-&- Green House Effect: -in-Extreme- 2 Key Points Environments--

! Energy has to get in Karen-Meech- ! It does not matter what wavelength ! Short wavelengths are most effective (most energy) With-input-from:--Bob-Bowers,-Doug-LaRowe-- ! The energy heats the surface of the (how much depends on albedo) - ! Infrared (heat) has to be trapped ! Much or all of IR region of has to be blocking light

Review-of-Essentials-from- Early--&-Solar-System-Lectures- Life-Requirements-&-Origins-

• Understanding-how-to-build-a-habitable-world-&-how-it- evolved- • We-don’t-have-a-consensus-on-the-definition-of-life- – Life-requires-water,-energy,-produces-waste,-replicates-and-evolves- – When-did-Earth-form?--When-did-atmosphere-and--form?- – Life-is-Carbon-based-(carbon-has-the-ability-to-make-complex-molecules)- – When-did-life-originate-on-Earth-(what-evidence)?- – Life-occurs-in-a-microQenvironment-(cell)- – What-were-the-4-major-epochs-in-Earth-history-and-how-are-they- • Steps-required-in-origin-of-life:--- characterized?- – creating-monomers-(organic-building-blocks),-creating-compartments,- creating-long-complex-molecules-(polymers),-creating-metabolic-networks-(E- • The$$of$the$atmosphere$can$regulate$planetary$temperature,$ production)- and$environmental$conditions$on$the$surface$that$may$make$it$more$ • Quest-for-the-origin-of-life- or$less$habitable$to$life.$$There$is$a$lot$of$interaction$between$life,$ – Most-of-life-on-earth-through-time-has-been-microbial-"------does- atmosphere$and$,$and$we$don’t$fully$understand$all$the$ not-leave-many--(biomarkers)- feedback.$$$affects$cannot$be$fully$predicted.$ – Phylogenetic-trees-"-expressing-relatedness-of-life- • We$need$to$understand$what$life$requires$and$how$this$relates$to$a$ – 3-major-groupings-of-life:--Eukarya-(nucleated-cells),------habitable$environment$@$$and$what$are$considered$extremes.$ -(no-nucleus),--

Life-at-the-Extremes- Extreme--&-- What-environmental-factors-are-important- for-classification-of-the-boundaries-of-life?- • Life-has-occupied-every-possible-niche-on-Earth- • Water-availability- – Two-key-habitability-markers:--water-and-energy- • Temperature- – Explore-the-environments-and-how-organisms-take-advantage-of-habitability- • Pressure- – This-gives-clues-to-other-habitable-solar-system-environments- • - • pH- • - • Availability-of-energy- – Life-living-in-an-“extreme”-environment-(to-us)- • Radiation-environment- - - • Classification-of--related-to-habitats- Microbe(class( T(tolerences( • The-Energy-of-life- - Q10-to-Q20oC- • Extreme-Environments-and-their-residents-on-Earth- - 10-to-50oC- • Where-might-we-look-for-life-on-other-?- - 40-to-70oC- - - >-80oC- - Arrows show T limits for plant and animal life Making a Living in the Microbial World

• Metabolism-Definition- – The-chemical-processes-that-occur-within-a-living- -in-order-to-maintain-life- – Metabolism-makes-the-molecules-life-uses- • Redox-Reactions- – Chemical-energy-is-stored-in-highQenergy-electrons-that- are-transferred-from-one-atom-to-another- – Oxidation-–-loss-of-electrons- – Reduction-–-gain-of-electrons-

ATP – molecule that life uses Shock&&&Holland&(2007)& for energy storage

Making a Living in the Microbial World Metabolic Sources: • Autotrophs- Energy for Life – Produce-food- • What-do-microbes-do?--Catalyze-reactions- – – Anabolism-–-constructs-molecules-from-smaller-units-"-requires-E- Photoautotrophs:---–-plants-convert-CO2,- • Synthesize-biomolecules,-polymerization,-maintain-membranes- H2O-and-sunlight-to-sugar-()-and-O2- – Catabolism-–-breaking-down-molecules-to-release-energy- – Chemoautotrophs-–-make-energy-from-chemicals- – Metabolism-=-Catabolism-+-Anabolism- • Heterotrophs--- – Feeders-

