Nucleobases Thin Films Deposited on Nanostructured Transparent Conductive Electrodes for Optoelectronic Applications
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Guardian of the Development of Diabetic Retinopathy
Diabetes Volume 67, April 2018 745 Sirt1: A Guardian of the Development of Diabetic Retinopathy Manish Mishra, Arul J. Duraisamy, and Renu A. Kowluru Diabetes 2018;67:745–754 | https://doi.org/10.2337/db17-0996 Diabetic retinopathy is a multifactorial disease, and the molecular mechanism of the development of diabetic reti- exact mechanism of its pathogenesis remains obscure. nopathy remains to be established. Sirtuin 1 (Sirt1), a multifunctional deacetylase, is impli- Sirtuin 1 (Sirt1), a member of the silent information cated in the regulation of many cellular functions and in regulator 2 family, is a class III histone deacetylase that gene transcription, and retinal Sirt1 is inhibited in di- interacts with target proteins and regulates many cellular abetes. Our aim was to determine the role of Sirt1 in the functions including cell proliferation, apoptosis, and inflam- development of diabetic retinopathy and to elucidate the matory responses (6–8). Sirt1 is mainly a nuclear protein, Sirt1 molecular mechanism of its downregulation. Using - and its activity depends on cellular NAD availability (9). It is overexpressing mice that were diabetic for 8 months, Sirt1 expressed throughout the retina, and upregulation of COMPLICATIONS structural, functional, and metabolic abnormalities were protects against various ocular diseases including retinal investigated in vascular and neuronal retina. The role of degeneration, cataract, and optic neuritis (10). Our previous epigenetics in Sirt1 transcriptional suppression was inves- work has shown that Sirt1 expression and activity are de- tigated in retinal microvessels. Compared with diabetic wild-type mice, retinal vasculature from diabetic Sirt1 mice creased in the retina and its capillary cells in diabetes (11). -
Cytosine-Rich
Proc. Natl. Acad. Sci. USA Vol. 93, pp. 12116-12121, October 1996 Chemistry Inter-strand C-H 0 hydrogen bonds stabilizing four-stranded intercalated molecules: Stereoelectronic effects of 04' in cytosine-rich DNA (base-ribose stacking/sugar pucker/x-ray crystallography) IMRE BERGERt, MARTIN EGLIt, AND ALEXANDER RICHt tDepartment of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139; and tDepartment of Molecular Pharmacology and Biological Chemistry, Northwestern University Medical School, 303 East Chicago Avenue, Chicago, IL 60611-3008 Contributed by Alexander Rich, August 19, 1996 ABSTRACT DNA fragments with stretches of cytosine matic cytosine ring systems from intercalated duplexes (Fig. 1A). residues can fold into four-stranded structures in which two Second, unusually close intermolecular contacts between sugar- parallel duplexes, held together by hemiprotonated phosphate backbones in the narrow grooves are observed, with cytosine-cytosine+ (C C+) base pairs, intercalate into each inter-strand phosphorus-phosphorus distances as close as 5.9 A other with opposite polarity. The structural details of this (5), presumably resulting in unfavorable electrostatic repulsion if intercalated DNA quadruplex have been assessed by solution not shielded by cations or bridging water molecules. NMR and single crystal x-ray diffraction studies of cytosine- The close contacts between pairs of antiparallel sugar- rich sequences, including those present in metazoan telo- phosphate backbones from the two interdigitated duplexes are meres. A conserved feature of these structures is the absence a unique characteristic of four-stranded intercalated DNA. of stabilizing stacking interactions between the aromatic ring Indeed, the unusually strong nuclear overhauser effect signals systems of adjacent C-C+ base pairs from intercalated du- between inter-strand sugar Hi' protons and Hi' and H4' plexes. -
REDUCTION of PURINE CONTENT in COMMONLY CONSUMED MEAT PRODUCTS THROUGH RINSING and COOKING by Anna Ellington (Under the Directio
