Tasks of a Professional Geologist

Total Page:16

File Type:pdf, Size:1020Kb

Tasks of a Professional Geologist ♦♦♦♦♦ • Design, implement and interpret fate and transport • Develop deformational history through structural models analyses • Identify minerals and rocks based on their • Identify structural features and their RESEARCH, FIELD METHODS AND chemical properties and constituents interrelationships COMMUNICATIONS • Determine orientation of structural features • Plan and conduct field operations including human • Map structural features and ecological health, safety, and regulatory ♦♦♦♦♦ • Perform qualitative and quantitative structural considerations analyses INERALOGY ETROLOGY • Evaluate property/mineral rights M /P • • • Identify minerals and their physiochemical Correlate separated structural features Interpret regulatory constraints • Develop and interpret tectonic history through • Select and interpret appropriate base maps for properties • Identify mineral assemblages structural analyses field investigations • • • Determine probable genesis and sequence of Map, interpret, and monitor fault movement Tasks of a Professional Geologist Determine scales and distances from remote • Identify geological structures, lineaments, fracture imagery and/or maps mineral assemblages • • Predict subsurface mineral characteristics on the systems or other features from surface or Statement by the National Association of Identify, locate and utilize available data sources subsurface mapping or remote imagery • Plan and conduct field operations and procedures basis of exposures and drill holes State Boards of Geology • Identify and classify major rock types to ensure public protection ♦♦♦♦♦ • Construct borehole and trench logs • Determine physical properties of rocks The National Association of State Boards of • Design and conduct laboratory programs and • Determine geotechnical properties of rocks ® Geology (ASBOG ) is a non-profit organization, interpret results • Determine types, effects, and/or degrees of rock PALEONTOLOGY comprised of state boards which license/register • Evaluate historic land use or environmental and mineral alteration • Plan and conduct paleontologic investigations geologists. ASBOG® develops national conditions from remote imagery • Determine suites of rock types • Correlate rocks biostratigraphically competency examinations used by these Member • Develop and utilize Quality Assurance/Quality • Characterize mineral assemblages and probable • Identify fossils and fossil assemblages and make Boards. The ASBOG® examinations have been Control procedures genesis paleontological interpretations for age and adopted by all of the states in the U.S. and the • Construct and interpret maps and other graphical • Plan and conduct mineralogic or petrologic paleoecological interpretations territory of Puerto Rico which have geologic presentations investigations • practice acts. The following areas of professional • Write and edit geologic reports Identify minerals and rocks and their ♦♦♦♦♦ practice contain generalized, and some specific, • Interpret and analyze aerial photos, satellite and characteristics • Identify and interpret rock and mineral sequences, activities which may be performed by qualified, other imagery GEOMORPHOLOGY associations, and genesis professional geologists. • Perform geological interpretations from aerial • Evaluate geomorphic processes and development Professional geologists are uniquely qualified photos, satellite and other imagery of landforms and soils to perform these activities based on their formal • Design geologic monitoring programs ♦♦♦♦♦ • Identify and classify landforms • education, training and experience. Under each Interpret data from geologic monitoring programs • Plan and conduct geomorphic investigations major heading is a group of activities associated Read/interpret topographic and bathymetric maps • Determine geomorphic processes and • STRATIGRAPHY/HISTORICAL GEOLOGY with that specific area of geoscience practice. Perform geologic research in field and laboratory • Plan and conduct sedimentologic, and development of landforms and soils • The major areas of professional, geologic practice Prepare soil, sediment and geotechnical logs stratigraphic investigations • Determine absolute or relative age relationships of • include, but are not limited to: Research; Field Prepare lithological logs • Identify and interpret sedimentary