Figure from D. LaRowe, UHNAI Winter school 2014

Microbial-metabolic-diversity- Quantifying-the-Metabolic-process-

• Constraints-on-Metabolism- – - – Trace-metals- – Energy-available- – Environment:-T,-Pressure,-salinity- • Gibbs-Energy- – Amount-of-chemical-energy-available-

e/(Donors( e/(Acceptors( Organics-- O2- H2- SO42Q- NH4Q- NO3Q- H2S- Fe(III)- Fe2+- CO2- CH4- Mn(IV)-

Ogunseitan – Microbial Diversity Potential-Microbial-Metabolic-Processes- Conditions Electron Electron C source Metabolic process Thermodynamics-–-Energy-limitations- (energy) donor acceptor

Aerobic H2 O2 CO2 H2 oxidation - o 2- HS , S , S2O3 , O2 CO2 S oxidation 2- S4O6 + Fe2 O2 CO2 Fe oxidation + Mn2 O2 CO2 Mn oxidation + - NH4 , NO2 O2 CO2 Nitrification

CH4 (& other C-1 O2 CH4, CO2, CO Methane (C-1) oxidation compounds

Organics O2 Organics Heterotrophic metabolism Figures from D. LaRowe, UHNAI Winter school 2014 - Anaerobic H2 NO3 CO2 H2 oxidation o 2- H2 S , SO4 CO2 S & sulfate reduction • Amount-of-Energy-available-in-chemical-reactions- H2 CO2 CO2 Methanogenesis – Depends-on-temperature-and-pressure- 2- CH4 SO4 ? Methane oxidation – How-this-changes-with-T-and-P-is-different-for-every-compound- - Organics NO3 Organics Denitrification – A-negative-value-of-Gibbs-energy-indicates-there-is-a-thermodynamic- o 2- Organics S , SO4 Organics S & sulfate reduction drive-for-the-reaction-to-proceed-(useful-for-the-organism-to-get-energy)- Organics Organics Organics Courtesy J. Cowen; NAI WS 2005 presentation

Energetics-Examples- Microbial-life-exploits-energy- gradients-with-redox-transitions- • From-Yellowstone-Hot-springs- – Each-line-is-a-possible-catabolic-reaction- – Each-depends-on-T-and-composition-of-hot- spring- • Example-Redox-reactions-

Methanogenesis

CO2 + 4H2 " CH4 + 2H2O CH4 + 2O2 " CO2 + H2O

Sulfur oxidation or reduction The-redoxQcouples-are-shown-on-each-stairQstep,- S + 1.5O + H O " SO 2- + 2H+ 2 2 4 where-the-most-energy-is-gained-at-the-top-step-and- S + H " H S 2 2 the-least-at-the-bottom-step.---

Figures from D. LaRowe, UHNAI Winter school 2014

Extremophiles-&-Limits- How-much-E-is-needed?-

• What-do-we-mean-by-limit?- – Does-it-move-or-grow-or-do-anything?-- -Activity- • Energetics-of-Growth- – Maintains-a-constant-population?- -Steady-state- – E-to-capture-biomolecules-(depends-on-environ)- – Dying-slowly-enough-to-be-observed?- -Persistence- – Polymerization-into-bigger-molecules- • Boundaries-between-these-states-are-not-well-known- – Aerobic-conditions:-18.4-kJ-(g-cells)Q1- – Anaerobic-conditions:-1.4-kJ-(g-cells)Q1- (LaRowe and Amend, 2014) • Energetics-of-Steady-State- – Defense-against-chemical-stress- – Maintaining-cell-- – In-some-environments,-this-is-a-very-small-number!-(1.6-J-/-yr-/-cmQ3)- • Energetics-of-Persistence- – Not-well-understood-–-but-very-low-

Power supply Power supply Power supply (energy per < demand = demand unit time) > demand Summary-of-Important-Points- Parting- Thoughts-

• Classification-of-Microorganisms-related-to-habitats- • Temperature:--psychrophiles,-mesophiles,-thermophiles,-hyperthermophiles- • Environment:--barophiles,-,-,-,-alkalaiphiles- • The-Energy-of-life-–--Redox- • Chemical-energy-is-stored-in-highQenergy-electrons-that-are-transferred-from-one-atom-to-another- • Organisims-get-energy-from-light-or-chemicals-and-the-carbon-from-inorganic-(CO2)-or-organic- • How-much-energy-is-avail-(Gibbs-energy)-depends-on-environment-(T,-P,-chemistry)- • The-mantra-for-searching-for-life- • Classification-of-organisms-by-sources-of-Energy-and-carbon-(phototroph,-…..)- – Follow-the-water-has-been-NASA’s-goal-–-is-the-the-right-mantra?- • Classification-of-organism-by-whether-it-makes-food-or-eats-food-produced- – Follow-the-energy-(redox)?- • Extreme-Environments-and-their-residents-on-Earth-- • Examples:-hydrothermal-vents,-deep-earth,-polluted-areas,-,-antarctic….- • What-does-it-mean-to-be-a-?- • Where-might-we-look-for-life-on-other-planets?- – Are-we-the-extreme-organisms?- • Habitability-markers:--water-and-redox-potential-