REDUCTION OF PURINE CONTENT IN COMMONLY CONSUMED MEAT PRODUCTS THROUGH RINSING AND COOKING by Anna Ellington (Under the direction of Yen-Con Hung) Abstract The commonly consumed meat products ground beef, ground turkey, and bacon were analyzed for purine content before and after a rinsing treatment. The rinsing treatment involved rinsing the meat samples using a wrist shaker in 5:1 ratio water: sample for 2 or 5 minutes then draining or centrifuging to remove water. The total purine content of 25% fat ground beef significantly decreased (p<0.05) from 8.58 mg/g protein to a range of 5.17-7.26 mg/g protein after rinsing treatments. After rinsing and cooking an even greater decrease was seen ranging from 4.59-6.32 mg/g protein. The total purine content of 7% fat ground beef significantly decreased from 7.80 mg/g protein to a range of 5.07-5.59 mg/g protein after rinsing treatments. A greater reduction was seen after rinsing and cooking in the range of 4.38-5.52 mg/g protein. Ground turkey samples showed no significant changes after rinsing, but significant decreases were seen after rinsing and cooking. Bacon samples showed significant decreases from 6.06 mg/g protein to 4.72 and 4.49 after 2 and 5 minute rinsing and to 4.53 and 4.68 mg/g protein after 2 and 5 minute rinsing and cooking. Overall, this study showed that rinsing foods in water effectively reduces total purine content and subsequent cooking after rinsing results in an even greater reduction of total purine content. -
Chapter 23 Nucleic Acids
7-9/99 Neuman Chapter 23 Chapter 23 Nucleic Acids from Organic Chemistry by Robert C. Neuman, Jr. Professor of Chemistry, emeritus University of California, Riverside [email protected] <http://web.chem.ucsb.edu/~neuman/orgchembyneuman/> Chapter Outline of the Book ************************************************************************************** I. Foundations 1. Organic Molecules and Chemical Bonding 2. Alkanes and Cycloalkanes 3. Haloalkanes, Alcohols, Ethers, and Amines 4. Stereochemistry 5. Organic Spectrometry II. Reactions, Mechanisms, Multiple Bonds 6. Organic Reactions *(Not yet Posted) 7. Reactions of Haloalkanes, Alcohols, and Amines. Nucleophilic Substitution 8. Alkenes and Alkynes 9. Formation of Alkenes and Alkynes. Elimination Reactions 10. Alkenes and Alkynes. Addition Reactions 11. Free Radical Addition and Substitution Reactions III. Conjugation, Electronic Effects, Carbonyl Groups 12. Conjugated and Aromatic Molecules 13. Carbonyl Compounds. Ketones, Aldehydes, and Carboxylic Acids 14. Substituent Effects 15. Carbonyl Compounds. Esters, Amides, and Related Molecules IV. Carbonyl and Pericyclic Reactions and Mechanisms 16. Carbonyl Compounds. Addition and Substitution Reactions 17. Oxidation and Reduction Reactions 18. Reactions of Enolate Ions and Enols 19. Cyclization and Pericyclic Reactions *(Not yet Posted) V. Bioorganic Compounds 20. Carbohydrates 21. Lipids 22. Peptides, Proteins, and α−Amino Acids 23. Nucleic Acids ************************************************************************************** -
Alternative Biochemistries for Alien Life: Basic Concepts and Requirements for the Design of a Robust Biocontainment System in Genetic Isolation
G C A T T A C G G C A T genes Review Alternative Biochemistries for Alien Life: Basic Concepts and Requirements for the Design of a Robust Biocontainment System in Genetic Isolation Christian Diwo 1 and Nediljko Budisa 1,2,* 1 Institut für Chemie, Technische Universität Berlin Müller-Breslau-Straße 10, 10623 Berlin, Germany; [email protected] 2 Department of Chemistry, University of Manitoba, 144 Dysart Rd, 360 Parker Building, Winnipeg, MB R3T 2N2, Canada * Correspondence: [email protected] or [email protected]; Tel.: +49-30-314-28821 or +1-204-474-9178 Received: 27 November 2018; Accepted: 21 December 2018; Published: 28 December 2018 Abstract: The universal genetic code, which is the foundation of cellular organization for almost all organisms, has fostered the exchange of genetic information from very different paths of evolution. The result of this communication network of potentially beneficial traits can be observed as modern biodiversity. Today, the genetic modification techniques of synthetic biology allow for the design of specialized organisms and their employment as tools, creating an artificial biodiversity based on the same universal genetic code. As there is no natural barrier towards the proliferation of genetic information which confers an advantage for a certain species, the naturally evolved genetic pool could be irreversibly altered if modified genetic information is exchanged. We argue that an alien genetic code which is incompatible with nature is likely to assure the inhibition of all mechanisms of genetic information transfer in an open environment. The two conceivable routes to synthetic life are either de novo cellular design or the successive alienation of a complex biological organism through laboratory evolution. -