structures landforms and soils Methods and Communications; Geochemistry; • Interpret dating, isotopic, and/or tracer studies depositional environments, and sediment • Identify potential hazardous geomorphological Mineralogy; Petrology; Stratigraphy; Historical, • Plan and evaluate remediation and restoration provenance conditions Structural, Paleontology; Geomorphology; programs • Identify and interpret sediment or rock sequences, • Identify flood plain extent Geophysics; Hydrogeology; Environmental, • Identify geological structures, lineaments, or positions, and ages • Determine high water (i.e. flood) levels Geochemistry; Engineering Geology, Economic fracture systems from surface or remote imagery • Establish relative position of rock units • Evaluate stream or shoreline erosion and Geology; Mining Geology and Energy Resources. • Select, construct, and interpret maps, cross- • Determine relative and absolute ages of rocks transport processes These areas are specifically included in the sections, and other data for field investigations • Interpret depositional environments and structures • Evaluate regional geomorphology ASBOG® examinations to assure geologic • Design, apply, and interpret analytical or and evaluate post-depositional changes numerical models • competency. Again, this list represents only a Perform facies analyses ♦♦♦♦♦ • cross-section of possible activities, and does not Correlate rock units include all potential professional practice ♦♦♦♦♦ • Interpret geologic history GEOPHYSICS • Determine and establish basis for stratigraphic activities. • Select methods of geophysical investigations Also included in this publication is a listing of GEOCHEMISTRY classification and nomenclature • • Perform geophysical investigations in the field “Other related activities which may be performed • Evaluate geochemical data and/or construct Establish stratigraphic correlations and interpret • rock sequences, positions, and ages Perform geological interpretation of geophysical by qualified Professional Geologists.” These geochemical models related to rocks and minerals data • • Establish provenance of sedimentary deposits activities, although not specifically geoscience in Establish analytical objectives and methods • Design, implement, and interpret data from content, may be performed by a qualified, • Make determinations of sorption/desorption ♦♦♦♦♦ surface or subsurface geophysical programs professional geologist. reactions based upon aquifer mineralogy including data from borehole geophysical • Assess the behavior of dissolved phase and free STRUCTURAL GEOLOGY programs phase contaminant flow in groundwater and • Plan and conduct structural and tectonic • Identify potentially hazardous geological surface water systems investigations conditions by using geophysical techniques • Assess salt water intrusion • Use wireline geophysical instruments to delineate • Assess the behavior of dissolved phase and free • Provide geologic interpretations and plans for • Expert Witness Testimony, as qualified, before stratigraphic/lithologic units phase contaminant flow in groundwater and abandonment, closure, and restoration of mineral regulatory boards, commissions, evidentiary • Conduct geophysical field surveys and surface water systems and energy development or extraction operations hearings, public hearings including depositions interpretations, e.g.: petrophysical well bore • Assess and develop well head protection plans • Identify mineral deposits from surface and/or and other matters of litigation logging; seismic data (reflection and refraction); and source water assessment delineations subsurface mapping or remote imagery • Emergency response activities and spill response radiological, radar, remote sensing, electro- • Predict subsurface mineral or rock distribution on planning including implementation and conductive or resistive surveys. Includes coordination with local, state, and federal ♦♦♦♦♦ basis of exposures, drillhole, or other subsurface delineation of mineral and hydrocarbon deposits, data agencies interpretation of depositional environments, • Evaluate safety hazards associated with mineral, • Develop plans and methods with law enforcement, formation boundaries, faults, salt water ENGINEERING GEOLOGY petroleum, and/or energy exploration and fire, emergency management agencies, contamination-intrusion, contaminant plume • Provide geological information and