making an analytical solution difficult, but it has inversion symmetry if is a mode with frequency , then must also be a mode with frequency • Unless is a member of a degenerate family of modes, then if has the same frequency, it must be the same mode, i.e. it must be a multiple of : . • If we invert the system twice we obtain or . • A given nondegenerate mode must be of one of the two types, either it is invariant under inversion (even mode) or it becomes its own opposite (odd mode). • Thereby we have classified the modes of the system based on how they respond to one of its symmetry operations. 2 • Let‘s capture this idea in a more abstract language • Suppose is an operator (a 3x3 matrix) that inverts vectors (3x1 matrices), so that • To invert a vector field, we need an operator that inverts both the vector and ist argument : • For an inversion symmetric system it does not matter if we operate with or if we first invert the coordinates, then operate with , and then change them back, i.e.: (73) • This equation can be rearranged: =0 • We can define the commutator (74) which is itself an operator 3 • For our inversion symmetric example system we have ,Θ 0.
    [Show full text]
  • Part 1: Supplementary Material Lectures 1-4
    Crystal Structure and Dynamics Paolo G. Radaelli, Michaelmas Term 2013 Part 1: Supplementary Material Lectures 1-4 Web Site: http://www2.physics.ox.ac.uk/students/course-materials/c3-condensed-matter-major-option Contents 1 Frieze patterns and frieze groups 2 2 Symbols for frieze groups 3 2.1 A few new concepts from frieze groups . .4 2.2 Frieze groups in the ITC . .6 3 Wallpaper groups 8 3.1 A few new concepts for Wallpaper Groups . .8 3.2 Lattices and the “translation set” . .8 3.3 Bravais lattices in 2D . .9 3.3.1 Oblique system . .9 3.3.2 Rectangular system . .9 3.3.3 Square system . 10 3.3.4 Hexagonal system . 10 3.4 Primitive, asymmetric and conventional Unit cells in 2D . 10 3.5 The 17 wallpaper groups . 10 3.6 Analyzing wallpaper and other 2D art using wallpaper groups . 10 1 4 Point groups in 3D 12 4.1 The new generalized (proper & improper) rotations in 3D . 13 4.2 The 3D point groups with a 2D projection . 13 4.3 The other 3D point groups: the 5 cubic groups . 15 5 The 14 Bravais lattices in 3D 17 6 Notation for 3D point groups 19 6.0.1 Notation for ”projective” 3D point groups . 19 7 Glide planes in 3D 21 8 “Real” crystal structures 21 8.1 Cohesive forces in crystals — atomic radii . 21 8.2 Close-packed structures . 22 8.3 Packing spheres of different radii . 23 8.4 Framework structures . 24 8.5 Layered structures . 25 8.6 Molecular structures .
    [Show full text]
  • Space Groups and Lattice Complexes ; —
    Mm 1W 18 072 if "^^^"^ Space Groups and Lattice Complexes ; — — Werner FISHER Mineralogisches Institut der Philipps-Universitat D-3550 Marburg/Lahn, German Federal Republic Hans BURZLAFF Lehrstuhl fiir Kristallographie der Friedrich-Alexander-Universitat Erlangen-Niirnberg D-8520 Erlangen, German Federal Republic Erwin HELLNER Fachbereich Geowissenschaften der Philipps-Universitat D-3550 Marburg/Lahn, German Federal Republic J. D. H. DONNAY Department de Geologic, Universite'de Montreal CP 6128 Montreal 101, Quebec, Canada Formerly, The Johns Hopkins University, Baltimore, Maryland Prepared under the auspices of the Commission on International Tables, International Union of Crystallography, and the Office of Standard Reference Data, National Bureau of Standards. U.S. DEPARTMENT OF COMMERCE, Frederick B. Dent, Secreiory NATIONAL BUREAU OF STANDARDS, Richard W. Roberts, Dnecior Issued May 1973 Library of Congress Catalog Number: 73-600099 National Bureau of Standards Monograph 134 Nat. Bur. Stand. (U.S.), Monogr. 134, 184 pages (May 1973) CODEN: NBSMA6 For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402 (Order by SD Catalog No. C13,44:134). Price: $4.10, domestic postpaid; $3.75, GPO Bookstore Stock Number 0303-01143 Abstract The lattice complex is to the space group what the site set is to the point group - an assemblage of symmetry- related equivalent points. The symbolism introduced by Carl Hermann has been revised and extended. A total of 402 lattice complexes are derived from 67 Weissenberg com- plexes. The Tables list site sets and lattice complexes in standard and alternate representations. They answer the following questions: What are the co-ordinates of the points in a given lattice complex? In which space groups can a given lattice complex occur? What are the lattice complexes that can occur in a given space group? The higher the symmetry of the crystal structures is, the more useful the lattice- complex approach should be on the road to the ultimate goal of their classification.
