Nucleic Acids

Total Page:16

File Type:pdf, Size:1020Kb

Nucleic Acids 116 PANEL 2–6: A Survey of the Nucleotides NUCLEOTIDES PHOSPHATES BASIC SUGAR LINKAGE A nucleotide consists of a nitrogen-containing The phosphates are normally joined to base, a five-carbon sugar, and one or more the C5 hydroxyl of the ribose or phosphate groups. deoxyribose sugar (designated 5'). Mono-, di-, and triphosphates are common. BASE N-glycosidic O bond NH2 – as in O P O CH2 BASE AMP N O– PHOSPHATE 5 N O O O O O N – as in –O O CH O P O P O CH2 P 2 ADP 4 SUGAR C O – – O– O O 1 3 2 H H H O O O H H – as in O P O P O P O CH2 Nucleotides ATP The base is linked to OH OH are the O– O– O– the same carbon (C1) used in sugar–sugar subunits of SUGAR the nucleic acids. The phosphate makes a nucleotide bonds. negatively charged. O BASES NH2 C C NH N 2 HC NH adenine C N U uracil The bases are nitrogen-containing ring HC HC C A C compounds, either pyrimidines or purines. C CH HC N N O N H H N C cytosine O HC C 4 N 6 O N N N O 5 3 7 5 1 H 8 C H C 2 2 N 3 C 6 9 4 C NH 1 N 3 C NH N N HC G C C T guanine N HC C N H NH2 N O PYRIMIDINE PURINE thymine H SUGARS HOCH OH 2 O HH b-D-ribose C 5’ O used in ribonucleic acid HH PENTOSE 4’ 1’ two kinds are used OH OH a five-carbon sugar 3’ 2’ HOCH2 OH O b-D-2-deoxyribose HH Each numbered carbon on the sugar of a nucleotide is used in deoxyribonucleic acid followed by a prime mark; therefore, one speaks of the HH “5-prime carbon,” etc. OH H CHAPTER 2 PANELS 117 NOMENCLATURE A nucleoside or nucleotide is named according to its nitrogenous base. base Single letter abbreviations are used variously as shorthand for (1) the base alone, (2) the BASE NUCLEOSIDE ABBR. nucleoside, or (3) the whole nucleotide— the context will usually make clear which of sugar adenine adenosine A the three entities is meant. When the context is not sufficient, we will add the terms “base”, BASE + SUGAR = NUCLEOSIDE guanine guanosine G “nucleoside”, “nucleotide”, or—as in the examples below—use the full 3-letter nucleotide cytosine cytidine C base code. uracil uridine U AMP = adenosine monophosphate P dAMP = deoxyadenosine monophosphate sugar thymine thymidine T UDP = uridine diphosphate ATP = adenosine triphosphate BASE + SUGAR + PHOSPHATE = NUCLEOTIDE NUCLEIC ACIDS NUCLEOTIDES HAVE MANY OTHER FUNCTIONS Nucleotides are joined together by a phosphodiester linkage between 5’ and 1 They carry chemical energy in their easily hydrolyzed phosphoanhydride bonds. 3’ carbon atoms to form nucleic acids. The linear sequence of nucleotides in a NH2 nucleic acid chain is commonly phosphoanhydride bonds N abbreviated by a one-letter code, N A—G—C—T—T—A—C—A, with the 5’ O O O end of the chain at the left. – N N O P O P O P O CH 2 O O– O– O– O base – O P O CH2 O OH OH O– example: ATP (or ATP ) sugar OH NH 2 They combine with other groups to form coenzymes. 2 O + base N N – O P O CH 2 O H H O H H O H CH H O O N O– 3 N sugar HS C C N C C C N C C C C OOP P O CH 2 O H H H H H H HO CH H O– O– OH 3 example: coenzyme A (CoA) O OH O 5’ end of chain base 5 O O– – ’ P O P O CH 2 O O– O– sugar 3 They are used as specific signaling molecules in the cell. NH2 3’ O phosphodiester example: cyclic AMP (cAMP) N – N linkage OOP O N base CH N 2 O 5’ CH2 O O example: DNA sugar O P OOH 3’ OH O– 3’ end of chain.
