Microbiologically Contaminated and Over-Preserved Cosmetic Products According Rapex 2008–2014
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Determination of the Effects That a Previously Uncharacterized Secreted Product from Klebsiella Pneumoniae Has on Citrobacter Fr
East Tennessee State University Digital Commons @ East Tennessee State University Undergraduate Honors Theses Student Works 5-2017 Determination of the effects that a previously uncharacterized secreted product from Klebsiella pneumoniae has on Citrobacter freundii and Enterobacter cloacae biofilms Cody M. Hastings Follow this and additional works at: https://dc.etsu.edu/honors Part of the Bacteria Commons, Bacteriology Commons, Biological Phenomena, Cell Phenomena, and Immunity Commons, Cell and Developmental Biology Commons, Medical Cell Biology Commons, Medical Microbiology Commons, Microbial Physiology Commons, and the Pathogenic Microbiology Commons Recommended Citation Hastings, Cody M., "Determination of the effects that a previously uncharacterized secreted product from Klebsiella pneumoniae has on Citrobacter freundii and Enterobacter cloacae biofilms" (2017). Undergraduate Honors Theses. Paper 419. https://dc.etsu.edu/ honors/419 This Honors Thesis - Withheld is brought to you for free and open access by the Student Works at Digital Commons @ East Tennessee State University. It has been accepted for inclusion in Undergraduate Honors Theses by an authorized administrator of Digital Commons @ East Tennessee State University. For more information, please contact [email protected]. Determination of the effects that a previously uncharacterized secreted product from Klebsiella pneumoniae has on Citrobacter freundii and Enterobacter cloacae biofilms By Cody Hastings An Undergraduate Thesis Submitted in Partial Fulfillment of the Requirements -
Carbapenem-Resistant Enterobacteriaceae (CRE)
Carbapenem-resistant Enterobacteriaceae (CRE) The Enterobacteriaceae include a large family of Gram-negative bacilli found in the human gastrointestinal tract. Commonly encountered species include Escherichia coli, Klebsiella spp. and Enterobacter spp. Carbapenem-resistant Enterobacteriaceae (CRE) are not susceptible to carbapenem antibiotics. They are broadly categorized based on the mechanism of their resistance as carbapenemase producers (CP-CRE) and non-carbapenemase producers. Carbapenems are broad-spectrum antibiotics typically used to treat severe health care-associated infections (HAIs) caused by highly drug-resistant bacteria. Currently available carbapenems include imipenem, meropenem, ertapenem and doripenem. Although related to the ß-lactam antibiotics, carbapenems retain antibacterial activity in the presence of most ß-lactamases, including extended-spectrum ß-lactamases (ESBLs) and extended-spectrum cephalosporinases (e.g., AmpC-type ß-lactamases). Loss of susceptibility to carbapenems is a serious problem because few safe treatment alternatives remain against such resistant bacteria. Infections caused by CRE occur most commonly among people with chronic medical conditions through use of invasive medical devices such as central venous and urinary catheters, frequent or prolonged stays in health care settings or extended courses of antibiotics. CP-CRE are most concerning and have spread rapidly across the nation and around the globe, perhaps because carbapenemases can be encoded on plasmids that are easily transferred within and among bacterial species. In December 2011, CRE bacterial isolates became reportable in Oregon. The CRE case definition has gone through major changes over the years, which is reflected in the big changes in case numbers from year to year. In 2013, the definition was non-susceptible (intermediate or resistant) to all carbapenems tested and resistant to any third generation cephalosporins tested. -
A Collection of Serratia Marcescens Differing in Their Insect Pathogenicity Towards Manduca Sexta Larvae
bioRxiv preprint doi: https://doi.org/10.1101/2020.07.29.226613; this version posted July 29, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. A collection of Serratia marcescens differing in their insect pathogenicity towards Manduca sexta larvae Short title: Serratia marcescens toxic to Manduca sexta Ellen C. Jensen14¶, Diana Sue Katz Amburn2¶, Aimee Hultine Schlegel3, and Kenneth W. Nickerson1* 1School of Biological Sciences University of Nebraska Lincoln, Nebraska, United States of America 2Biology Department, Rogers State University, Claremore, Oklahoma, United States of America and 3Biology Department Doane University Crete, Nebraska, United States of America 4/ Permanent address: Biological Sciences, College of Saint Benedict and St. John's University, Collegeville, MN 56321 * Corresponding author: email, [email protected] (KWN) ¶ These two authors contributed equally to the described research. 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.07.29.226613; this version posted July 29, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Abstract 2 We investigated the ability of Serratia marcescens to kill Manduca sexta (tobacco/tomato 3 hornworm) larvae following injection of ca. 5 x 105 bacteria into the insect hemolymph. Fifteen bacterial 4 strains were examined, including 12 non-pigmented clinical isolates from humans. -