    [Show full text]
  • Translational Spacetime Symmetries in Gravitational Theories
    Class. Quantum Grav. 23 (2006) 737-751 Page 1 Translational Spacetime Symmetries in Gravitational Theories R. J. Petti The MathWorks, Inc., 3 Apple Hill Drive, Natick, MA 01760, U.S.A. E-mail: [email protected] Received 24 October 2005, in final form 25 October 2005 Published DD MM 2006 Online ta stacks.iop.org/CQG/23/1 Abstract How to include spacetime translations in fibre bundle gauge theories has been a subject of controversy, because spacetime symmetries are not internal symmetries of the bundle structure group. The standard method for including affine symmetry in differential geometry is to define a Cartan connection on an affine bundle over spacetime. This is equivalent to (1) defining an affine connection on the affine bundle, (2) defining a zero section on the associated affine vector bundle, and (3) using the affine connection and the zero section to define an ‘associated solder form,’ whose lift to a tensorial form on the frame bundle becomes the solder form. The zero section reduces the affine bundle to a linear bundle and splits the affine connection into translational and homogeneous parts; however it violates translational equivariance / gauge symmetry. This is the natural geometric framework for Einstein-Cartan theory as an affine theory of gravitation. The last section discusses some alternative approaches that claim to preserve translational gauge symmetry. PACS numbers: 02.40.Hw, 04.20.Fy 1. Introduction Since the beginning of the twentieth century, much of the foundations of physics has been interpreted in terms of the geometry of connections and curvature. Connections appear in three main areas.
    [Show full text]
  • Effective Field Theory for Spacetime Symmetry Breaking
    RIKEN-MP-96, RIKEN-QHP-171, MAD-TH-14-10 Effective field theory for spacetime symmetry breaking Yoshimasa Hidaka1, Toshifumi Noumi1 and Gary Shiu2;3 1Theoretical Research Devision, RIKEN Nishina Center, Japan 2Department of Physics, University of Wisconsin, Madison, WI 53706, USA 3Center for Fundamental Physics and Institute for Advanced Study, Hong Kong University of Science and Technology, Hong Kong [email protected], [email protected], [email protected] Abstract We discuss the effective field theory for spacetime symmetry breaking from the local symmetry point of view. By gauging spacetime symmetries, the identification of Nambu-Goldstone (NG) fields and the construction of the effective action are performed based on the breaking pattern of diffeomor- phism, local Lorentz, and (an)isotropic Weyl symmetries as well as the internal symmetries including possible central extensions in nonrelativistic systems. Such a local picture distinguishes, e.g., whether the symmetry breaking condensations have spins and provides a correct identification of the physical NG fields, while the standard coset construction based on global symmetry breaking does not. We illustrate that the local picture becomes important in particular when we take into account massive modes associated with symmetry breaking, whose masses are not necessarily high. We also revisit the coset construction for spacetime symmetry breaking. Based on the relation between the Maurer- arXiv:1412.5601v2 [hep-th] 7 Nov 2015 Cartan one form and connections for spacetime symmetries, we classify the physical meanings of the inverse Higgs constraints by the coordinate dimension of broken symmetries. Inverse Higgs constraints for spacetime symmetries with a higher dimension remove the redundant NG fields, whereas those for dimensionless symmetries can be further classified by the local symmetry breaking pattern.
    [Show full text]
  • Diffeomorphisms and Spin Foam Models
    Diffeomorphisms and spin foam models Laurent Freidel∗ Perimeter Institute for Theoretical Physics 35 King street North, Waterloo N2J-2G9,Ontario, Canada and Laboratoire de Physique, Ecole´ Normale Sup´erieure de Lyon 46 all´ee d’Italie, 69364 Lyon Cedex 07, France David Louapre† Laboratoire de Physique, Ecole´ Normale Sup´erieure de Lyon 46 all´ee d’Italie, 69364 Lyon Cedex 07, France‡ (Dated: February 7, 2008) Abstract We study the action of diffeomorphisms on spin foam models. We prove that in 3 dimensions, there is a residual action of the diffeomorphisms that explains the naive divergences of state sum models. We present the gauge fixing of this symmetry and show that it explains the original renormalization of Ponzano-Regge model. We discuss the implication this action of diffeomorphisms has on higher dimensional spin foam models and especially the finite ones. arXiv:gr-qc/0212001v2 29 Jan 2003 ∗Electronic address: [email protected] †Electronic address: [email protected] ‡UMR 5672 du CNRS 0 I. INTRODUCTION Spin foam models are an attempt to describe the geometry of spacetime at the quantum level. They give a construction of transition amplitudes between initial and final spatial geometries labeled by spin network states. A spin foam is a 2-dimensional cell complex F with polygonal faces labeled by representations jf and edges labeled by intertwining operators ie. Given a spin foam we associate an amplitude Af , Ae and Av to the faces, edges and vertices of the spin foam respectively. They depend only locally on the spins jf and intertwiners ıe, e-g the vertex amplitude is computed using the spins labeling the faces incident to that vertex and intertwiners on incident edges.
    [Show full text]