Engineering Geology in Washington, Volume I Washington Diviaion of Geology and Euth Resources Bulletin 78

Total Page:16

File Type:pdf, Size:1020Kb

Engineering Geology in Washington, Volume I Washington Diviaion of Geology and Euth Resources Bulletin 78 ENGINEERING GEOLOGY IN WASHINGTON Volume I RICHARD W. GALSTER, Chairman Centennial Volume Committee Washington State Section, Association of Engineering Geologists WASHINGTON DIVISION OF GEOLOGY AND EARTH RESOURCES BULLETIN 78 1989 Prepared in cooperation with the Washington State Section of the A~ociation or Engineering Geologists ''WNatural ASHINGTON STATE Resources DEPARTMENT OF Brian Boyle • Commlssloner 01 Public Lands Ari Stearns - Sup,,rvuor Division of Geology and Earth Resources Raymond LcumanJs. Slate Geologist The use of brand or trade names in this publication is for pur­ poses of identification only and does not constitute endorsement by the Washington Division of Geology and Earth Resources or the Association of Engineering Geologists. This report is for sale (as the set of two volumes only) by: Publications Washington Department of Natural Resources Division of Geology and Earth Resources Mail Stop PY-12 Olympia, WA 98504 Price $ 27.83 Tax 2.17 Total $ 30.00 Mail orders must be prepaid; please add $1.00 to each order for postage and handling. Make checks or money orders payable to the Department of Natural Resources. This publication is printed on acid-free paper. Printed in the United States of America. ii VOLUME I DEDICATION . ................ .. .. ...... ............ .......................... X FOREWORD ........... .. ............ ................... ..... ................. xii LIST OF AUTHORS ............................................................. xiv INTRODUCTION Engineering Geology in Washington: Introduction Richard W. Galster, Howard A. Coombs, and Howard H. Waldron ................... 3 PART I: ENGINEERING GEOLOGY AND ITS PRACTICE IN WASHINGTON Geologic Factors Affecting Engineered Facilities Richard W. Galster, Chapter Editor Geologic Factors Affecting Engineered Facilities: Introduction Richard W. Galster ................. ... ...................................... 17 Geotechnical Properties of Geologic Materials Jon W. Koloski, Sigmund D. Schwarz, and Donald W. Tubbs .................. .... 19 Natural Construction Materials Louis R. Lepp and Gary A. Flowers ............................................ 27 Foundation and Excavation Conditions in Washington William T. Laprade and Robert A. Robinson . 37 Ground Water in Washington John B. Noble ............................................................... 49 Erosion Richard W. Galster .... ...... ....................................... .. ... 59 Flood Hazards in Washington Denise E. Mills . 65 Landslide Provinces in Washington Gerald W. Thorsen . .......................................... ............... 71 Volcanic Hazards in Washington Howard H. Waldron .. .. ......................... ..... ................... 91 Tectonics, Seismicity, and Engineering Seismology in Washington Dennis R. McCrumb, Richard W. Galster, Robert S. Crosson, Ruth S. Ludwin, Donald 0. West, William E. Hancock, and Lawrence V. Mann ....... ..... ........ 91 Land Subsidence in Washington Timothy J. Walsh and Robert L. Logan . 121 Collapsing and Expansive Soils Thomas J. Bekey . 135 Influence of Man's Development on Geologic Processes Richard W. Galster . 139 The Practice of Engineering Geology in Washington Richard W. Galster, Chapter Editor The Role of Geologists in an Engineering Organization Thomas J. Bekey and Richard W. Galster ..................... .. ............... 147 Building Codes for Construction on Steep Slopes in Western Washington William T. Laprade . 151 Legal Aspects of Engineering Geology in Washington Thomas J. Bekey . 157 iii PART II: ENGINEERING GEOLOGY CASE HISTORIES Dams of Western Washington Howard A. Coombs, Richard W. Galster, and William S. Bliton, Chapter Editors Dams of Western Washington: Introduction - Early Projects Richard W. Galster ................. ........................................ 165 The Baker Project Howard A. Coombs ....... ............................................... .. 175 The Skagit Projects: Ross, Diablo, and Gorge Dams Howard A. Coombs ............................ ............ ................ 189 Cascade Ice Border Dams Cascade Ice Border Dams: Geologic Setting Richard W. Galster and Howard A. Coombs ..... ......................... 