Final Report of the Second Research Coordination Meeting
IAEA-314-D4.10.24-CR/2 LIMITED DISTRIBUTION WORKING MATERIAL Use of Symbiotic Bacteria to Reduce Mass-Rearing Costs and Increase Mating Success in Selected Fruit Pests in Support of SIT Application Report of the Second Research Coordination Meeting of an FAO/IAEA Coordinated Research Project, held in Bangkok, Thailand, from 6 to 10 May 2014 Reproduced by the IAEA Vienna, Austria 2014 NOTE The material in this document has been supplied by the authors and has not been edited by the IAEA. The views expressed remain the responsibility of the named authors and do not necessarily reflect those of the government(s) of the designating Member State(s). In particular, neither the IAEA not any other organization or body sponsoring this meeting can be held responsible for any material reproduced in this document. 1 TABLE OF CONTENTS BACKGROUND ...................................................................................................................3 CO-ORDINATED RESEARCH PROJECT (CRP) ............................................................8 SECOND RESEARCH CO-ORDINATION MEETING (RCM) .......................................8 1 LARVAL DIETS AND RADIATION EFFECTS ..................................................... 10 BACKGROUND SITUATION ANALYSIS ................................................................................. 10 INDIVIDUAL PLANS ............................................................................................................ 13 1.1. Cost and quality of larval diet ............................................................................... -
Laboratory Exercises in Microbiology: Discovering the Unseen World Through Hands-On Investigation
City University of New York (CUNY) CUNY Academic Works Open Educational Resources Queensborough Community College 2016 Laboratory Exercises in Microbiology: Discovering the Unseen World Through Hands-On Investigation Joan Petersen CUNY Queensborough Community College Susan McLaughlin CUNY Queensborough Community College How does access to this work benefit ou?y Let us know! More information about this work at: https://academicworks.cuny.edu/qb_oers/16 Discover additional works at: https://academicworks.cuny.edu This work is made publicly available by the City University of New York (CUNY). Contact: [email protected] Laboratory Exercises in Microbiology: Discovering the Unseen World through Hands-On Investigation By Dr. Susan McLaughlin & Dr. Joan Petersen Queensborough Community College Laboratory Exercises in Microbiology: Discovering the Unseen World through Hands-On Investigation Table of Contents Preface………………………………………………………………………………………i Acknowledgments…………………………………………………………………………..ii Microbiology Lab Safety Instructions…………………………………………………...... iii Lab 1. Introduction to Microscopy and Diversity of Cell Types……………………......... 1 Lab 2. Introduction to Aseptic Techniques and Growth Media………………………...... 19 Lab 3. Preparation of Bacterial Smears and Introduction to Staining…………………...... 37 Lab 4. Acid fast and Endospore Staining……………………………………………......... 49 Lab 5. Metabolic Activities of Bacteria…………………………………………….…....... 59 Lab 6. Dichotomous Keys……………………………………………………………......... 77 Lab 7. The Effect of Physical Factors on Microbial Growth……………………………... 85 Lab 8. Chemical Control of Microbial Growth—Disinfectants and Antibiotics…………. 99 Lab 9. The Microbiology of Milk and Food………………………………………………. 111 Lab 10. The Eukaryotes………………………………………………………………........ 123 Lab 11. Clinical Microbiology I; Anaerobic pathogens; Vectors of Infectious Disease….. 141 Lab 12. Clinical Microbiology II—Immunology and the Biolog System………………… 153 Lab 13. Putting it all Together: Case Studies in Microbiology…………………………… 163 Appendix I. -
Cross-Infection with Serratia Marcescens
