The Liverworts, Mosses and Ferns of Europe

Total Page:16

File Type:pdf, Size:1020Kb

The Liverworts, Mosses and Ferns of Europe The Liverworts, Mosses and Ferns of Europe Wolfgang Frey {Hornworts and Liverworts) Jan-Peter Frahm {Mosses) Eberhard Fischer and Wolfram Lobin (Ferns and Fern-allies) translated and updated by the authors with illustrations prepared by H. Liinser (Bryophytes) and E. Fischer (Ferns) English edition revised and edited by T. L. Blocked Contents Editor's Preface page x Division Bryophyta (Liverworts and Mosses) 16 Authors Preface to English 1. Subdivision Hepaticophytina Edition xiv (Hepaticae) - Liverworts 16 1. Class Marchantiopsida - 1. Hornworts, Liverworts and thallose Liverworts p.p. 16 Mosses - Anthocerotophy ta and Bryophyta 1 1. Subclass Monocleidae 16 2. Subclass Sphaerocarpidae 16 I. Key to Anthocerotophyta 1. Order Sphaerocarpales 16 (Hornworts), Bryophyta (Liverworts and Mosses) and Pteridophyta 1, 2. Families (Ferns and their allies) 3 Sphaerocarpaceae, Riellaceae 16 II. Key to the main groups of 3. Subclass Marchantiidae 17 Anthocerotophyta (Hornworts) and Bryophyta (Liverworts and Mosses) 1. Order Marchantiales 17 using sporophyte characters 4 Families Corsiniaceae - Marchantiaceae 17 III. Key to the main groups of 2 Order Rirrialps 28 Anthocerotophyta (Hornworts) and Bryophyta (Liverworts and Mosses) Families using gametophyte characters 8 Oxymitraceae, Ricciaceae 28 IV. Systematic part - Key to the 2. Class Blasiopsida 41 species 14 1. Order Blasiales 41 Division Anthocerotophyta 1. Family Blasiaceae 41 (Hornworts) 14 3. Class Treubiopsida 41 1. Class Anthocerotopsida 4. Class Jungermanniopsida 41 (Anthocerotae) 14 1. Order Anthocerotales 14 1. Subclass Metzgeriidae - thallose T 1 T7*H*TAT/^T*t'C TA TA 4.1 Families LilVCI WUI Lo p.p. Notothyladaceae - 1. Order Calobryales 42 Anthocerotaceae 14 1. Family Haplomitriaceae 42 Liverworts, Mosses and Ferns of Europe 2.0rderMetzgeriales 42 19. Family Acrobolbaceae 114 1. Family Metzgeriaceae 4 3 20. Family Pleuroziaceae 116 2. Family Aneuraceae 44 21. Family Radulaceae 117 3. Family Pelliaceae 47 2 2. Family Ptilidiaceae 117 4. Family Pallaviciniaceae 47 2 3. Family Porellaceae 117 5. Family Fossombroniaceae 24. Family Frullaniaceae 119 (Codoniaceae) 49 2 5. Family Jubulaceae 123 2. Subclass Jungermanniidae - 26. Family Lejeuneaceae 123 foliose (leafy) Liverworts 50 2. Subdivision Bryophy tina - 1. Order Jungermanniales 50 Mosses 128 1. Family Lepicoleaceae 51 1. Class Sphagnopsida - 2. Family Herbertaceae 51 Peat-mosses 128 3. Family 1. Subclass Sphagnidae 128 Pseudolepicoleaceae 52 1. Order Sphagnales 128 4. Family Trichocoleaceae 52 1. Family Sphagnaceae 128 5. Family Lepidoziaceae 5 3 2. Class Andreaeopsida 138 6. Family Calypogeiaceae 5 6 2. Subclass Andreaeidae 138 7. Family Adelanthaceae 5 7 1. Order Andreaeales 138 8. Family Cephaloziaceae 5 8 3.ClassBryopsida 140 9. Family Cephaloziellaceae 63 3. Subclass Bryidae 140 10. Family Antheliaceae 67 Key for acrocarpous mosses 141 11. Family Lophoziaceae 6 7 Key for pleurocarpous mosses 146 12. Family 1. Subclass Polytrichidae 151 Jungermanniaceae 83 1. Order Polytrichales 151 13. Family Mesoptychiaceae 90 1. Family Poly trichaceae 151 14. Family Gymnomitriaceae 90 2. Subclass Tetraphiidae 158 15. Family Scapaniaceae 9 6 1. Order Tetraphidales 158 16. Family Geocalycaceae 107 