interpretations development toxicologists and industrial hygienists to determine delineation and other structural/stratigraphic for engineering design • Determine potential uses and economic value of methods of protection for public health and safety interpretations. • Identify, map, and evaluate potential seismic and minerals, rocks, or other natural resources • Provide training related to hazardous materials • Identify and delineate earthquake/seismic hazards other geologic-geomorphological conditions and/or and environmental issues related to hazardous • Interpret paleoseismic history hazards materials • Provide geological consultation during and after ♦♦♦♦♦ • Develop plans and methods with biologists for construction protection of wildlife during spill events ♦♦♦♦♦ • Develop and interpret engineering
Recommended publications
  • 1350-5 Geologist
    POSITION DESCRIPTION 1. Position Number 2. Explanation (show any positions replaced) 3. Reason for Submission New Redescription Reestablishment Standardized PD Other 4. Service 5. Subject to Identical Addition (IA) Action HQ Field Yes (multiple use) No (single incumbent) 6. Position Specifications 7. Financial Statement Required 10. Position Sensitivity and Risk Designation Subject to Random Drug Testing Yes No Executive Personnel-OGE-278 Non-Sensitive Employment and Financial Interest-OGE-450 Non-Sensitive: Low-Risk Subject to Medical Standards/Surveillance Yes No None required Public Trust Telework Suitable Yes No 8. Miscellaneous 9. Full Performance Level Non-Sensitive: Moderate-Risk Fire Position Yes No Functional Code: -- Pay Plan: Non-Sensitive: High-Risk Law Enforcement Position Yes No BUS: - - Grade: National Security 11. Position is 12. Position Status Noncritical-Sensitive: Moderate-Risk Competitive SES Noncritical-Sensitive: High-Risk 2-Supervisory Excepted (specify in remarks) SL/ST Critical-Sensitive: High-Risk 4-Supervisor (CSRA) 13. Duty Station Special Sensitive: High-Risk 5-Management Official 6-Leader: Type I 14. Employing Office Location 15. Fair Labor Standards Act Exempt Nonexempt 7-Leader: Type II 16. Cybersecurity Code 17. Competitive Area Code: 8-Non-Supervisory #1: #2: - - #3: - - Competitive Level Code: 18. Classified/Graded by Official Title of Position Pay Plan Occupational Code Grade Initial Date a. Department, Bureau, or Office b. Second Level Review -- -- 19. Organizational Title of Position (if different from, or in addition to, official title) 20. Name of Employee (if vacant, specify) 21. Department, Agency, or Establishment c. Third Subdivision U.S. Department of the Interior a. Bureau/First Subdivision d.
    [Show full text]
  • History of Geology
    FEBRUARY 2007 PRIMEFACT 563 (REPLACES MINFACT 60) History of geology Mineral Resources Early humans needed a knowledge of simple geology to enable them to select the most suitable rock types both for axe-heads and knives and for the ornamental stones they used in worship. In the Neolithic and Bronze Ages, about 5000 to 2500 BC, flint was mined in the areas which are now Belgium, Sweden, France, Portugal and Britain. While Stone Age cultures persisted in Britain until after 2000 BC, in the Middle East people began to mine useful minerals such as iron ore, tin, clay, gold and copper as early as 4000 BC. Smelting techniques were developed to make the manufacture of metal tools possible. Copper was probably the earliest metal to be smelted, that is, extracted from its ore by melting. Copper is obtained easily by reducing the green copper carbonate mineral malachite, itself regarded as a precious stone. From 4000 BC on, the use of clay for brick-making became widespread. The Reverend William Branwhite Clarke (1798-1878), smelting of iron ore for making of tools and the ‘father’ of geology in New South Wales weapons began in Asia Minor at about 1300 BC but did not become common in Western Europe until Aristotle believed volcanic eruptions and nearly 500 BC. earthquakes were caused by violent winds escaping from the interior of the earth. Since earlier writers had ascribed these phenomena to The classical period supernatural causes, Aristotle's belief was a By recognising important surface processes at marked step forward. Eratosthenes, a librarian at work, the Greek, Arabic and Roman civilisations Alexandria at about 200 BC, made surprisingly contributed to the growth of knowledge about the accurate measurements of the circumference of earth.