A-Preview-of-Future- Psychrophiles- • Cold-lovers- Lectures- – Temps-0Q20oC- – Survive-freeze/thaw- • Ancient-Crater-lakes-on-- – Reproduce-2oC- – There-was-clearly-a-period-in-Mars-history-where- – Often-tolerant-of-salty-conditions- substantial-water-was-present-on-surface- • Habitats- – How-long?--How-much?- – Soils- – How-long-is-needed-for-life-development?- – Deep--water- – Where-to-look-for-fossils-of-that-early-life?- – Sea-ice- • Many-icy-satellites-have-oceans- • Least-studied-of--extremophiles- – ,-Callisto,-Enceladus-

CH4 worms, Sea of Cortez Ice Psychrobacter, Antarctic

Mesophiles- Eukaryotic-Thermophiles-

• Salmonella Habitats- E-Coli – Moderate-Temperatures- • 30Q60oC- – Acidic-environments-- • pH-1Q4- Sofolubus acidocauldarius (Italy) • All-are-anaerobes-

• Moderate-temperatures-–-most-common- – Solubility-of-O2-in-water- – Soil-bacteria- above-85oC-is-very-low- – - • Most-pathogens-grow-best-at-37oC- Pyrodictium occultum – grows 105-115oC at – Most-food-spoilage-due-to-mesophiles- hydrothermal vents. Most primitive aquaticus Hyperthermophiles- Barophiles-–-Deep-Dwellers- • - – Temperatures- • The-Geothermal-gradient- • o o Low:-45Q90 C- – T-increases-with-depth-(~-1o C-per-km-below- • o (Yellowstone) Optimal-45Q80 C- 100-km)- • High-extreme-125oC- – pH:-1Q7.5- • Deep,-dark-dwelling-bacteria- – Can-survive-high-pressure- – Tolerate-high-T,-P-(>-100-atm)- • Discovered-within-last-30-yr- – Are-usually-thermophilic- • Location-(submarine/terrest)- – Grow-best-at-P-=-500Q600-atm- – Geothermal-areas- – Tolerate-periods-up-to-2.5-yr-in-- – Oil-fields,-3-km-deep- • • Energy:--- Habitats- – Chemolithautorophic- – Up-to-4km-depth- – Inorganic-redox-for-E- – Barophilic-mass->-all-surface-life-

– CO2-is-only-carbon-source- Q – e -donors:--H2,-Fe,-reduced-S-

Acidophiles-/-Alkalaiphiles- -Radiodurans- “Conan,-the-Bacterium”-

• Acidophiles:--- – Tolerate-acidic-habitats-(pH-1Q4)- • Characteristics:- – Produce-special-enzymes-to-prevent-cell-destruction- – Radiation-resistant- (commercial-application)-–-survive-by-keeping--out- • Loss-of-viability-3000x-that-which-would-kill- – Environments:--Volcanic-regions,-Coal-mines- most-complex-organisms- • Alkalophiles- • Genetic-code-repeats-lots-"-identify-&-repair- – Grow-at-pH->-10- – Cold-resistant- – Environments:--Mud-volcanos-\(-zones)- – Vacuum-resistant- -&-Bases:--- – Long-dormancy- – Acid-–-substance-that-gives-H+--into-water- +- – Oxidation-resistant- – Base-–-decrease-the-concentration-of-H ions-in-H2O- • pH-scale- Q7- + Q • History-–-around-at-life-beginnings?- – In-1-liter-H2O-there-are-1.0x10 mole-of-H -and-OH -- – pH-=-Qlog[H+]- – Pure-water-has-pH=7-

Halophiles-–-Hypersaline-Environments- Xerophiles-

• Characteristics- – Surviving-very-dry-conditions- • Habitats- – Spores-dormant-in-amber-for->-130-Myr- – Dry-lake-beds- – Salt-flats- • -varnish- – Often-very-alkaline- – Mineral-precipitation-on-rocks-(arid)- – Often-very-hot-(thermophiles)- – Magnetite-producing-bacteria- • Adaptatation- Haloarcula – Avoid-dehydration-–-balance-solution-outside/ inside- – Require-extreme-NaCl-for-growth-(saturated- brines)-