Recommended publications
  • Chapter 23 Nucleic Acids
    7-9/99 Neuman Chapter 23 Chapter 23 Nucleic Acids from Organic Chemistry by Robert C. Neuman, Jr. Professor of Chemistry, emeritus University of California, Riverside [email protected] <http://web.chem.ucsb.edu/~neuman/orgchembyneuman/> Chapter Outline of the Book ************************************************************************************** I. Foundations 1. Organic Molecules and Chemical Bonding 2. Alkanes and Cycloalkanes 3. Haloalkanes, Alcohols, Ethers, and Amines 4. Stereochemistry 5. Organic Spectrometry II. Reactions, Mechanisms, Multiple Bonds 6. Organic Reactions *(Not yet Posted) 7. Reactions of Haloalkanes, Alcohols, and Amines. Nucleophilic Substitution 8. Alkenes and Alkynes 9. Formation of Alkenes and Alkynes. Elimination Reactions 10. Alkenes and Alkynes. Addition Reactions 11. Free Radical Addition and Substitution Reactions III. Conjugation, Electronic Effects, Carbonyl Groups 12. Conjugated and Aromatic Molecules 13. Carbonyl Compounds. Ketones, Aldehydes, and Carboxylic Acids 14. Substituent Effects 15. Carbonyl Compounds. Esters, Amides, and Related Molecules IV. Carbonyl and Pericyclic Reactions and Mechanisms 16. Carbonyl Compounds. Addition and Substitution Reactions 17. Oxidation and Reduction Reactions 18. Reactions of Enolate Ions and Enols 19. Cyclization and Pericyclic Reactions *(Not yet Posted) V. Bioorganic Compounds 20. Carbohydrates 21. Lipids 22. Peptides, Proteins, and α−Amino Acids 23. Nucleic Acids **************************************************************************************
    [Show full text]
  • Monophosphate- Binding Protein Complex with Subsequent Poly(A) RNA Synthesis in Embryonic Chick Cartilage
    Specific nuclear binding of adenosine 3',5'-monophosphate- binding protein complex with subsequent poly(A) RNA synthesis in embryonic chick cartilage. W M Burch Jr, H E Lebovitz J Clin Invest. 1980;66(3):532-542. https://doi.org/10.1172/JCI109885. Research Article We used embryonic chick pelvic cartilage as a model to study the mechanism by which cyclic AMP increases RNA synthesis. Isolated nuclei were incubated with [32P]-8-azidoadenosine 3,5'-monophosphate ([32P]N3cAMP) with no resultant specific nuclear binding. However, in the presence of cytosol proteins, nuclear binding of [32P]N3cAMP was demonstrable that was specific, time dependent, and dependent on a heat-labile cytosol factor. The possible biological significance of the nuclear binding of the cyclic AMP-protein complex was identified by incubating isolating nuclei with either cyclic AMP or cytosol cyclic AMP-binding proteins prepared by batch elution DEAE cellulose chromatography (DEAE peak cytosol protein), or both, in the presence of cold nucleotides and [3H]uridine 5'-triphosphate. Poly(A) RNA production occurred only in nuclei incubated with cyclic AMP and the DEAE peak cytosol protein preparation. Actinomycin D inhibited the incorporation of [3H]uridine 5'-monophosphate into poly(A) RNA. The newly synthesized poly(A) RNA had a sedimentation constant of 23S. Characterization of the cytosol cyclic AMP binding proteins using [32P]N3-cAMP with photoaffinity labeling three major cAMP-binding complexes (41,000, 51,000, and 55,000 daltons). The 51,000 and 55,000 dalton cyclic AMP binding proteins were further purified by DNA-cellulose chromatography. In the presence of cyclic AMP they stimulated poly(A) RNA synthesis in isolated nuclei.