Human Hypoxanthine (Guanine) Phosphoribosyltransferase: An
Proc. NatL Acad. Sci. USA Vol. 80, pp. 870-873, Febriary 1983 Medical Sciences Human hypoxanthine (guanine) phosphoribosyltransferase: An amino acid substitution in a mutant form of the enzyme isolated from a patient with gout (reverse-phase HPLC/peptide mapping/mutant enzyme) JAMES M. WILSON*t, GEORGE E. TARRt, AND WILLIAM N. KELLEY*t Departments of *Internal Medicine and tBiological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109 Communicated by James B. Wyngaarden, November 3, 1982 ABSTRACT We have investigated the molecular basis for a tration ofenzyme protein. in both erythrocytes (3) and lympho- deficiency ofthe enzyme hypoxanthine (guanine) phosphoribosyl- blasts (4); (ii) a normal Vm., a normal Km for 5-phosphoribosyl- transferase (HPRT; IMP:pyrophosphate-phosphoribosyltransfer- 1-pyrophosphate, and a 5-fold increased Km for hypoxanthine ase, EC 2.4.2.8) in a patient with a severe form of gout. We re-. (unpublished data); (iii) a normal isoelectric point (3, 4) and ported in previous studies the isolation of a unique structural migration during nondenaturing polyacrylamide gel electro- variant of HPRT from this patient's erythrocytes and cultured phoresis (4); and (iv) -an apparently smaller subunit molecular lymphoblasts. This enzyme variant, which is called HPRTOnd0., weight as evidenced by an increased mobility during Na- is characterized by a decreased concentration of HPRT protein DodSO4/polyacrylamide gel electrophoresis (3, 4). in erythrocytes and lymphoblasts, a normal Vm.., a 5-fold in- Our study ofthe tryptic peptides and amino acid composition creased Km for hypoxanthine, a normal isoelectric point, and an of apparently smaller subunit molecular weight. Comparative pep- HPRTLondon revealed a single amino acid substitution (Ser tide mapping-experiments revealed a single abnormal tryptic pep- Leu) at position 109. -
Inhibition by Cyclic Guanosine 3':5'-Monophosphate of the Soluble DNA Polymerase Activity, and of Partially Purified DNA Polymer
Inhibition by Cyclic Guanosine 3':5'-Monophosphate of the Soluble DNA Polymerase Activity, and of Partially Purified DNA Polymerase A (DNA Polymerase I) from the Yeast Saccharomyces cere visiae Hans Eckstein Institut für Physiologische Chemie der Universität, Martinistr. 52-UKE, D-2000 Hamburg 20 Z. Naturforsch. 36 c, 813-819 (1981); received April 16/July 2, 1981 Dedicated to Professor Dr. Joachim Kühnauon the Occasion of His 80th Birthday cGMP, DNA Polymerase Activity, DNA Polymerase A, DNA Polymerase I, Baker’s Yeast DNA polymerase activity from extracts of growing yeast cells is inhibited by cGMP. Experiments with partially purified yeast DNA polymerases show, that cGMP inhibits DNA polymerase A (DNA polymerase I from Chang), which is the main component of the soluble DNA polymerase activity in yeast extracts, by competing for the enzyme with the primer- template DNA. Since the enzyme is not only inhibited by 3',5'-cGMP, but also by 3',5'-cAMP, the 3': 5'-phosphodiester seems to be crucial for the competition between cGMP and primer. This would be inconsistent with the concept of a 3'-OH primer binding site in the enzyme. The existence of such a site in the yeast DNA polymerase A is indicated from studies with various purine nucleoside monophosphates. When various DNA polymerases are compared, inhibition by cGMP seems to be restricted to those enzymes, which are involved in DNA replication. DNA polymerases with an associated nuclease activity are not inhibited, DNA polymerase B from yeast is even activated by cGMP. Though some relations between the cGMP effect and the presumed function of the enzymes in the living cell are apparent, the biological meaning of the observations in general remains open. -