    [Show full text]
  • Standards for Geochemical Analysis of Major, Minor, and Trace Elements in Rock Powders
    50th Lunar and Planetary Science Conference 2019 (LPI Contrib. No. 2132) 1396.pdf STANDARDS FOR GEOCHEMICAL ANALYSIS OF MAJOR, MINOR, AND TRACE ELEMENTS IN ROCK POWDERS. M. Darby Dyar1, Cai R. Ytsma1, and Kate Lepore1, 1Dept. of Astronomy, Mount Holyoke Col- lege, 50 College St., South Hadley, MA 01075, [email protected]. Introduction: Analytical geochemistry has long group, Massachusetts; depended on availability of robust suites of rock stand- 2. rhyolitic volcanic glass from Mexico; locality un- ards with well-characterized compositions. Standard known, but likely from Tequila Volcano; rock powders were initially characterized and supplied 3. Hawaiian basalt collected from Kīlauea by Tim Orr to the community by the U.S. Geological Survey, (USGS, HVO); which continues to distribute a few dozen standards. 4. washed SiO2 sea sand (Fisher Scientific); Many other rock standards have subsequently been 5. Columbia River continental flood basalt collected developed by organizations such as the Centre de Re- in Moscow, Idaho by Mickey Gunter; cherches Pétrographiques et Géochimiques (CRPG) 6. rhyolite from Newberry Volcano in Oregon; and Brammer Standard Company, Inc. 7. a 50:50 by weight mixture of diopside and forsterit- Existing standards from terrestrial rocks contain ic olivine to simulate an ultramafic rock; and concentration ranges that may not cover what is present 8. granite from the Vinalhaven intrusive complex, on other bodies. Notably, Ni is a primary constituent of Maine collected by Sheila Seaman. meteorites, and thus may be abundant on ancient sur- For dopants, we used reagent-grade chemicals in the faces with impact craters [1,2]. Yet no commercial form of BN, CBaO3, C, CeO2, CoO, Cr2O3, Cs2TiO3, terrestrial rock standards come close to covering the CuO, Ga2O3, La2O3, LiCl, MnO2, MoS2, Nb2O5, NiO, possible extremes of Ni concentration that could result OPb, RbCl, CaSO4, Sc2O3, SeO2, SnO2, SrO, Y2O3, from impact contamination.
    [Show full text]
  • Bedrock Geology Glossary from the Roadside Geology of Minnesota, Richard W
    Minnesota Bedrock Geology Glossary From the Roadside Geology of Minnesota, Richard W. Ojakangas Sedimentary Rock Types in Minnesota Rocks that formed from the consolidation of loose sediment Conglomerate: A coarse-grained sedimentary rock composed of pebbles, cobbles, or boul- ders set in a fine-grained matrix of silt and sand. Dolostone: A sedimentary rock composed of the mineral dolomite, a calcium magnesium car- bonate. Graywacke: A sedimentary rock made primarily of mud and sand, often deposited by turbidi- ty currents. Iron-formation: A thinly bedded sedimentary rock containing more than 15 percent iron. Limestone: A sedimentary rock composed of calcium carbonate. Mudstone: A sedimentary rock composed of mud. Sandstone: A sedimentary rock made primarily of sand. Shale: A deposit of clay, silt, or mud solidified into more or less a solid rock. Siltstone: A sedimentary rock made primarily of sand. Igneous and Volcanic Rock Types in Minnesota Rocks that solidified from cooling of molten magma Basalt: A black or dark grey volcanic rock that consists mainly of microscopic crystals of pla- gioclase feldspar, pyroxene, and perhaps olivine. Diorite: A plutonic igneous rock intermediate in composition between granite and gabbro. Gabbro: A dark igneous rock consisting mainly of plagioclase and pyroxene in crystals large enough to see with a simple magnifier. Gabbro has the same composition as basalt but contains much larger mineral grains because it cooled at depth over a longer period of time. Granite: An igneous rock composed mostly of orthoclase feldspar and quartz in grains large enough to see without using a magnifier. Most granites also contain mica and amphibole Rhyolite: A felsic (light-colored) volcanic rock, the extrusive equivalent of granite.