Dead Sea -–-Rock-dwellers- Why-show-all-these-organisms?-

• To-show-the-possible-environments-in-which- life-can-exist-

• To-show-how-organisms-have-adapted- • Survival-strategy-for-arid-environments- – Bacteria-/-algae-near-surface-of-rock- • To-show-that-life-fills-every-niche-where-T- – Need-access-to-sunlight- • Characteristics- permits-it-and-there-is-water- – Psychrophilic- – Xerophilic- – phototrophs-

Chemoautotrophy-on-the-Seafloor- Geologic-Settings-–-Water-Rock-Interactions-

• Interaction-of-seawater-&-ocean- • Mid-ocean-ridge-axis- floor- – hot-springs-and-hydrothermal-plumes-(80%-of- magma-activity)- – Earth’s-heat-removal-- – Mid-ocean-ridge-flanks-–-warm-springs-- – Crust-:--Changes-in- • Subduction-zones- mineralogy,-chemistry- – Forearc-–-mud-volcanoes,-gas-hydrates- – Arc-volcanos-–-hot-springs- • Biological-community-support- – Hot-spot-volcanos-(10%-e.g.-Hawaii,-Iceland)- Orcutt et al. 2011 – Concentration-of-trace-chemical-- • Ocean-basement-–-- – Potential-for-extensive-biomass- – solid-rock-portion-under-sediments- – Potential-for-exotic-metabolisms- • Making-a-Living- – Low-cell-abundance- • Analog-for-extraterrestrial-fluid- – Slow-growing- covered-rocky-bodies- – Diverse-metabolisms- – Uneven-distribution-

(R. Thomson) Courtesy J. Cowen

Chemical-transformations-in- Hydrothermal-Systems-

Biogenic oxid-reduction Reactions during fluid-SW mixing

Abiogenic (degassing/ Courtesy J. Cowen; NAI WS 2005 presentation fluid-rock rxtns) CourtesyCowen;2005 J. WS NAI presentation Kelleyal.2002et Energetics-at-Hydrothermal-Vents- Chimney-Life-

• Conditions- – Steep-T-gradients- – Narrow-living-zone- • Macroscopic-- – Tubeworms- – Blind-shrimp-–-but-with-organs-sensing- Amend et al., 2011 300K-radiation-

Serpentinization- Life-in-frigid-places-Q--

• Physical-characteristics- – 5.4-x-106-sq-mi- Olivine Serpentine Lost City (serpentinization) LS Biofilm Mars mineralogy – 7000-ft-elevation- – 75%-all-fresh-water- • o o o Chemical-hydration-of-olivine- – Tavg-=-Q70 F-(low-Q128.6 F;-Q89 C)-

(Mg,Fe)2SiO4-+-H2O-+-C--=-Mg3Si2O5(OH)4-+-Mg(OH)2-+Fe3O4-+-H2-+CH4-+-C2QC5- – Winds-up-to-300-km/hr- olivine--+-water-+-carbon--=--serpentine-+-high-pH-+-energy-+-food- • Historical- – " – Potential-for-supporting-highQpH-chemical-?- Coal-beds- -once-clement- – Pangea-2-Myr- – Can-occur-on-continents-too- • Dry-Valley-Lakes- • A-process-on-Mars?- – 1901-Expedition- – Penetration-1978- – Evidence-of-the-right-chemistry-on-mars-(olivine-rich- – H2O-just-above-freezing-"- basalts)-+-water- greenhouse-effect- – Enriched-from-spring-runoff-

Antarctic-Dry-Valleys-–-HyperQ Arid-Cold-Polar-Desert-

• Characteristics- – 4000-km2-mountainous- – Coldest,-driest-deserts-on-Earth- – Mean-annual-T-Q20C- – Mean-annual-snow-0.6Q10-cm-–-snow- sublimates- – Strong-katabatic-winds- – -very-sparse- • Excellent-analog-for-Mars-climate-change- studies- – Lifetime-&-location-of-subsurface-ice--

Courtesy J. Head; NAI WS 2005 presentation Mullins – debris covered glacier Lake- Lake-Vostok- Vostok-