1. Family Tetraphidaceae 158 17. Family Plagiochilaceae 110 3. Subclass Oedipodiidae 159 1. Order Oedipodiales 159 18. Family Arnelliaceae (Southby aceae) 114 1. Family Oedipodiaceae 159 VI Contents 4. Subclass Buxbaumiidae 159 4. Order Pottiales 194 1. Order Buxbaumiales 159 1. FamilyCinclidotaceae 194 1,2. Families Diphysciaceae, 2. Family Pottiaceae 195 Buxbaumiaceae 159 Key to subfamilies 196 5. Subclass Bryidae 160 1. Subfamily 1. Order Archidiales 160 Merceyoideae 198 1. Family Archidiaceae 160 2. Subfamily Trichostomoideae 198 2. Order Dicranales 160 3. Subfamily Pottioideae 204 1. Family Fissidentaceae 160 5. Order Grimmiales 232 2. Family Bruchiaceae 165 1. Family Grimmiaceae 232 3. Family Distichiaceae 166 6. Order Funariales 242 4. Family Ditrichaceae 167 1. Family Ephemeraceae 242 5. Family Seligeriaceae 170 2. Family Funariaceae 243 6. Family Schistostegaceae 173 3. Family 7. Family Dicranaceae 174 Gigaspermaceae 247 Key to subfamilies 174 4. Family Disceliaceae 247 1. Subfamily Dicranoideae 174 5. Family Voitiaceae 248 2. Subfamily Dicranelloideae 180 6. Family Splachnobryaceae 248 3. Subfamily Cynodontioideae 183 7. Family Splachnaceae 248 4. Subfamily 7. Order Bryales 251 Rhabdoweisioideae 185 1. Family Bry aceae 251 5. Subfamily 2. Family Mniaceae 271 Campylopodioideae 186 3. Family 6. Subfamily Ptychomitriaceae 275 Paraleucobry oideae 189 4. Family Timmiaceae 276 7. Subfamily Leucobryoideae 190 5. Family Bartramiaceae 277 8. Family Calymperaceae 191 6. Family Aulacomniaceae 280 3. Order Encalyptales 191 7. Family Meesiaceae 281 1. Family Encalyptaceae 191 8. Family Catoscopiaceae 282 Liverworts, Mosses and Ferns of Europe 8. Order Orthotrichales 282 3. Family Brachytheciaceae 326 1. Family Orthotrichaceae 283 4. Family Entodontaceae 343 2. Family Hedwigiaceae 291 5. Family Rhytidiaceae 344 9. Order Neckerales 292 6. Family Plagiotheciaceae 345 1. Family Fontinalaceae 292 7. Family 2. Family Cryphaeaceae 294 Sematophyllaceae 349 3. Family Leucodontaceae 295 8. Family Hypnaceae 351 4. Family Neckeraceae 296 1. Subfamily Ctenidioideae 351 5. Family Thamnobryaceae 298 2. Subfamily Pylaisioideae 352 6. Family Climaciaceae 299 3. Subfamily Orthothecioideae 353 7. Family Myuriaceae 299 4. Subfamily Hypnoideae 353 8. Family Echinodiaceae 300 5. Subfamily 10. Order Hookeriales 300 Hylocomioideae 357 Families Hypopterygiaceae, Hookeriaceae, 2. Ferns, Clubmosses and Leucomiaceae, Horsetails-Pteridophyta 361 Pilotrichaceae, Daltoniaceae 300 Introductory notes 363 11. Order Thuidiales 302 Synopsis of Classification of 1. Family Fabroniaceae European Pteridophy tes 363 (incl. Myriniaceae) 302 I. Key to native and introduced 2. Family genera of ferns and fern-allies 365 Pterigynandraceae 303 3. Family Leskeaceae 305 II. Systematic part - Key to the species 371 4. Family Anomodontaceae 308 5. Family Thuidiaceae 309 Division Pteridophyta 371 6. Family Helodiaceae 311 1. Class Lycopodiopsida 371 12. Order Hypnales 311 1. Order Lycopodiales 371 1. Family Cratoneuraceae 311 1. Family Lycopodiaceae - 2. Family Amblystegiaceae 313 Clubmosses 371 (Family 2. Order Selaginellales 376 Hypnobartlettiaceae) 325 1. Family Selaginellaceae 376 viii Contents 3.OrderIsoetales 378 5. Order Polypodiales 404 1. Family Isoe taceae - 1. Family Jolypodiaceae 404 378 Quillworts 2. Family Grammitidaceae 406 382 2. Class Equisetopsida 6. Order