    [Show full text]
  • Related Skills, Values, and Qualities Common Interests of Geology
    Bachelor of Science: Geology Minor: Geology Geology is a broad interdisciplinary science that involves the study of Earth and its history. Geologists gather and interpret data about the Earth for the purpose of increasing our knowledge about natural resources and Earth processes. They provide basic information required for establishing policy for resource management and environmental protection. Geologists may explore for new mineral or oil resources, work on environmental problems, do research, or teach and often divide their time between work in the field, the laboratory, and the office. The Bachelor of Science in Geology program at KU was designed to prepare students with enough fundamental understanding of geology to succeed in graduate school, and to provide the practical field experience needed to succeed as career geologists. Course requirements parallel the subjects on the Professional Geologist licensing exam. Employers recommend one or more internships to be successful and competitive when entering this field. Career types associated with Geology Common interests of Geology majors (Is this a good fit for you? Are you…) • Visiting science museums, nature centers, or zoos Investigative - “Thinker” • Developing hobbies and collections related to soils, Realistic - “Doer” rocks, coins, or other artifacts Social - “Helper” • Hiking, mountain climbing, camping, backpacking and other outdoors activities • Exploring and traveling Related skills, values, and qualities • Playing games of strategy or putting together or • Proficiency in
    [Show full text]
  • Weathering, Erosion, and Susceptibility to Weathering Henri Robert George Kenneth Hack
    Weathering, erosion, and susceptibility to weathering Henri Robert George Kenneth Hack To cite this version: Henri Robert George Kenneth Hack. Weathering, erosion, and susceptibility to weathering. Kanji, Milton; He, Manchao; Ribeira e Sousa, Luis. Soft Rock Mechanics and Engineering, Springer Inter- national Publishing, pp.291-333, 2020, 9783030294779. 10.1007/978-3-030-29477-9. hal-03096505 HAL Id: hal-03096505 https://hal.archives-ouvertes.fr/hal-03096505 Submitted on 5 Jan 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Published in: Hack, H.R.G.K., 2020. Weathering, erosion and susceptibility to weathering. 1 In: Kanji, M., He, M., Ribeira E Sousa, L. (Eds), Soft Rock Mechanics and Engineering, 1 ed, Ch. 11. Springer Nature Switzerland AG, Cham, Switzerland. ISBN: 9783030294779. DOI: 10.1007/978303029477-9_11. pp. 291-333. Weathering, erosion, and susceptibility to weathering H. Robert G.K. Hack Engineering Geology, ESA, Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente Enschede, The Netherlands e-mail: [email protected] phone: +31624505442 Abstract: Soft grounds are often the result of weathering. Weathering is the chemical and physical change in time of ground under influence of atmosphere, hydrosphere, cryosphere, biosphere, and nuclear radiation (temperature, rain, circulating groundwater, vegetation, etc.).
    [Show full text]
  • WHY I HATE HYDROGEOLOGY Keynote Address to GRA Fifth Annual Meeting 1996 (Slightly Expurgated for Public Consumption) by Joseph H
    Untitled WHY I HATE HYDROGEOLOGY Keynote Address to GRA Fifth Annual Meeting 1996 (Slightly Expurgated for Public Consumption) by Joseph H. Birman, President Geothermal Surveys, Inc. (dba GSi/water) INTRODUCTION Thank you, Ladies and Gentlemen. I am especially honored to have been invited to give a keynote address to this highly respected organization. In return, by the time this talk is finished, I will probably have insulted everybody in this room. I will try to do this fairly, with no regard to religion, race, or technical persuasion. I consider myself an equal-opportunity offender. I will start by insulting myself. I am a hypocrite, as I will explain to you later. This conference is titled Multidisciplinary Solutions for California Ground Water Issues. In that context, I would like to identify that discipline that I consider to be the most important, the most powerful, and the most crucial for investigating ground water and providing solutions to California's ground water issues. Boy, have I got a discipline for you! For many years, the discipline has been in operational limbo. The hydrogeological profession provides it little shrift, often treats it with disdain, and sometimes ignores it completely. Yet, the discipline is fundamental to the proper use and integration of all the other disciplines that you will examine in this conference. When that discipline is properly used, it gets us ninety percent of what we need to know in understanding ground water and what controls it. And it does this at far less than the costs of the other disciplines those that get us a part of that last ten percent.