Adenine-Based Purines and Related Metabolizing Enzymes: Evidence for Their Impact on Tumor Extracellular Vesicle Activities
cells Review Adenine-Based Purines and Related Metabolizing Enzymes: Evidence for Their Impact on Tumor Extracellular Vesicle Activities Patrizia Di Iorio 1,2 and Renata Ciccarelli 1,2,* 1 Department of Medical, Oral and Biotechnological Sciences, ‘G. D’Annunzio’ University of Chieti-Pescara, 66100 Chieti, Italy; [email protected] 2 Center for Advanced Studies and Technology (CAST), ‘G. D’Annunzio’ University of Chieti-Pescara, 66100 Chieti, Italy * Correspondence: [email protected] Abstract: Extracellular vesicles (EVs), mainly classified as small and large EVs according to their size/origin, contribute as multi-signal messengers to intercellular communications in normal/pathological conditions. EVs are now recognized as critical players in cancer processes by promoting transformation, growth, invasion, and drug-resistance of tumor cells thanks to the release of molecules contained inside them (i.e., nucleic acids, lipids and proteins) into the tumor microenvironment (TME). Interestingly, secre- tion from donor cells and/or uptake of EVs/their content by recipient cells are regulated by extracellular signals present in TME. Among those able to modulate the EV-tumor crosstalk, purines, mainly the adenine-based ones, could be included. Indeed, TME is characterized by high levels of ATP/adenosine and by the presence of enzymes deputed to their turnover. Moreover, ATP/adenosine, interacting with their own receptors, can affect both host and tumor responses. However, studies on whether/how the purinergic system behaves as a modulator of EV biogenesis, release and functions in cancer are still poor. Thus, this review is aimed at collecting data so far obtained to stimulate further research in this regard. -
Cyclic Nucleotide Phosphodiesterases in Heart and Vessels
Cyclic nucleotide phosphodiesterases in heart and vessels: A therapeutic perspective Pierre Bobin, Milia Belacel-Ouari, Ibrahim Bedioune, Liang Zhang, Jérôme Leroy, Véronique Leblais, Rodolphe Fischmeister, Grégoire Vandecasteele To cite this version: Pierre Bobin, Milia Belacel-Ouari, Ibrahim Bedioune, Liang Zhang, Jérôme Leroy, et al.. Cyclic nucleotide phosphodiesterases in heart and vessels: A therapeutic perspective. Archives of cardiovascular diseases, Elsevier/French Society of Cardiology, 2016, 109 (6-7), pp.431-443. 10.1016/j.acvd.2016.02.004. hal-02482730 HAL Id: hal-02482730 https://hal.archives-ouvertes.fr/hal-02482730 Submitted on 23 Mar 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Cyclic nucleotide phosphodiesterases in heart and vessels: A therapeutic perspective Abbreviated title: Cyclic nucleotide phosphodiesterases in heart and vessels French title: Phosphodiestérases des nucléotides cycliques dans le cœur et les vaisseaux : une perspective thérapeutique. Pierre Bobin, Milia Belacel-Ouari, Ibrahim Bedioune, Liang Zhang, Jérôme Leroy, Véronique Leblais, Rodolphe Fischmeister*, Grégoire Vandecasteele* UMR-S 1180, INSERM, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France * Corresponding authors. UMR-S1180, Faculté de Pharmacie, Université Paris-Sud, 5 rue J.-B. Clément, F-92296 Châtenay-Malabry Cedex, France. -
A Previously Undescribed Pathway for Pyrimidine Catabolism
A previously undescribed pathway for pyrimidine catabolism Kevin D. Loh*†, Prasad Gyaneshwar*‡, Eirene Markenscoff Papadimitriou*§, Rebecca Fong*, Kwang-Seo Kim*, Rebecca Parales¶, Zhongrui Zhouʈ, William Inwood*, and Sydney Kustu*,** *Department of Plant and Microbial Biology, 111 Koshland Hall, University of California, Berkeley, CA 94720-3102; ¶Section of Microbiology, 1 Shields Avenue, University of California, Davis, CA 95616; and ʈCollege of Chemistry, 8 Lewis Hall, University of California, Berkeley, CA 94720-1460 Contributed by Sydney Kustu, January 19, 2006 The b1012 operon of Escherichia coli K-12, which is composed of tive N sources. Here we present evidence that the b1012 operon seven unidentified ORFs, is one of the most highly expressed codes for proteins that constitute a previously undescribed operons under control of nitrogen regulatory protein C. Examina- pathway for pyrimidine degradation and thereby confirm the tion of strains