Cyatheales 406 382 1. Order Equisetales 1. Family Dicksoniaceae 406 1. Family Equisetaceae - 2. Family Cyatheaceae 406 Horsetails 382 7. Order Aspidiales 407 3. Class Pteridopsida - Ferns 386 407 1. Subclass Ophioglossidae 386 1. Family Thelypteridaceae 1. Order Ophioglossales 386 2. Family Lomariopsidaceae 408 1. Family Ophioglossaceae 386 3. Family 2. Subclass Pterididae 390 Nephrolepidaceae 408 1. Order Psilotales 390 4. Family Aspleniaceae 410 1. Family Psilotaceae - 5. Family Woodsiaceae 427 Whisk Ferns 390 6. Family Dryopteridaceae 435 2. Order Osmundales 390 8. Order Blechnales 450 1. Family Osmundaceae 390 1. Family Blechnaceae 450 3.0rderPteridales 390 3. Subclass Salviniidae 452 1. Family Adiantaceae 390 452 9 Fnmilv 1. Order Salviniales £. V alXXliy Cryptogrammaceae 392 1. Family Salviniaceae 452 3.Familv 2. Family Marsileaceae 452 Gymnogrammaceae 392 4. Family 3. Glossary of terms 456 Actiniopteridaceae 394 5. Family Sinopteridaceae 394 4. Sources of illustrations 46 7 6. Family Parkeriaceae 396 5. References and further reading 471 7. Family Pteridaceae 398 8. Family Hypolepidaceae 400 6.1ndextotaxa 485 9. Family Davalliaceae 402 4. Order Hymenophyllales 402 1. Family Hymenophyllaceae 402 ix.
Recommended publications
  • 1 Ophioglossidae (PDF, 873
    Ophioglossidae 1 Polypodiopsida Ophioglossidae – Gabelblattgewächse (Polypodiopsida) Zu den Ophioglossidae werden 2 rezente Ordnungen gestellt, die Psilotales (Gabelfarne) und die Ophioglossales (Natternzungenartigen). Die Ophioglossidae sind eine sehr alte Landpflanzengruppe. Die Blätter sind, anders als dies für viele makrophylle Farnpflanzen typisch ist, zu Beginn nicht eingerollt. Ein gemeinsames Merkmal der Psilotales mit den Ophioglossales sind eusporangiate Sporangien, d. h. die Sporangienwand weist mehrere Zellschichten auf (Unterschied lepto- sporangiate Farne, hier einschichtig). Bei einigen Arten der Psilotales fehlt eine echte Wurzel. Alle Arten sind mykotroph (Ernährung mittels Pilzsymbiose im Boden, Mykorrhiza). 1. Ordnung: Psilotales (Gabelfarne) 1.1 Systematik und Verbreitung Die Ordnung der Psilotales enthält nur 1 Familie, die Psilotaceae mit nur 2 Gattungen und 17 Arten (Psilotum 2 und Tmesipteris 15 Arten). Die Familie ist überwiegend tropisch verbreitet. 1.2 Morphologie 1.2.1 Habitus Die Arten der Psilotales sind ausschließlich krautige Pflanzen mit einem kräftigen, unterirdischen Kriechspross (Rhizom), das zahlreiche Rhizoide ausbildet. Echte Wurzeln fehlen. Die vollständige Reduktion der Wurzel wird hier als sekundäres, abgeleitetes Merkmal angesehen. Wie der Gametophyt ist auch der Sporophyt mykotroph, was erst die morphologische Reduktion der Wurzel erlaubte. Die oberirdischen sparrig dichotom verzweigten Sprossachsen weisen eine (angedeutete) Siphonostele mit einem holzigen Mark auf. Die unterirdischen Rhizome haben hingegen eine Protostele. 1.2.2 Blatt Arten aus den Psilotales haben ausschließlich schraubig angeordnete Mikrophylle. Bei Psilotum sind nur die Sporophylle Gabelblätter (im Unterschied zu den sterilen © PD DR. VEIT M. DÖRKEN, Universität Konstanz, FB Biologie Ophioglossidae 2 Polypodiopsida Blättern). Die Photosynthese erfolgt daher hauptsächlich über die chlorophyllreichen Sprossachsen (Rutenstrauch-Prinzip). Abb. 1 & 2: Psilotum nudum, dichotom verzweigte Sprossachse (links); Querschnitt einer Sprossachse (rechts).