    [Show full text]
  • Engineering Geology and Seismology for Public Schools and Hospitals in California
    The Resources Agency California Geological Survey Michael Chrisman, Secretary for Resources Dr. John G. Parrish, State Geologist Engineering Geology and Seismology for Public Schools and Hospitals in California to accompany California Geological Survey Note 48 Checklist by Robert H. Sydnor, Senior Engineering Geologist California Geological Survey www.conservation.ca.gov/cgs July 1, 2005 316 pages Engineering Geology and Seismology performance–based analysis, diligent subsurface for Public Schools and Hospitals sampling, careful reading of the extensive geologic in California literature, thorough knowledge of the California Building Code, combined with competent professional geological work. by Robert H. Sydnor Engineering geology aspects of hospital and public California Geological Survey school sites include: regional geology, regional fault July 1, 2005 316 pages maps, site-specific geologic mapping, geologic cross- sections, active faulting, official zones of investigation Abstract for liquefaction and landslides, geotechnical laboratory The 446+ hospitals, 1,400+ skilled nursing facilities testing of samples, expansive soils, soluble sulfate ±9,221 public schools, and 109 community college evaluation for Type II or V Portland-cement selection, campuses in California are regulated under California and flooding. Code of Regulations, Title 24, California Building Code. Seismology aspects include: evaluation of historic These facilities are plan–checked by senior–level seismicity, probabilistic seismic hazard analysis of Registered Structural Engineers within the Office of earthquake ground–motion, use of proper code terms Statewide Health Planning and Development (OSHPD) (Upper–Bound Earthquake ground–motion and Design– for hospitals and skilled nursing facilities, and the Basis ground–motion), classification of the geologic Division of the State Architect (DSA) for public schools, subgrade by shear–wave velocity to select the correct community colleges, and essential services buildings.
    [Show full text]
  • Principles of Engineering Geology Principles of Engineering Geology
    PRINCIPLES OF ENGINEERING GEOLOGY PRINCIPLES OF ENGINEERING GEOLOGY P. B. ATTEWELL and I. W. FARMER University of Durham LONDON CHAPMAN AND HALL A Halsted Press Book JOHN WILEY & SONS, INC., NEW YORK First published 1976 by Chapman and Hall Ltd 11 New Fetter Lane, London EC4P 4EE © 1976 J. E. Attewell and L. C. Attewell Sriftcover reprillt rifthe hardcover 1ft editiolt 1976 Typeset by Preface Ltd, Salisbury, Wilts Fletcher & Son Ltd, Norwich ISBN-13: 978-94-009-5709-1 e-ISBN-13: 978-94-009-5707-7 DOl: 10.1007/978-94-009-5707-7 All rights reserved. No part of this book may be reprinted, or reproduced or utilized in any form or by any electronic, mechanical or other means, now known or hereafter invented, including photocopying and recording, or in any information storage and retrieval system, without permission in writing from the Publisher. Distributed in the U.S.A. by Halsted Press, a Division of John Wiley & Sons, Inc., New York Library of Congress Cataloging in Publication Data Attewell, P B Principles of engineering geology. 1. Engineering geology. I. Farmer, Ian William, joint author. II. Title. TA705.A87 1975 624'151 75-20012 Contents Preface xi Symbols xvii Composition of Rocks 1 1.1 Origin and geological classification of rocks 1 1.2 Rock forming minerals 7 1.3 Clay minerals 16 1.4 Base exchange and water adsorption in clay minerals 20 1.5 Mineralogical identification 25 2 Rock Particles and Particle Systems 30 2.1 Rock particle classification 30 2.2 Typical rock particle systems 33 2.3 Physical properties of particulate systems
    [Show full text]
  • Popularizing Geological Education Among Civil Engineering Students Chen Xiang-Jun1,A and Zhou Ying2
    JOURNAL OF GEOSCIENCE EDUCATION 60, 228–233 (2012) Popularizing Geological Education Among Civil Engineering Students Chen Xiang-jun1,a and Zhou Ying2 ABSTRACT The sustainable development of an economy and a society cannot be realized without the help of modern geoscience. Engineering geology knowledge is necessary on a civil engineering construction site to ensure the construction work goes smoothly. This paper first discusses the importance of geoscience, especially the study of engineering geology. Then, the current Chinese engineering geology course for civil engineering students is summarized. The engineering geology course at Shijiazhuang Tiedao University is described in detail, including its history, its content, and some teaching tactics for the course. The paper closes with an evaluation of the effects of the teaching tactics. Ó 2012 National Association of Geoscience Teachers. [DOI: 10.5408/10-207.1] Key words: engineering geology, civil engineering IMPORTANCE OF GEOLOGICAL STUDY geological science can tell humans how to exploit and utilize On 19 June 2007, Chinese Prime Minister Wen Jia-bao, resources reasonably, reduce consumption of resources, who is also a geologist, expounded on the importance of reduce environmental damage, and prevent geological geological study when he talked with officials of the hazards. The harmony between Earth and humans funda- International Union of Geological Sciences. The prime mentally depends on the progress of geology. Improving the minister said he believes that the tasks of modern geoscience, level of geological research can help humans face the which is closely connected with the economy, society, and challenges of energy scarcity, environment destruction, environment, are to support the sustainable development of natural disasters, and so on.