    [Show full text]
  • Inhibition by Cyclic Guanosine 3':5'-Monophosphate of the Soluble DNA Polymerase Activity, and of Partially Purified DNA Polymer
    Inhibition by Cyclic Guanosine 3':5'-Monophosphate of the Soluble DNA Polymerase Activity, and of Partially Purified DNA Polymerase A (DNA Polymerase I) from the Yeast Saccharomyces cere visiae Hans Eckstein Institut für Physiologische Chemie der Universität, Martinistr. 52-UKE, D-2000 Hamburg 20 Z. Naturforsch. 36 c, 813-819 (1981); received April 16/July 2, 1981 Dedicated to Professor Dr. Joachim Kühnauon the Occasion of His 80th Birthday cGMP, DNA Polymerase Activity, DNA Polymerase A, DNA Polymerase I, Baker’s Yeast DNA polymerase activity from extracts of growing yeast cells is inhibited by cGMP. Experiments with partially purified yeast DNA polymerases show, that cGMP inhibits DNA polymerase A (DNA polymerase I from Chang), which is the main component of the soluble DNA polymerase activity in yeast extracts, by competing for the enzyme with the primer- template DNA. Since the enzyme is not only inhibited by 3',5'-cGMP, but also by 3',5'-cAMP, the 3': 5'-phosphodiester seems to be crucial for the competition between cGMP and primer. This would be inconsistent with the concept of a 3'-OH primer binding site in the enzyme. The existence of such a site in the yeast DNA polymerase A is indicated from studies with various purine nucleoside monophosphates. When various DNA polymerases are compared, inhibition by cGMP seems to be restricted to those enzymes, which are involved in DNA replication. DNA polymerases with an associated nuclease activity are not inhibited, DNA polymerase B from yeast is even activated by cGMP. Though some relations between the cGMP effect and the presumed function of the enzymes in the living cell are apparent, the biological meaning of the observations in general remains open.
    [Show full text]
  • Questions with Answers- Nucleotides & Nucleic Acids A. the Components
    Questions with Answers- Nucleotides & Nucleic Acids A. The components and structures of common nucleotides are compared. (Questions 1-5) 1._____ Which structural feature is shared by both uracil and thymine? a) Both contain two keto groups. b) Both contain one methyl group. c) Both contain a five-membered ring. d) Both contain three nitrogen atoms. 2._____ Which component is found in both adenosine and deoxycytidine? a) Both contain a pyranose. b) Both contain a 1,1’-N-glycosidic bond. c) Both contain a pyrimidine. d) Both contain a 3’-OH group. 3._____ Which property is shared by both GDP and AMP? a) Both contain the same charge at neutral pH. b) Both contain the same number of phosphate groups. c) Both contain the same purine. d) Both contain the same furanose. 4._____ Which characteristic is shared by purines and pyrimidines? a) Both contain two heterocyclic rings with aromatic character. b) Both can form multiple non-covalent hydrogen bonds. c) Both exist in planar configurations with a hemiacetal linkage. d) Both exist as neutral zwitterions under cellular conditions. 5._____ Which property is found in nucleosides and nucleotides? a) Both contain a nitrogenous base, a pentose, and at least one phosphate group. b) Both contain a covalent phosphodister bond that is broken in strong acid. c) Both contain an anomeric carbon atom that is part of a β-N-glycosidic bond. d) Both contain an aldose with hydroxyl groups that can tautomerize. ___________________________________________________________________________ B. The structures of nucleotides and their components are studied. (Questions 6-10) 6._____ Which characteristic is shared by both adenine and cytosine? a) Both contain one methyl group.
    [Show full text]
  • Chem 109 C Bioorganic Compounds
    Chem 109 C Bioorganic Compounds Fall 2019 HFH1104 Armen Zakarian Office: Chemistry Bldn 2217 http://labs.chem.ucsb.edu/~zakariangroup/courses.html CLAS Instructor: Dhillon Bhavan [email protected] Midterm 3 stats Average 49.1 St Dev 14.1 Max 87.5 Min 15 test are available outside room 2135 (Chemistry, 2nd floor) in a box, sorted in alphabetical order, by color Final Course Grading Each test will be curved individually to 75% average Lowest midterm will be dropped Scores from 2 best M and the Final will be added Grades will be assigned according to the syllabus 22. Draw all reactions required to convert hexanoic acid to 3 molecules of acetyl CoA through 11 pt the β-oxidation cycles. Name all necessary coenzymes and enzymes. How many molecules of ATP and CO2 will be produced from hexanoic acid after its entire metabolism through all 4 stages ? O O hexanoic acid (hexanoate) Overview OVERVIEW o structures of DNA vs. RNA - ribose o structures of bases: Adenine, Uracil/Thymine, Guanine, Cytosine. “Enol forms” o hydrogen bonding between A-T(U) and G-C. H-donors/acceptors o Base complementarity o RNA strand cleavage assisted by the 2’-OH group in the ribose unit (cyclic PDE) o Deamination: RNA genetic instability o DNA replication o RNA synthesis: transcription. Template strand (read 3’ to 5’). Sense strand and the RNA primary structure (T −> U). o Protein synthesis: translation. mRNA determines the amino acid sequence. tRNAs are amino acid carriers. rRNA - part of ribosomes o no section 26.12, 26.13 DNA, RNA, etc.