    [Show full text]
  • Curitiba, Southern Brazil
    data Data Descriptor Herbarium of the Pontifical Catholic University of Paraná (HUCP), Curitiba, Southern Brazil Rodrigo A. Kersten 1,*, João A. M. Salesbram 2 and Luiz A. Acra 3 1 Pontifical Catholic University of Paraná, School of Life Sciences, Curitiba 80.215-901, Brazil 2 REFLORA Project, Curitiba, Brazil; [email protected] 3 Pontifical Catholic University of Paraná, School of Life Sciences, Curitiba 80.215-901, Brazil; [email protected] * Correspondence: [email protected]; Tel.: +55-41-3721-2392 Academic Editor: Martin M. Gossner Received: 22 November 2016; Accepted: 5 February 2017; Published: 10 February 2017 Abstract: The main objective of this paper is to present the herbarium of the Pontifical Catholic University of Parana’s and its collection. The history of the HUCP had its beginning in the middle of the 1970s with the foundation of the Biology Museum that gathered both botanical and zoological specimens. In April 1979 collections were separated and the HUCP was founded with preserved specimens of algae (green, red, and brown), fungi, and embryophytes. As of October 2016, the collection encompasses nearly 25,000 specimens from 4934 species, 1609 genera, and 297 families. Most of the specimens comes from the state of Paraná but there were also specimens from many Brazilian states and other countries, mainly from South America (Chile, Argentina, Uruguay, Paraguay, and Colombia) but also from other parts of the world (Cuba, USA, Spain, Germany, China, and Australia). Our collection includes 42 fungi, 258 gymnosperms, 299 bryophytes, 2809 pteridophytes, 3158 algae, 17,832 angiosperms, and only one type of Mimosa (Mimosa tucumensis Barneby ex Ribas, M.
    [Show full text]
  • Svensk Botanisk Tidskrift INNEHÅLL
    Svensk Botanisk Tidskrift Svensk Botanisk Tidskrift 106(3–4): 129–208 ISSN 0039-646X, Uppsala 2012 Volym 106 • Häfte 3−4 • 2012 INNEHÅLL 106(3–4): 129–208 (2012) 129 Ordföranden har ordet: Mellan hägg och syren 130 Grundström, S, Nilsson, E & Vessberg, L: Mjällådalen – ett storslaget landskap med rik mångfald (Rich fauna and flora found in the Mjällådalen valley, east-central Sweden) 138 Karlsson, T: Nya namn för nordiska växter. 1. Lummerväxter– kirimojaväxter (Novelties in the flora of Norden. 1. Lycopodiaceae–Annonaceae) 156 Viklund, K: Linet i Sverige (Flax cultivation in Sweden) 165 Karlsson Strese, E-M, Tollin, C & Hagenblad, J: Den svenska humlens ursprung (Humulus lupulus in Sweden) 177 Widén, B: Hur går det för backsippan? (Status of Pulsatilla vulgaris ssp. vulgaris in Sweden) 189 Pettersson, M: Vinna eller försvinna – ett försök att rädda stor tofsäxing (Trying to save Koeleria grandis in Sweden) 4 19 Svenska Botaniska Föreningens atlasgrupp: En svensk kärlväxtatlas (A Swedish atlas of vascular plants) 201 Debatt: Ölands växtrikedom håller på att kvävas 205 Botanisk litteratur: Strindberg och växterna 207 Föreningsnytt: Lyckad konferens om hotad mångfald i skogen Framsidan: Sötgräs Cinna 208 Botaniskt nytt: Växt som fångar maskar under jorden latifolia har sitt starkaste svenska fäste i Mjällådalen. Tre andra spän- nande innevånare i dalen är älvsallat Mulgedium sibiri­ cum, aspfjäder- mossa Neckera pen­ nata och klotsporig murkla Gyromitra sphaerospora. Läs mer på sid. 130. Foto: Stefan Grund- ström & Stig Carlsson. 138 Dvärglåsbräken 156 Lin 165 Humle Exaktaprinting, Malmö 2012 Svenska Botaniska Föreningen Svensk Botanisk Tidskrift Föreningar anslutna till Svenska Botaniska Föreningen Kansli Svenska Botaniska Föreningen, Svensk Botanisk Tidskrift publicerar original- c/o Evolution och utvecklingsbiologi, Uppsala arbeten och översiktsartiklar om botanik på Adress samt en kontaktperson Föreningen Bohusläns flora Botaniska Föreningen i Evastina Blomgren, Dalgatan Västmanlands län univer sitet, Norbyvägen 18 A, 752 36 Uppsala.