203 Sultan River Project William S. B /iton ... ...................... ........................... 209 Tolt River Project William S. B/iton ........................................... .. ........ 217 Cedar River Project William S. B/iton .............. ..................................... 225 Howard A. Hanson Dam Richard W. Galster ............................................. .. ..... 233 Mud Mountain Dam Richard W. Galster ........................................... ........ 241 The Nisqually Projects: La Grande and Alder Dams Howard A. Coombs ............. ...... ............................... 249 Skookumchuck Dam Richard W. Galster and Charles I. Trantham ............. .. .... .. .... ... 257 The Cowlitz River Projects: Mayfield and Mossyrock Dams Howard A. Coombs . ................................................. ....... 265 Lewis River Projects William S. B/iton ..... ....................... .. ............................. 277 Dams of the Olympic Peninsula Dams of the Olympic Peninsula: Introduction and Geologic Setting Richard D. Ecker/in ............... .. ........... ... ............ ... 299 Elwha River Dams William S. Bliton .. ...... ............... .. ..... ................... 303 The Skokomish River Projects: Cushman Dam No. 1 and Cushman Dam No. 2 Howard A. Coombs ....................................... .. .... .. .... 311 Wynoochee Dam Richard D. Ecker/in .................................................... 317 Dams of the Columbia River and Tributaries Richard W. Galster and Howard A. Coombs, Chapter Editors Dams of the Columbia River and Tributaries: Introduction - Early Projects Richard W. Galster ....... .................................... ....... 325 Dams of the Lower Columbia River Dams of the Lower Columbia River: Geologic Setting Richard W. Galster and John W. Sager ....................... .... .. ... .. 331 iv Dams of the Lower Columbia River (Continued) Bonneville Dam John W. Sager ........................................................ 337 The Dalles Dam John W. Sager ........................................................ 347 John Day Dam John W. Sager . 353 McNary Dam Fred J. Miklancic . 359 Dams of the Middle Columbia River Dams of the Middle Columbia River: Introduction and Geologic Setting Richard W. Galster and Howard A. Coombs .............................. 367 Priest Rapids Dam Richard W. Galster ................................... ....... ....... 371 Wanapum Dam Richard W. Galster . 377 Rock Island Dam Richard W. Galster . 383 Rocky Reach Dam Howard A. Coombs .............................. .. .................... 391 Wells Dam Richard W. Galster . 397 Chief Joseph Dam Richard D. Ecker/in and Richard W. Galster ........................... .. ... 405 Grand Coulee Dam Phillip J. Hansen ...... .... ........................... .. ......... .. ..... 419 Dams of the Pend Oreille River Dams of the Pend Oreille River: Introduction and Geologic Setting Howard A. Coombs and William S. Bliton ................................ 433 Boundary Dam Howard A. Coombs ............................................. ...... 437 Box Canyon Hydroelectric Project William S. Bliton ......... ..... ..... ............. .. .. ............. 443 Dams of the Lower Snake River Dams of the Lower Snake River: Introduction and Geologic Setting Fred J. Miklancic . 449 Ice Harbor Dam Fred J. Miklancic . 453 Lower Monumental Dam Fred J. Miklancic .................................................... 459 Little Goose Dam Fred J. Miklancic . 465 Lower Granite Dam Fred J. Miklancic ....... ............................................. 471 Dams of the Yakima Basin Irrigation Project Dams of the Yakima Basin Irrigation Project: Introduction and Geologic Setting Brent H. Carter . 479 V Dams of the Yakima Basin Irrigation Project (Continued) Bumping Lake Dam J Brad Buehler ...... ................................................. 483 Cle Elum Dam Richard A. Link ................................... ...... ... .... ... 489 Clear Creek Dam Vikki L. McQueen ..... .................................. .... ....... 495 Easton Diversion Dam Dan N. Magleby ................................... .... ............ 501 Kachess Dam Allen C. Lockhart .................................................. ... 507 Keechelus Dam Brent H. Carter ....... ............................ ....... ..... ..... 513 Roza Diversion Dam Dan N. Magleby ...................................... .... ........... 