    [Show full text]
  • Principles of Geochemical Prospecting
    Principles of Geochemical Prospecting GEOLOGICAL SURVEY BULLETIN 1000-F CONTRIBUTIONS TO GEOCHEMICAL PROSPECTING FOR MINERALS PRINCIPLES OF GEOCHEMICAL PROSPECTING By H. E. HAWKES ABSTRACT Geochemical prospecting for minerals includes any method of mineral exploration based on systematic measurement of the chemical properties of a naturally occurring material. The purpose of the measurements is the location of geochemical anomalies or of areas where the chemical pattern indicates the presence of ore in the vicinity. Anomalies may be formed either at depth by igneous and metamorphic processes or at the earth's surface by agents of weathering, erosion, and surficial transportation. Geochemical anomalies of deep-seated origin primary anomalies may result from (1) apparent local variation in the original composition of the earth's crust, defining a distinctive "geochemical province" especially favor­ able for the occurrence of ore, (2) impregnation of rocks by mineralizing fluids related to ore formation, and (3) dispersion of volatile elements transported in gaseous form. Anomalies of surficial origin-^secondary anomalies take the form either of residual materials from weathering of rocks and ores in place or of material dispersed from the ore deposit by gravity, moving water, or glacial ice. The mobility of an element, or tendency for it to migrate in the.surficial environment, determines the characteristics of the geochemical anomalies it can form. Water is the principal transporting agency for the products of weathering. Mobility is, therefore, closely related to the tendency of an element to be stable in water-soluble form. The chemical factors affecting the mobility of elements include hydrogen-ion concentration, solubility of salts, coprecipitation, sorption, oxidation potential, and the formation of complexes and colloidal solutions.
    [Show full text]
  • Utah's Geologic Timeline Utah Seed Standard 7.2.6: Make an Argument from Evidence for How the Geologic Time Scale Shows the Ag
    Utah’s Geologic Timeline Utah SEEd Standard 7.2.6: Make an argument from evidence for how the geologic time scale shows the age and history of Earth. Emphasize scientific evidence from rock strata, the fossil record, and the principles of relative dating, such as superposition, uniformitarianism, and recognizing unconformities. (ESS1.C) Activity Details: The students begin with a blank calendar and a list of events in the Earth’s, and additionally Utah’s, history. These events span billions of years, but such numbers are too large to visualize and compare. In order to help the mind understand such enormous lengths of time, the year of the event is scaled to what it would Be proportionate to a calendar year (numBers are from The Utah Geological Survey and Kentucky Geological Survey). The students go through the list and fill out their calendar to visualize the geologic timeline of the Earth and Utah, and then answer some analysis questions to help solidify their understanding. Students will need four differently-colored colored pencils or crayons to complete the activity. Background: The following information is taken from The Utah Geological Survey, written by Mark Milligan. It may Be helpful to define some of the terms with the students so they understand where and how ages come from. Geologists generally know the age of a rock By determining the age of the group of rocks, or formation, that it is found in. The age of formations is marked on a geologic calendar known as the geologic time scale. Development of the geologic time scale and dating of formations and rocks relies upon two fundamentally different ways of telling time: relative and absolute.
    [Show full text]