    [Show full text]
  • Horsetails and Ferns Are a Monophyletic Group and the Closest Living Relatives to Seed Plants
    letters to nature joining trees and the amino-acid maximum parsimony phylogenies, and 100 replicates for ................................................................. the nucleotide maximum likelihood tree and the amino-acid distance-based analyses (Dayhoff PAM matrix) (see Supplementary Information for additional trees and summary Horsetails and ferns are a of bootstrap support). We performed tests of alternative phylogenetic hypotheses using Kishino±Hasegawa29 (parsimony and likelihood) and Templeton's non-parametric30 tests. monophyletic group and the Received 30 October; accepted 4 December 2000. closestlivingrelativestoseedplants 1. Eisenberg, J. F. The Mammalian Radiations (Chicago Univ. Press, Chicago, 1981). 2. Novacek, M. J. Mammalian phylogeny: shaking the tree. Nature 356, 121±125 (1992). 3. O'Brien, S. J. et al. The promise of comparative genomics in mammals. Science 286, 458±481 (1999). Kathleen M. Pryer*, Harald Schneider*, Alan R. Smith², 4. Springer, M. S. et al. Endemic African mammals shake the phylogenetic tree. Nature 388, 61±64 (1997). Raymond Cran®ll², Paul G. Wolf³, Jeffrey S. Hunt* & Sedonia D. Sipes³ 5. Stanhope, M. J. et al. Highly congruent molecular support for a diverse clade of endemic African mammals. Mol. Phylogenet. Evol. 9, 501±508 (1998). * Department of Botany, The Field Museum of Natural History, 6. McKenna, M. C. & Bell, S. K. Classi®cation of Mammals above the Species Level (Columbia Univ. Press, New York, 1997). 1400 S. Lake Shore Drive, Chicago, Illinois 60605, USA 7. Mouchatty, S. K., Gullberg, A., Janke, A. & Arnason, U. The phylogenetic position of the Talpidae ² University Herbarium, University of California, 1001 Valley Life Sciences within Eutheria based on analysis of complete mitochondrial sequences. Mol.
    [Show full text]
  • Diversity and Evolution of the Megaphyll in Euphyllophytes
    G Model PALEVO-665; No. of Pages 16 ARTICLE IN PRESS C. R. Palevol xxx (2012) xxx–xxx Contents lists available at SciVerse ScienceDirect Comptes Rendus Palevol w ww.sciencedirect.com General palaeontology, systematics and evolution (Palaeobotany) Diversity and evolution of the megaphyll in Euphyllophytes: Phylogenetic hypotheses and the problem of foliar organ definition Diversité et évolution de la mégaphylle chez les Euphyllophytes : hypothèses phylogénétiques et le problème de la définition de l’organe foliaire ∗ Adèle Corvez , Véronique Barriel , Jean-Yves Dubuisson UMR 7207 CNRS-MNHN-UPMC, centre de recherches en paléobiodiversité et paléoenvironnements, 57, rue Cuvier, CP 48, 75005 Paris, France a r t i c l e i n f o a b s t r a c t Article history: Recent paleobotanical studies suggest that megaphylls evolved several times in land plant st Received 1 February 2012 evolution, implying that behind the single word “megaphyll” are hidden very differ- Accepted after revision 23 May 2012 ent notions and concepts. We therefore review current knowledge about diverse foliar Available online xxx organs and related characters observed in fossil and living plants, using one phylogenetic hypothesis to infer their origins and evolution. Four foliar organs and one lateral axis are Presented by Philippe Taquet described in detail and differ by the different combination of four main characters: lateral organ symmetry, abdaxity, planation and webbing. Phylogenetic analyses show that the Keywords: “true” megaphyll appeared at least twice in Euphyllophytes, and that the history of the Euphyllophytes Megaphyll four main characters is different in each case. The current definition of the megaphyll is questioned; we propose a clear and accurate terminology in order to remove ambiguities Bilateral symmetry Abdaxity of the current vocabulary.