521 Tieton Dam Jerry D. Gilbert ............ .. .................... ........ ......... 527 The Columbia Basin Project George E. Neff, Chapter Editor The Columbia Basin Project George E. Neff . .......................................... ................ 535 Nuclear and Coal-Fired Facilities in Washington Dennis R. McCrumb, Chapter Editor Nuclear and Coal-Fired Facilities in Washington: Introduction Dennis R. McCrumb ................................. .. .................... 567 Geology and Seismic Considerations of the Hanford Nuclear Site, David D. Tillson ........................................... .. ............. 569 Geology and Seismic Considerations of the Satsop Nuclear Power Plant Site Dennis R. McCrumb, Donald 0. West, and William A. Kiel . .................... 589 Geology and Seismicity of the Skagit Nuclear Power Plant Site Merlyn J. Adair, Ralph H. Talmage, Thomas W. Crosby, and Stephen M. Testa ..... 607 Geology and
Recommended publications
  • History of Geology
    FEBRUARY 2007 PRIMEFACT 563 (REPLACES MINFACT 60) History of geology Mineral Resources Early humans needed a knowledge of simple geology to enable them to select the most suitable rock types both for axe-heads and knives and for the ornamental stones they used in worship. In the Neolithic and Bronze Ages, about 5000 to 2500 BC, flint was mined in the areas which are now Belgium, Sweden, France, Portugal and Britain. While Stone Age cultures persisted in Britain until after 2000 BC, in the Middle East people began to mine useful minerals such as iron ore, tin, clay, gold and copper as early as 4000 BC. Smelting techniques were developed to make the manufacture of metal tools possible. Copper was probably the earliest metal to be smelted, that is, extracted from its ore by melting. Copper is obtained easily by reducing the green copper carbonate mineral malachite, itself regarded as a precious stone. From 4000 BC on, the use of clay for brick-making became widespread. The Reverend William Branwhite Clarke (1798-1878), smelting of iron ore for making of tools and the ‘father’ of geology in New South Wales weapons began in Asia Minor at about 1300 BC but did not become common in Western Europe until Aristotle believed volcanic eruptions and nearly 500 BC. earthquakes were caused by violent winds escaping from the interior of the earth. Since earlier writers had ascribed these phenomena to The classical period supernatural causes, Aristotle's belief was a By recognising important surface processes at marked step forward. Eratosthenes, a librarian at work, the Greek, Arabic and Roman civilisations Alexandria at about 200 BC, made surprisingly contributed to the growth of knowledge about the accurate measurements of the circumference of earth.
    [Show full text]
  • The Wild Cascades
    THE WILD CASCADES April-May 1969 2 THE WILD CASCADES MORE (BUT NOT THE LAST) ABOUT ALPINE LAKES We recently carried in these pages an article by Brock Evans, Northwest Conservation Representative, on Alpine Lakes: Stepchild of the North Cascades. Mr. L. O. Barrett, Supervisor of Snoqualmie National Forest, feels the article contained "some rather significant misinterpretations" and has asked the opportunity to respond. Following are Mr. Barrett's comments on portions of Mr. Evans' article, together with Mr. Evans' rejoinders. Barrett: The Alpine Lakes Area is still wilderness quality in part because of the nature of the land, and in part because the Forest Service has managed it as wilderness type area since 1946. We will continue to protect it from timber harvesting, mining and excessive recreation use until Congress makes a decision about its suitability for inclusion in the National Wilderness Preservation System. Evans: The wilderness parts of the Alpine Lakes region that are being lost are those which the Forest Service has chosen not to manage as wilderness. The 1946 date referred to is the date of the establishment of the Alpine Lake Limited Area. This designation granted a measure of administrative protection to a substantial part of the region; but much was left out. The logging in the Miller River, Foss River, Deception Creek, Cooper Lake, and Eight Mile Creek valleys all took place in wilderness-type areas which we proposed for protection which were outside the limited area. The Forest Service cannot protect its lands from mineral prospecting or, ulti­ mately, from mining operations of some types — because of the mining laws.