• Most-isolated-aquatic-environment-on-Earth- – Cut-off-from-outside-environment-35Q40-Myr-ago- o o – Tair-=-Q89 F,-Tlake-=-Q3 C- • Largest-of-70-subQglacial-lakes- – Oligotrophic-environment-–-super-saturated-in--(50x-most- • Discovered-by-radar-imaging-in-1996- lakes),-likely-due-to-pressure-of-ice-sheet- • 1998-Russian-Core-"-3.623-km- • 1500-km-from-coast,-3500m-elevation- -- – Living-organisms-from-1500Q2750-m-(2Q5-x-105-yr-old)- • 250km-x-50km,-max-depth-800m-avg-depth-340m- – Low-population-diversity- – • The-lake-has-2-separate-basins-separated-by-a-ridge-"-two-different-ecosystems?- Utilized-dissolved-organic-C-and-O-migrating-through-ice- – 4-climate-changes-20,000-to-100,000-yr-periods-([CO2])-

Current-Drilling-Status- Lake-Whillans-Q- Antarctica-

• Russians-approved-in--2011-for-penetration- – Bio-protection:-pressure-will-cause-lake-water-to-enter-borehole-and-freeze- – They-will-return-and-sample-the-frozen-ice- – Feb.-2011-–-had-to-stop-for-winter,-30-m-above-lake- • US-team-drilled-through-800-m-of-ice-2/2013- – Concern-over-kerosene-poured-into-drill-hole-to-keep-it-open- • Cell-count-1000-bacteria-per-milliliter-(1/10-ocean- – 2013-Controversy-over-reports-on-DNA-sequencing-–-contamination?- abundance)-- – Work-now-on-accretion-ice-reported-that-3500-species-have-been-identified-- • Lifestyle-unknown-–-but-must-be-chemoautotrophs- – -(6%),-bacteria-(94%),-multicelled-organisms)-–-anerobic,-aerobic,-psychrophilic,- halophilic…….-

Life-in-Antarctic-sea-ice- Lake-Hoare-–-Taylor-Valley- • Environment-much-like-Mars- – Permanent-ice-cover- • Salts-concentrate-in-veins-in- • Microbial-mats- ice- – Increased-oxygen-levels- – Cold-temperatures-<-Q10°C- – 1%-sunlight- – This-suppresses-the-freezing-point- – Algae-draw-Fe,-S-and-calcite-from-water -- "-brines- – Bacteria-found-in-liquid-H2O-veins- – May-sustain-bacterial-metabolism-

Deming, JW et al. 2002 Curr Opin in Microbiol Life-under-ice-(Glaciers)- Atacama-Desert-

• Conditions- – Driest-place-on-Earth- – Thin-atmosphere- – High-radiation-(UV)-exposure-

No-light-–-life-supported- • Sparsest-life-on-Earth- by-chemical-energy- • Terrain-to-test-space-bio-detection-instruments-

• Source-of-energy- – Pyrite-oxidation-leads-to-dissolution-of-bedrock-carbonate- – This-drives-autotrophy-–-generates-CO2-for-- – Grinding-up-of-bedrock-by-glacier-makes-H2-–-food-for-the-methanogens-

Life-on-the--Volcano- rim–-Atacama-desert,-Chile- The-atmosphere-

• Microbes-in-the-Atmosphere- • Microbial-Environments- – Serve-as-cloud-condensation-nuclei- – Small-vents-producing-CO2,-CH4- – Believed-to-be-airborne-spores- – Life-surviving-on-small-oases- – Rain-<-200-mm-/-yr- • Could-life-live-only-in-the-clouds?- – T-averages-Q2C- – Ideas-on-how-to-make-membranes- – Altitude-~-20,000-ft-

Rio-Tinto- • Mined-since-3000-BC- – Acidic-(pH-=-2)- “Recent”-Microbial-Developments- – Red-=-dissolved-iron- rd – Rocks-"-sulfides- • 1977-–---Woese-discovers-3 -:-Archaea- – FeQoxidizing-bacteria-thrive-here- • 1977-–- -Hydrothermal-vents-discovered- • 1986-–--K.-Mullis-uses-heat-stable-enzyme-from-T.$aquaticus$to- • Possibly-similar-to-Mars-wet- -amplify-DNA- environments?- • 1995-–--First-microbial--sequenced-H.$influenzae$ – Opportunity-/-Spirit- • 2010-–- -1st-chemically-synthesized-bacterial-genome,- – S-&-Fe,-Jarosite-mineral- -Mycoplasma$mycoides$ - Extra-Material-

• Above-–-grand-prismatic- spring,-Yellowstone- • Right-–-changing-conditions- drastically-change-microbial- community-