    [Show full text]
  • The Marattiales and Vegetative Features of the Polypodiids We Now
    VI. Ferns I: The Marattiales and Vegetative Features of the Polypodiids We now take up the ferns, order Marattiales - a group of large tropical ferns with primitive features - and subclass Polypodiidae, the leptosporangiate ferns. (See the PPG phylogeny on page 48a: Susan, Dave, and Michael, are authors.) Members of these two groups are spore-dispersed vascular plants with siphonosteles and megaphylls. A. Marattiales, an Order of Eusporangiate Ferns The Marattiales have a well-documented history. They first appear as tree ferns in the coal swamps right in there with Lepidodendron and Calamites. (They will feature in your second critical reading and writing assignment in this capacity!) The living species are prominent in some hot forests, both in tropical America and tropical Asia. They are very like the leptosporangiate ferns (Polypodiids), but they differ in having the common, primitive, thick-walled sporangium, the eusporangium, and in having a distinctive stele and root structure. 1. Living Plants Go with your TA to the greenhouse to view the potted Angiopteris. The largest of the Marattiales, mature Angiopteris plants bear fronds up to 30 feet in length! a.These plants, like all ferns, have megaphylls. These megaphylls are divided into leaflets called pinnae, which are often divided even further. The feather-like design of these leaves is common among the ferns, suggesting that ferns have some sort of narrow definition to the kinds of leaf design they can evolve. b. The leaflets are borne on stem-like axes called rachises, which, as you can see, have swollen bases on some of the plants in the lab.
    [Show full text]
  • Magallon2009chap11.Pdf
    Land plants (Embryophyta) Susana Magallóna,* and Khidir W. Hilub species) include whisk ferns, horsetails, and eusporang- aDepartamento de Botánica, Instituto de Biología, Universidad iate and leptosporangiate ferns. Spermatophytes include Nacional Autónoma de México, 3er Circuito de Ciudad Universitaria, cycads (105 species), ginkgos (one species), conifers (540 b Del. Coyoacán, México D.F. 04510, Mexico; Department of Biological species), gnetophytes (96 species), which are the gymno- Sciences, Virginia Tech, Blacksburg, VA, 24061, USA sperms, and angiosperms (Magnoliophyta, or P owering *To whom correspondence should be addressed (s.magallon@ plants, 270,000 species). Angiosperms represent the vast ibiologia.unam.mx) majority of the living diversity of embryophytes. Here, we review the relationships and divergence times of the Abstract major lineages of embryophytes. We follow a classiA cation of embryophytes based on The four major lineages of embryophyte plants are liver- phylogenetic relationships among monophyletic groups worts, mosses, hornworts, and tracheophytes, with the lat- (2, 3). Whereas much of the basis of the classiA cation is ter comprising lycophytes, ferns, and spermatophytes. Their robust, emerging results suggest some reA nements of high- relationships have yet to be determined. Different stud- er-level relationships among the four major groups. 7 is ies have yielded widely contrasting views about the time includes the inversion of the position of Bryophyta and of embryophyte origin and diversifi cation. Some propose Anthocerophyta, diB erent internal group relationships an origin of embryophytes, tracheophytes, and euphyllo- within ferns, and diB erent relationships among spermato- phytes (ferns + spermatophytes) in the Precambrian, ~700– phytes. 7 e phylogenetic classiA cation provides charac- 600 million years ago (Ma), whereas others have estimated ters that are useful for establishing taxonomic deA nitions younger dates, ~440–350 Ma.