    [Show full text]
  • Swen Larsen Quarry Expansion Project Final Environmental Assessment
    2017 Swen Larsen Quarry Expansion Project Final Environmental Assessment Mt. Baker-Snoqualmie National Forest, Whatcom County, Washington Department of Agriculture Forest Service | Pacific Northwest Region 8/21/2017 Mt. Baker-Snoqualmie National Forest Swen Larsen Quarry Expansion Project Cover photo, Swen Larsen Quarry The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or part of an individual’s income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA’s TARGET Center at (202) 720-2600 (voice and TTY). To file a complaint of discrimination, write to USDA, Director of Civil Rights, 1400 Independence Avenue, SW, Washington, DC 20250-9410, or call (800) 795- 3272 (voice) or (202) 720-6382 (TTY). USDA is an equal opportunity provider and employer. Mt. Baker-Snoqualmie National Forest Swen Larsen Quarry Expansion Project Contents Overview ....................................................................................................................................................... 4 Chapter 1 - Purpose and Need .....................................................................................................................
    [Show full text]
  • Weathering, Erosion, and Susceptibility to Weathering Henri Robert George Kenneth Hack
    Weathering, erosion, and susceptibility to weathering Henri Robert George Kenneth Hack To cite this version: Henri Robert George Kenneth Hack. Weathering, erosion, and susceptibility to weathering. Kanji, Milton; He, Manchao; Ribeira e Sousa, Luis. Soft Rock Mechanics and Engineering, Springer Inter- national Publishing, pp.291-333, 2020, 9783030294779. 10.1007/978-3-030-29477-9. hal-03096505 HAL Id: hal-03096505 https://hal.archives-ouvertes.fr/hal-03096505 Submitted on 5 Jan 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Published in: Hack, H.R.G.K., 2020. Weathering, erosion and susceptibility to weathering. 1 In: Kanji, M., He, M., Ribeira E Sousa, L. (Eds), Soft Rock Mechanics and Engineering, 1 ed, Ch. 11. Springer Nature Switzerland AG, Cham, Switzerland. ISBN: 9783030294779. DOI: 10.1007/978303029477-9_11. pp. 291-333. Weathering, erosion, and susceptibility to weathering H. Robert G.K. Hack Engineering Geology, ESA, Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente Enschede, The Netherlands e-mail: [email protected] phone: +31624505442 Abstract: Soft grounds are often the result of weathering. Weathering is the chemical and physical change in time of ground under influence of atmosphere, hydrosphere, cryosphere, biosphere, and nuclear radiation (temperature, rain, circulating groundwater, vegetation, etc.).
    [Show full text]
  • Historical Background of the Contact Between Celtic Languages and English
    Historical background of the contact between Celtic languages and English Dominković, Mario Master's thesis / Diplomski rad 2016 Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: Josip Juraj Strossmayer University of Osijek, Faculty of Humanities and Social Sciences / Sveučilište Josipa Jurja Strossmayera u Osijeku, Filozofski fakultet Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:142:149845 Rights / Prava: In copyright Download date / Datum preuzimanja: 2021-09-27 Repository / Repozitorij: FFOS-repository - Repository of the Faculty of Humanities and Social Sciences Osijek Sveučilište J. J. Strossmayera u Osijeku Filozofski fakultet Osijek Diplomski studij engleskog jezika i književnosti – nastavnički smjer i mađarskog jezika i književnosti – nastavnički smjer Mario Dominković Povijesna pozadina kontakta između keltskih jezika i engleskog Diplomski rad Mentor: izv. prof. dr. sc. Tanja Gradečak – Erdeljić Osijek, 2016. Sveučilište J. J. Strossmayera u Osijeku Filozofski fakultet Odsjek za engleski jezik i književnost Diplomski studij engleskog jezika i književnosti – nastavnički smjer i mađarskog jezika i književnosti – nastavnički smjer Mario Dominković Povijesna pozadina kontakta između keltskih jezika i engleskog Diplomski rad Znanstveno područje: humanističke znanosti Znanstveno polje: filologija Znanstvena grana: anglistika Mentor: izv. prof. dr. sc. Tanja Gradečak – Erdeljić Osijek, 2016. J.J. Strossmayer University in Osijek Faculty of Humanities and Social Sciences Teaching English as