    [Show full text]
  • Geochemical Influences on Nonenzymatic Oligomerization Of
    bioRxiv preprint doi: https://doi.org/10.1101/872234; this version posted December 11, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Geochemical influences on nonenzymatic oligomerization of prebiotically relevant cyclic nucleotides Authors: Shikha Dagar‡, Susovan Sarkar‡, Sudha Rajamani‡* ‡ Department of Biology, Indian Institute of Science Education and Research, Pune 411008, India Correspondence: [email protected]; Tel.: +91-20-2590-8061 Running title: Cyclic nucleotides and emergence of an RNA World Key words: Dehydration-rehydration cycles, lipid-assisted oligomerization, cyclic nucleotides, analogue environments Dagar, S. 1 bioRxiv preprint doi: https://doi.org/10.1101/872234; this version posted December 11, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract The spontaneous emergence of RNA on the early Earth continues to remain an enigma in the field of origins of life. Few studies have looked at the nonenzymatic oligomerization of cyclic nucleotides under neutral to alkaline conditions, in fully dehydrated state. Herein, we systematically investigated the oligomerization of cyclic nucleotides under prebiotically relevant conditions, where starting reactants were subjected to repeated dehydration-rehydration (DH- RH) regimes, like they would have been on an early Earth. DH-RH conditions, a recurring geological theme, are driven by naturally occurring processes including diurnal cycles and tidal pool activity. These conditions have been shown to facilitate uphill oligomerization reactions in terrestrial geothermal niches, which are hypothesized to be pertinent sites for the emergence of life.
    [Show full text]
  • Modeling of the Hydration Shell of Uracil and Thymine
    Int. J. Mol. Sci. 2000, 1, 17-27 International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.org/ijms/ Modeling of the Hydration Shell of Uracil and Thymine Oleg V. Shishkin1,2, Leonid Gorb2 and Jerzy Leszczynski2* 1Department of Alkali Halide Crystals, Institute for Single Crystals, National Academy of Sciences of Ukraine, 60 Lenina Avenue., Kharkiv 310001, Ukraine 2Computational Center for Molecular Structure and Interactions, Department of Chemistry, Jackson State University, P.O. Box 17910, 1325 Lynch Street, Jackson, MS 39217, USA E-mail: [email protected] *Author to whom correspondence should be addressed. Received: 4 January 2000 / Accepted: 30 March 2000 / Published: 4 March 2000 Abstract: The molecular geometry of complexes of uracil and thymine with 11 water mole- cules was calculated using the density functional theory with the B3LYP functional. The standard 6-31G(d) basis set has been employed. It was found that the arrangement of water molecules forming a locked chain around the nucleobases significantly differs for uracil and thymine. The presence of a methyl group in thymine results in strong non-planarity of the hydrated shell. The existence of C-H...O hydrogen bonds between the water molecules and the hydrophobic part of the nucleobases is established. Interactions with water molecules cause some changes in the geometry of uracil and thymine which can be explained by the contribution of a zwitter-ionic dihydroxy resonance form into the total structure of the molecules. Keywords: Uracil, Thymine, Hydration, Molecular structure, Hydrogen bonds, Density functional theory. Introduction Since Franklin and Gosling [1] examined the first fibers of DNA it has been known that DNA oc- curs in vivo in the hydrated form.