    [Show full text]
  • Bryophythes (Мosses) Place of Bryophytes
    Bryophythes (Мosses) Place of Bryophytes Nonvascular Plants : • do not have vascular tissue (or if present, it is very reduced) • generally small in size - grow close to the ground in moist areas • first evolved in environments that were transitional between the land and the sea • dependent on water to complete their life cycles (modern nonvascular plants too) , • able to withstand long periods of desiccation The group of Nonvascular plants include mosses, liverworts, and hornworts Bryophythes (Mosses) Main features: •Non vascular higher plants - conductive tissues missing – phloem & xylem - water is transferred from cell to cell via diffusion •Vegetative organs missing - root, stem & leaves • Development - in wet habitats •Life cycle - alternation of generations - sexually generation (gametophyte) with asexually (sporophyte); gametophyte prevailing •Reproduction - by moving cells (sperms) •Fertilization - depends of aqueous environment ? What is it Gametophyte and Sporophyte? Tokyo Palace collection (Japan) - white pine Bonsai - the oldest known specimen of Bonsai in the world (at age 500 years and above) Trends in plant evolution Life cycle in moss - alternate two generations - sporophyte and gametophyte - haploid gametophyte prevail (which we define as a moss) ! In the other groups of Vascular plants from moss above - the real plant is sporophyte, which is dominate by size and function in life cycle! Moss sporophyte produces spores, which spores germinate to form an alga-like filamentous structure called the protonema. It represents the juvenile gametophyte. The mature gametophyte consist of stem, which may be simple or branched and upright or prostrate; simple leaves, usually only a single layer of cells with no internal air spaces, often with thicker midribs; and do not have proper roots, but have threadlike rhizoids that anchor them to their substrate.
    [Show full text]
  • The Taxa of the Higher Plants Above the Rank of Order Author(S): A
    The Taxa of the Higher Plants above the Rank of Order Author(s): A. Takhtajan Source: Taxon, Vol. 13, No. 5 (Jun., 1964), pp. 160-164 Published by: International Association for Plant Taxonomy (IAPT) Stable URL: http://www.jstor.org/stable/1216134 . Accessed: 27/03/2014 11:28 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp . JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. International Association for Plant Taxonomy (IAPT) is collaborating with JSTOR to digitize, preserve and extend access to Taxon. http://www.jstor.org This content downloaded from 212.238.120.211 on Thu, 27 Mar 2014 11:28:57 AM All use subject to JSTOR Terms and Conditions Subdivisio -icae - Examples: Magnolicae, Cycadicae. Classis -atae - Examples: Marchantiatae,Lycopodiatae, Cycadatae. Subclassis -idae (from Greek -ides, similar) - Examples: Pinidae, Marsileidae. If we introduce some intermediatetaxon in the classification of plants, some addition- al word-elementscould be adopted. Thus, the element -antes can be used for names of superclasses,-anae for names of superorders,etc. The following proposals are made in relation to the names of taxa above the rank of order. Proposal 1. Recommendation16A to be read: (a). The name of a division is taken either from character indicating the nature of the division as closely as possible, or from any generic name; it should end in -phyta.
    [Show full text]
  • Review Silurian-Devonian Origins of Ferns and Lycophytes - What We Know, What We Need to Find Out
    FERN GAZ. 20(6):217-242. 2017 217 REVIEW SILURIAN-DEVONIAN ORIGINS OF FERNS AND LYCOPHYTES - WHAT WE KNOW, WHAT WE NEED TO FIND OUT P.G. GENsEl Department of Biology, University of North Carolina Chapel Hill, NC 27599-3280, UsA Email: [email protected] Key words: silurian-Devonian, lycophytes, basal euphyllophytes, ferns evolution, phylogenetic relationships. ABSTRACT This represents a synopsis of current knowledge of the siluro-Devonian fossil record concerning evolution of lycophytes and ferns. This is the time period when several taxa or lineages at different grades of organisation existed that may be informative about the origins of these groups or structures typical of these groups. Considerable new data, including earlier first appearances of lineages and plant structures, new data about siluro-Devonian lycopsids or basal euphyllophytes, and new whole plant reconstructions of small to tree-size plants in both lineages, have been published in recent years. It is not possible to be completely comprehensive, but the taxa discussed are either central to established ideas, or provide new information in relation to phylogenetic relationships and evolutionary trends. It remains difficult to trace the phylogenetic relationships of early plants relative to extant lineages. New data are reviewed which may be important in reassessing homology of characters and/or hypotheses of such relationships or in determining which taxa to exclude. Including fossils in estimates of relationships of these major lineages of plants will provide a more accurate and comprehensive understanding of the past history of seedless vascular plants. INTRODUCTION A consensus classification of extant seedless vascular plants by PPG1 (2016), reflecting molecular and some morphological phylogenies (smith et al., 2006b; Kenrick & Crane, 1997; Pryer et al., 2001; 2009; schneider et al., 2009; and others) recognises lycopodiopsida (with three families and collectively referred to as lycophytes) and a grade “euphyllophytes” which consists of two clades - seed plants and Polypodiopsida (Figure 1).