    [Show full text]
  • Cold-Climate Landform Patterns in the Sudetes. Effects of Lithology, Relief and Glacial History
    ACTA UNIVERSITATIS CAROLINAE 2000 GEOGRAPHICA, XXXV, SUPPLEMENTUM, PAG. 185–210 Cold-climate landform patterns in the Sudetes. Effects of lithology, relief and glacial history ANDRZEJ TRACZYK, PIOTR MIGOŃ University of Wrocław, Department of Geography, Wrocław, Poland ABSTRACT The Sudetes have the whole range of landforms and deposits, traditionally described as periglacial. These include blockfields and blockslopes, frost-riven cliffs, tors and cryoplanation terraces, solifluction mantles, rock glaciers, talus slopes and patterned ground and loess covers. This paper examines the influence, which lithology and structure, inherited relief and time may have had on their development. It appears that different rock types support different associations of cold climate landforms. Rock glaciers, blockfields and blockstreams develop on massive, well-jointed rocks. Cryogenic terraces, rock steps, patterned ground and heterogenic solifluction mantles are typical for most metamorphic rocks. No distinctive landforms occur on rocks breaking down through microgelivation. The variety of slope form is largely inherited from pre- Pleistocene times and includes convex-concave, stepped, pediment-like, gravitational rectilinear and concave free face-talus slopes. In spite of ubiquitous solifluction and permafrost creep no uniform characteristic ‘periglacial’ slope profile has been created. Mid-Pleistocene trimline has been identified on nunataks in the formerly glaciated part of the Sudetes and in their foreland. Hence it is proposed that rock-cut periglacial relief of the Sudetes is the cumulative effect of many successive cold periods during the Pleistocene and the last glacial period alone was of relatively minor importance. By contrast, slope cover deposits are usually of the Last Glacial age. Key words: cold-climate landforms, the Sudetes 1.
    [Show full text]
  • Engineering Geology and Seismology for Public Schools and Hospitals in California
    The Resources Agency California Geological Survey Michael Chrisman, Secretary for Resources Dr. John G. Parrish, State Geologist Engineering Geology and Seismology for Public Schools and Hospitals in California to accompany California Geological Survey Note 48 Checklist by Robert H. Sydnor, Senior Engineering Geologist California Geological Survey www.conservation.ca.gov/cgs July 1, 2005 316 pages Engineering Geology and Seismology performance–based analysis, diligent subsurface for Public Schools and Hospitals sampling, careful reading of the extensive geologic in California literature, thorough knowledge of the California Building Code, combined with competent professional geological work. by Robert H. Sydnor Engineering geology aspects of hospital and public California Geological Survey school sites include: regional geology, regional fault July 1, 2005 316 pages maps, site-specific geologic mapping, geologic cross- sections, active faulting, official zones of investigation Abstract for liquefaction and landslides, geotechnical laboratory The 446+ hospitals, 1,400+ skilled nursing facilities testing of samples, expansive soils, soluble sulfate ±9,221 public schools, and 109 community college evaluation for Type II or V Portland-cement selection, campuses in California are regulated under California and flooding. Code of Regulations, Title 24, California Building Code. Seismology aspects include: evaluation of historic These facilities are plan–checked by senior–level seismicity, probabilistic seismic hazard analysis of Registered Structural Engineers within the Office of earthquake ground–motion, use of proper code terms Statewide Health Planning and Development (OSHPD) (Upper–Bound Earthquake ground–motion and Design– for hospitals and skilled nursing facilities, and the Basis ground–motion), classification of the geologic Division of the State Architect (DSA) for public schools, subgrade by shear–wave velocity to select the correct community colleges, and essential services buildings.