with lesions in this operon on Biolog Phenotype view of Simaga and Kos (8, 9) that E. coli K-12 does not use either MicroArray (PM3) plates and subsequent growth tests indicated of the known pathways. that they failed to use uridine or uracil as the sole nitrogen source and that the parental strain could use them at room temperature Results but not at 37°C. A strain carrying an ntrB(Con) mutation, which Behavior on Biolog Phenotype MicroArray Plates. We tested our elevates transcription of genes under nitrogen regulatory protein parental strain NCM3722 and strains with mini Tn5 insertions in C control, could also grow on thymidine as the sole nitrogen several genes of the b1012 operon on Biolog (Hayward, CA) source, whereas strains with lesions in the b1012 operon could not. -
Pdfs/0551.Pdf
1 Structures of the Molecular Components in DNA and RNA with Bond Lengths Interpreted as Sums of Atomic Covalent Radii Raji Heyrovská* Institute of Biophysics of the Academy of Sciences of the Czech Republic, Královopolská 135, 61265 Brno, Czech Republic. *E-mail: [email protected] Abstract: The author has found recently that the lengths of chemical bonds are sums of the covalent and or ionic radii of the relevant atoms constituting the bonds, whether they are completely or partially covalent or ionic. This finding has been tested here for the skeletal bond lengths in the molecular constituents of nucleic acids, adenine, thymine, guanine, cytosine, uracil, ribose, deoxyribose and phosphoric acid. On collecting the existing data and comparing them graphically with the sums of the appropriate covalent radii of C, N, O, H and P, it is found that there is a linear dependence with unit slope and zero intercept. This shows that the bond lengths in the above molecules can be interpreted as sums of the relevant atomic covalent radii. Based on this, the author has presented here (for the first time) the atomic structures of the above molecules and of DNA and RNA nucleotides with Watson-Crick base pairs, which satisfy the known dimensions. INTRODUCTION Following the exciting discovery [1] of the molecular structure of nucleic acids, the question of the skeletal bond lengths in the molecules constituting DNA and RNA has continued to be of interest. The author was enthused to undertake this work by the recent findings [2a, b] that the length of the chemical bond between any two atoms or ions is, in general, the sum of the radii of 2 the atoms and or ions constituting the bond. -
Questions with Answers- Nucleotides & Nucleic Acids A. the Components
Questions with Answers- Nucleotides & Nucleic Acids A. The components and structures of common nucleotides are compared. (Questions 1-5) 1._____ Which structural feature is shared by both uracil and thymine? a) Both contain two keto groups. b) Both contain one methyl group. c) Both contain a five-membered ring. d) Both contain three nitrogen atoms. 2._____ Which component is found in both adenosine and deoxycytidine? a) Both contain a pyranose. b) Both contain a 1,1’-N-glycosidic bond. c) Both contain a pyrimidine. d) Both contain a 3’-OH group. 3._____ Which property is shared by both GDP and AMP? a) Both contain the same charge at neutral pH. b) Both contain the same number of phosphate groups. c) Both contain the same purine. d) Both contain the same furanose. 4._____ Which characteristic is shared by purines and pyrimidines? a) Both contain two heterocyclic rings with aromatic character. b) Both can form multiple non-covalent hydrogen bonds. c) Both exist in planar configurations with a hemiacetal linkage. d) Both exist as neutral zwitterions under cellular conditions. 5._____ Which property is found in nucleosides and nucleotides? a) Both contain a nitrogenous base, a pentose, and at least one phosphate group. b) Both contain a covalent phosphodister bond that is broken in strong acid. c) Both contain an anomeric carbon atom that is part of a β-N-glycosidic bond. d) Both contain an aldose with hydroxyl groups that can tautomerize. ___________________________________________________________________________ B. The structures of nucleotides and their components are studied. (Questions 6-10) 6._____ Which characteristic is shared by both adenine and cytosine? a) Both contain one methyl group.