    [Show full text]
  • Universidad De Los Andes
    UNIVERSIDAD DE LOS ANDES FACULTAD DE CIENCIAS DEPARTAMENTO DE BIOLOGÍA PROGRAMA DE UNIDAD CURRICULAR SISTEMÁTICA DE ARQUEGIONADAS Institución: Carrera: Departamento: UNIVERSIDAD DE LOS BIOLOGÍA BIOLOGÍA ANDES Unidad Curricular: Prelación: Código: SISTEMÁTICA DE APROBAR HASTA EL ARQUEGIONADAS 7MO SEMESTRE Condición: HT: HP: HL: Créditos Académicos: OBLIGATORIA 2 6 4 Ubicación: Componente: Fecha de Aprobación: OCTAVO SEMESTRE JUSTIFICACIÓN Las plantas arquegoniadas se caracterizan por tener el cigoto envuelto por una estructura en forma de botella llamada arquegonio. Estos grupos de origen distinto, se caracterizan por crecer en sitios húmedos y reproducirse por esporas. A este grupo pertenecen las Briofitas (Musgos, Hepáticas y Antocerotes) y los helechos y plantas tradicionalmente relacionadas con éstos, como las Lycophytas. La unidad curricular Biología de Aquegoniadas estudia la taxonomía y diversidad de este grupo de plantas. Estas plantas además comparten la necesidad de disponer de agua para su reproducción ya que los gametos masculinos deben nadar hacia la ovocélula para la fecundación, y por tanto, habitan lugares preponderantemente húmedos. Este curso brinda a los estudiantes la oportunidad de acercarse a estos organismos, primeros 1 habitantes de ecosistemas terrestres, que han evolucionado poco desde su aparición en el período Silúrico hace 400 millones de años, pero que han tenido un papel muy importante en los ecosistemas terrestres desde su aparición. OBJETIVO GENERAL En este curso, además de estudiar la clasificación de estos organismos, se entrenará al estudiante en la determinación de las especies, estudiando los caracteres necesarios y utilizando claves especializadas a partir de lo cual obtendrán una noción de la diversidad de estos organismos en Venezuela, además de aprender técnicas básicas de cultivo de estas plantas.
    [Show full text]
  • Pteridophytes As Ecological Indicators: an Overview1
    Hoehnea 46(1): e522018, 4 tab., 2 fig., 2019 http://dx.doi.org/10.1590/2236-8906-52/2018 Pteridophytes as ecological indicators: an overview1 Aline Possamai Della2,3 and Daniel de Barcellos Falkenberg2 Received: 25 May 2018; accepted: 10 December 2018 How to cite: Della, A.P. & Falkenberg, D.B. 2019. Pteridophytes as ecological indicators: an overview. Hoehnea 46: e522018. http://dx.doi.org/10.1590/2236-8906-52/2018. ABSTRACT - (Pteridophytes as ecological indicators: an overview). The pteridophytes present a great but poorly explored potential as ecological indicators (EIs), shown only in some sparse studies. Therefore, to analyze this potential, we reviewed published articles, websites, or books with pteridophytes as EIs, searching on five scholar databases and also on Google. We selected 134 studies, conducted in all continents (118 in mainland areas and 16 in islands). Brazil is the country with the highest number of studies (N = 33). In general, several species were considered as EIs in a given study, not only a single. The use of Pteridophytes in these works was classified in seven different types: a) classification of vegetation, soils, environments, and ecosystems (N = 65), b) environmental integrity (or quality) (N = 21), c) disturbance (N = 17), d) regeneration/restoration of habitats and/or ecosystems (N = 10), e) climate changes (N = 10), f) contamination of air, soil, or water (N = 14), and g) association with other groups of organisms (N = 12). The vast majority of these studies merely hypothesized the potential use of the Pteridophytes as EIs, with few presenting helpful criteria for the selection of EIs.
    [Show full text]