    [Show full text]
  • Principles of Engineering Geology Principles of Engineering Geology
    PRINCIPLES OF ENGINEERING GEOLOGY PRINCIPLES OF ENGINEERING GEOLOGY P. B. ATTEWELL and I. W. FARMER University of Durham LONDON CHAPMAN AND HALL A Halsted Press Book JOHN WILEY & SONS, INC., NEW YORK First published 1976 by Chapman and Hall Ltd 11 New Fetter Lane, London EC4P 4EE © 1976 J. E. Attewell and L. C. Attewell Sriftcover reprillt rifthe hardcover 1ft editiolt 1976 Typeset by Preface Ltd, Salisbury, Wilts Fletcher & Son Ltd, Norwich ISBN-13: 978-94-009-5709-1 e-ISBN-13: 978-94-009-5707-7 DOl: 10.1007/978-94-009-5707-7 All rights reserved. No part of this book may be reprinted, or reproduced or utilized in any form or by any electronic, mechanical or other means, now known or hereafter invented, including photocopying and recording, or in any information storage and retrieval system, without permission in writing from the Publisher. Distributed in the U.S.A. by Halsted Press, a Division of John Wiley & Sons, Inc., New York Library of Congress Cataloging in Publication Data Attewell, P B Principles of engineering geology. 1. Engineering geology. I. Farmer, Ian William, joint author. II. Title. TA705.A87 1975 624'151 75-20012 Contents Preface xi Symbols xvii Composition of Rocks 1 1.1 Origin and geological classification of rocks 1 1.2 Rock forming minerals 7 1.3 Clay minerals 16 1.4 Base exchange and water adsorption in clay minerals 20 1.5 Mineralogical identification 25 2 Rock Particles and Particle Systems 30 2.1 Rock particle classification 30 2.2 Typical rock particle systems 33 2.3 Physical properties of particulate systems
    [Show full text]
  • Memorial to Esther Aberdeen Holm 1904-1984 9
    Memorial to Esther Aberdeen Holm 1904-1984 FRANK C. WHITMORE, JR. Dept, of Paleobiology, National Museum of Natural History, Washington, D .C. 20560 Like many of her generation, Esther Aberdeen found her career affected in unexpected and fascinating ways by World War II. She was bom in Chicago on January 6, 1904; her father was a trainman for the Chicago, Milwaukee and St. Paul. Esther’s early interest in geology, like that of many of us, probably stemmed from her childhood environment—in her case, from excursions to the beaches of Lake Michigan, where her curiosity was aroused by the sands and water-worn pebbles she found there. Encouraged especially by her mother, Esther entered Northwestern University, where she worked her way through college as a stenographer in an advertising company. After graduating in 1928, she worked for a year as a physical education instructor at the YWCA in St. Joseph, Michigan. She then returned to Northwestern, where she received the M.S. in 1931. She continued at Northwestern as a tutor in geology until the fall of 1933, when she entered graduate school at the University of Chicago. Her studies there were interrupted for a year (1934-1935) when she served as an instructor in geology at Milwaukee-Downer College. She received her Ph.D. from Chicago in 1937, with a major in paleontology. In 1936, Esther was appointed instructor in geology at Wellesley College. Subsequently promoted to assistant professor, she remained there until 1942, when she was recruited by W. H. Bradley for the newly formed Military Geology Unit (later, Military Geology Branch) of the U.S.