    [Show full text]
  • RSC Article Template
    Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics This journal is © The Owner Societies 2013 Supplimentary Information Figure Legends: S1: Raman spectra of RNA building blocks and related compounds. All spectra are the average of 3 Raman spectra and have been baseline corrected, buffer subtracted and scaled to an effective 5 concentration of 50 mM. (a) Adenine related molecules: adenine (black), adenosine (red) and adenosine monophosphate (blue). The measured concentrations were 47.81 mM, 46.40 mM and 56.75 mM, respectively. (b) Cytosine related molecules: cytosine (black), cytidine (red) and cytidine monophosphate (blue). The measured concentrations were 47.70 mM, 56.74 mM and 55.38 mM, respectively. (c) Guanine related molecules: guanine (black), guanosine (red) and guanosine 10 monophosphate (blue). The measured concentrations were 46.19 mM, 63.90 mM and 46.67 mM, respectively. (d) Uracil related molecules: uracil (black), uridine (red) and uridine monophosphate (blue). The measured concentrations were 48.09 mM, 48.32 mM and 67.64 mM, respectively. (e) Ribose and phosphate molecules: ribose (black), ribose phosphate (red) and sodium phosphate (blue). The measured concentrations were 287.08 mM, 434.58 mM and 47.75 mM, respectively. 15 S2: Second derivative spectra of the measured RNA Raman spectra; SL-HIV1 (black), SL-APTR (red) and SL-SARS (blue). The positions of peaks discussed in the text are noted. Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics This journal is © The
    [Show full text]
  • Guanosine-Based Nucleotides, the Sons of a Lesser God in the Purinergic Signal Scenario of Excitable Tissues
    International Journal of Molecular Sciences Review Guanosine-Based Nucleotides, the Sons of a Lesser God in the Purinergic Signal Scenario of Excitable Tissues 1,2, 2,3, 1,2 1,2, Rosa Mancinelli y, Giorgio Fanò-Illic y, Tiziana Pietrangelo and Stefania Fulle * 1 Department of Neuroscience Imaging and Clinical Sciences, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; [email protected] (R.M.); [email protected] (T.P.) 2 Interuniversity Institute of Miology (IIM), 66100 Chieti, Italy; [email protected] 3 Libera Università di Alcatraz, Santa Cristina di Gubbio, 06024 Gubbio, Italy * Correspondence: [email protected] Both authors contributed equally to this work. y Received: 30 January 2020; Accepted: 25 February 2020; Published: 26 February 2020 Abstract: Purines are nitrogen compounds consisting mainly of a nitrogen base of adenine (ABP) or guanine (GBP) and their derivatives: nucleosides (nitrogen bases plus ribose) and nucleotides (nitrogen bases plus ribose and phosphate). These compounds are very common in nature, especially in a phosphorylated form. There is increasing evidence that purines are involved in the development of different organs such as the heart, skeletal muscle and brain. When brain development is complete, some purinergic mechanisms may be silenced, but may be reactivated in the adult brain/muscle, suggesting a role for purines in regeneration and self-repair. Thus, it is possible that guanosine-50-triphosphate (GTP) also acts as regulator during the adult phase. However, regarding GBP, no specific receptor has been cloned for GTP or its metabolites, although specific binding sites with distinct GTP affinity characteristics have been found in both muscle and neural cell lines.
    [Show full text]
  • Developmental Disorder Associated with Increased Cellular Nucleotidase Activity (Purine-Pyrimidine Metabolism͞uridine͞brain Diseases)
    Proc. Natl. Acad. Sci. USA Vol. 94, pp. 11601–11606, October 1997 Medical Sciences Developmental disorder associated with increased cellular nucleotidase activity (purine-pyrimidine metabolismyuridineybrain diseases) THEODORE PAGE*†,ALICE YU‡,JOHN FONTANESI‡, AND WILLIAM L. NYHAN‡ Departments of *Neurosciences and ‡Pediatrics, University of California at San Diego, La Jolla, CA 92093 Communicated by J. Edwin Seegmiller, University of California at San Diego, La Jolla, CA, August 7, 1997 (received for review June 26, 1997) ABSTRACT Four unrelated patients are described with a represent defects of purine metabolism, although no specific syndrome that included developmental delay, seizures, ataxia, enzyme abnormality has been identified in these cases (6). In recurrent infections, severe language deficit, and an unusual none of these disorders has it been possible to delineate the behavioral phenotype characterized by hyperactivity, short mechanism through which the enzyme deficiency produces the attention span, and poor social interaction. These manifesta- neurological or behavioral abnormalities. Therapeutic strate- tions appeared within the first few years of life. Each patient gies designed to treat the behavioral and neurological abnor- displayed abnormalities on EEG. No unusual metabolites were malities of these disorders by replacing the supposed deficient found in plasma or urine, and metabolic testing was normal metabolites have not been successful in any case. except for persistent hypouricosuria. Investigation of purine This report describes four unrelated patients in whom and pyrimidine metabolism in cultured fibroblasts derived developmental delay, seizures, ataxia, recurrent infections, from these patients showed normal incorporation of purine speech deficit, and an unusual behavioral phenotype were bases into nucleotides but decreased incorporation of uridine.