    [Show full text]
  • Gettysburg National Military Park & Eisenhower National Historic Site
    National Park Service U.S. Department of the Interior Natural Resource Program Center Gettysburg National Military Park & Eisenhower National Historic Site Geologic Resources Inventory Report Natural Resource Report NPS/NRPC/GRD/NRR—2009/083 THIS PAGE: North Carolina State Monument (NPS Photo) ON THE COVER: Gettysburg NMP, looking toward Cemetery Ridge Cover photo by Bill Dowling, courtesy of the Gettysburg Foundation Gettysburg National Military Park and Eisenhower National Historic Site Geologic Resources Inventory Report Natural Resource Report NPS/NRPC/GRD/NRR—2009/083 Geologic Resources Division Natural Resource Program Center P.O. Box 25287 Denver, Colorado 80225 March 2009 U.S. Department of the Interior National Park Service Natural Resource Program Center Denver, Colorado The Natural Resource Publication series addresses natural resource topics that are of interest and applicability to a broad readership in the National Park Service and to others in the management of natural resources, including the scientific community, the public, and the NPS conservation and environmental constituencies. Manuscripts are peer-reviewed to ensure that the information is scientifically credible, technically accurate, appropriately written for the intended audience, and is designed and published in a professional manner. Natural Resource Reports are the designated medium for disseminating high priority, current natural resource management information with managerial application. The series targets a general, diverse audience, and may contain NPS policy considerations or address sensitive issues of management applicability. Examples of the diverse array of reports published in this series include vital signs monitoring plans; "how to" resource management papers; proceedings of resource management workshops or conferences; annual reports of resource programs or divisions of the Natural Resource Program Center; resource action plans; fact sheets; and regularly-published newsletters.
    [Show full text]
  • Canada's Earthquakes
    Document generated on 09/26/2021 12:45 p.m. Geoscience Canada Canada’s Earthquakes: ‘The Good, the Bad, and the Ugly’ J. F. Cassidy, G. C. Rogers, M. Lamontagne, S. Halchuk and J. Adams Volume 37, Number 1, January 2010 Article abstract Much of Canada is ‘earthquake country’. Tiny earthquakes (that can only be URI: https://id.erudit.org/iderudit/geocan37_1art01 recorded by seismographs) happen every day. On average, earthquakes large enough to be felt occur every week in Canada, damaging earthquakes are years See table of contents to decades apart, and some of the world’s largest earthquakes are typically separated by intervals of centuries. In this article, we provide details on the most significant earthquakes that have been recorded in, or near, Canada, Publisher(s) including where and when they occurred, how they were felt, and the effects of those earthquakes. We also provide a brief review of how earthquakes are The Geological Association of Canada monitored across Canada and some recent earthquake hazard research. It is the results of this monitoring and research, which provide knowledge on ISSN earthquake hazard, that are incorporated into the National Building Code of Canada. This, in turn, will contribute to reduced property losses from future 0315-0941 (print) earthquakes across Canada. 1911-4850 (digital) Explore this journal Cite this article Cassidy, J. F., Rogers, G. C., Lamontagne, M., Halchuk, S. & Adams, J. (2010). Canada’s Earthquakes:: ‘The Good, the Bad, and the Ugly’. Geoscience Canada, 37(1), 1–16. All rights reserved © The Geological Association of Canada, 2010 This document is protected by copyright law.
    [Show full text]
  • Mystic Mountain © Mendip Hills AONB
    Viewpoint Mystic mountain © Mendip Hills AONB Time: 15 mins Region: South West England Landscape: rural Location: Ebbor Gorge, Somerset, BA5 3BA Grid reference: ST 52649 48742 Getting there: Park at Deer Leap car park and picnic area (on the road between Wookey Hole and Priddy) Keep an eye out for: Buzzards and other birds of prey soaring on the thermals below From this stunning vantage point we have sweeping views south across the flat land of the Somerset Levels. On a clear day, looking east you can see the dark line of hills marking out Exmoor National Park and if you look in a west south-west direction you can even spot the Bristol Channel glistening in the distance. As our eyes pan across the view they rest on a perfectly rounded knoll with a short tower on top. This is Glastonbury Tor. Claimed as the site of the legendary Vale of Avalon and the final resting place of King Arthur, the tor rises up above the flat land surrounding it and is visible for miles around. Why does the mystical Glastonbury Tor rise up out of the surrounding lowlands? First of all look straight ahead and in the middle distance you’ll see three hills which punctuate the flat landscape. From left to right they are Hay Hill, Ben Knowle Hill and Yarley Hill, part of a low ridge just south of the River Axe. Surrounding these hills the Somerset Levels are an area of low-lying farmland. The lowest point is just 0.2 metres above sea level.
    [Show full text]