    [Show full text]
  • Thymine, Uracil and Adenine 21
    CHAPTER 4: THYMINE, URACIL AND ADENINE 21 CHAPTER 4: THYMINE, URACIL AND ADENINE 22 CHAPTER 4: THYMINE, URACIL AND ADENINE 4.1 THYMINE Not only the pyrimidines present in the nucleic acids (cytosine, uracil and thymine) but also a great number of other pyrimidine derivatives play a vital role in many biological processes. In most biological systems vitamin B1 (derivative of 2-methyl-4- aminopyrimidine) occurs as its coenzyme, the specie that functions in biological systems [106]. Another pyrimidine alloxan was intensively studied [64,65] due to cause diabetes when administrated in laboratory animals. A number of pyrimidines derivatives are antimetabolites, been of clinical interest in cancer chemotherapy. 4.1.1 TAUTOMERISM AND PK VALUE Thymine exists in two tautomeric forms the keto and the enol form, where the keto form is strongly favored in the equilibrium. O OH H C H C 3 4 3 5 3NH N 6 2 1 N O N OH H Keto Enol Figure 4.1: Tautomeric forms for thymine. At alkaline pH the hydrogen N(3) for thymine is removed, indicating the weak basicity of the ring nitrogen. CHAPTER 4: THYMINE, URACIL AND ADENINE 23 O O H3C H3C 4 pKa=9.5 4 - 5 N 5 3NH 3 2 6 2 6 1 1 N O N O H H Figure 4.2: Ionization constant for thymine. Arrow indicates the dipole moment. 4.1.2 ADSORPTION OF THYMINE ON AU(111) AND AU POLYCRISTALLINE The adsorption of pyrimidines (uracil, thymine, and cytosine) on electrode surfaces had been carefully investigated in many studies in the recent years [24,51,52,54-56].
    [Show full text]
  • Genome-Wide Expression Profiling of 8-Chloroadenosine- and 8-Chloro-Camp-Treated Human Neuroblastoma Cells Using Radioactive Human Cdna Microarray
    EXPERIMENTAL and MOLECULAR MEDICINE, Vol. 34, No. 3, 184-193, July 2002 Genome-wide expression profiling of 8-chloroadenosine- and 8-chloro-cAMP-treated human neuroblastoma cells using radioactive human cDNA microarray Gil Hong Park1, Jaegol Choe2, involved in proliferation and transformation (trans- Hyo-Jung Choo1, Yun Gyu Park1, forming growth factor-β, DYRK2, urokinase-type Jeongwon Sohn1, and Meyoung-kon Kim1,3 plasminogen activator and proteins involved in tran- scription and translation) which were in close paral- lel with those by 8-Cl-cAMP. Our results indicated 1Department of Biochemistry, College of Medicine, Korea University, that the two drugs shared common genomic path- Seoul, 136-701, Korea ways for the down-regulation of certain genes, but 2Department of Nuclear Medicine, College of Medicine, Korea Uni- used distinct pathways for the up-regulation of dif- versity, Seoul, 136-701, Korea ferent gene clusters. Based on the findings, we sug- 3Corresponding author: Tel, +82-2-920-6184; gest that the anti-cancer activity of 8-Cl-cAMP Fax, +82-2-923-0480; E-mail, [email protected] results at least in part through 8-Cl-adenosine. Thus, the systematic use of DNA arrays can provide Received 30 May , 2002 insight into the dynamic cellular pathways involved in anticancer activities of chemotherapeutics. Abbreviations: 8-Cl-adenosine, 8-chloro-adenosine; 8-Cl-cAMP, 8- chloro-cyclic adenosine 3,5-monophosphate; PKA, protein kinase Keywords: 8-Cl-adenosine, 8-Cl-cAMP, anticancer activ- A; RFXAP, regulatory factor X-associated protein;
    [Show full text]