J Clin Pathol: first published as 10.1136/jcp.15.2.145 on 1 March 1962. Downloaded from J. clin. Path. (1962), 15, 145 Cross-infection with Serratia marcescens GEOFFREY TAYLOR AND P. M. KEANE From the Department of Clinical Pathology, the Royal Infirmary, Manchester SYNOPSIS Cross-infection in a urological unit due to Serratia marcescens is reported. The bacteriology of the organism and its mode of spread are described. It is suggested that Serratia marcescens may be a more virulent organism than is generally believed, especially in situations in which there is an excess of mucus. The normal habitat of Serratia marcescens (Chromo- This pyrexial illness persisted intermittently for several bacterium prodigiosum) is in soil and water. It is weeks and he was admitted to the local hospital. What- usually considered not to be pathogenic to man, but ever the significance of the cat scratch, the symptoms on a number of occasions has been isolated from were thought to be due to a urinary infection. He was treated with antibiotics, but relapsed when treatment situations which suggest that it can sometimes was withdrawn. He was transferred to the Manchester behave as a human pathzgen. Thus Woodward and Royal Infirmary. Clarke (1913) described its isolation from a patient Investigation revealed a tight stricture of the penile with bronchiectasis who produced red sputum, and urethra. The urine was found to contain large numbers Aronson and Alderman (1943) reported meningitis of pus cells, and culture yielded a heavy pure growth due to this organism following repeated lumbar of Serr. marcescens. Blood cultures on three occasions puncture. -
Ohio Department of Health, Bureau of Infectious Diseases Disease Name Class A, Requires Immediate Phone Call to Local Health
Ohio Department of Health, Bureau of Infectious Diseases Reporting specifics for select diseases reportable by ELR Class A, requires immediate phone Susceptibilities specimen type Reportable test name (can change if Disease Name other specifics+ call to local health required* specifics~ state/federal case definition or department reporting requirements change) Culture independent diagnostic tests' (CIDT), like BioFire panel or BD MAX, E. histolytica Stain specimen = stool, bile results should be sent as E. histolytica DNA fluid, duodenal fluid, 260373001^DETECTED^SCT with E. histolytica Antigen Amebiasis (Entamoeba histolytica) No No tissue large intestine, disease/organism-specific DNA LOINC E. histolytica Antibody tissue small intestine codes OR a generic CIDT-LOINC code E. histolytica IgM with organism-specific DNA SNOMED E. histolytica IgG codes E. histolytica Total Antibody Ova and Parasite Anthrax Antibody Anthrax Antigen Anthrax EITB Acute Anthrax EITB Convalescent Anthrax Yes No Culture ELISA PCR Stain/microscopy Stain/spore ID Eastern Equine Encephalitis virus Antibody Eastern Equine Encephalitis virus IgG Antibody Eastern Equine Encephalitis virus IgM Arboviral neuroinvasive and non- Eastern Equine Encephalitis virus RNA neuroinvasive disease: Eastern equine California serogroup virus Antibody encephalitis virus disease; LaCrosse Equivocal results are accepted for all California serogroup virus IgG Antibody virus disease (other California arborviral diseases; California serogroup virus IgM Antibody specimen = blood, serum, serogroup -
RAPID IDENTIFICATION of ENTEROBACTER SPP. ISLATED from HOSPITALS in BASRAH PROVINCE by AUTOMATED SYSTEM (VITEK®2 COMPACT) Prof.Yahya A
International Journal of Micro Biology, Genetics and Monocular Biology Research Vol.2, No.2, pp.9-20, June 2016 ___Published by European Centre for Research Training and Development UK (www.eajournals.org) RAPID IDENTIFICATION OF ENTEROBACTER SPP. ISLATED FROM HOSPITALS IN BASRAH PROVINCE BY AUTOMATED SYSTEM (VITEK®2 COMPACT) Prof.Yahya A. Abbas1 and Ghosoon Fadhel Radhi2 1Nassiriya Tech.Institute.Southern Tech.University 2Department of Biology, College of Science,University of Basrah,Iraq. ABSTRACT: Atotal of 676 samples were taken from various hospitals in Basrah province. These included clinical specimens(urine , blood , stool ,nasal swabs, throat swabs,ear swabs),Environmental swabs(beds,tables,ground)and milk powder of children.All isolates were subjected to the cultural,microscopical,biochemical examination and vitek2 compact used for identification of bacteria.Atotal of 153 bacterial isolates were diagnosed as Enterobacter(67 isolates E.aerogenes,65 isolates E.cloacae complex,11 isolates E.cloacae subsp cloacae ,4 isolates E.cloacae subsp dissolvens,4 isolates E.sakazakii,1 isolate E.hormaechei and 1 isolate E.asburiae) . KEYWORDS: Enterobacter, Vitek®2 Compact, Basrah Province INTRODUCTION Enterobacter belongs to domain bacteria, phylum proteobacteria, class gamma-prteobacteria, order enterobacteriales family enterobacteriaceae (Brenner etal., 2004). Enterobacter was first described by Hormaeche and Edwards(1960). Enterobacter are rod-shaped cells,motile by peritrichous flagella,some of which are encapsulated.All Enterobacter -
Carbapenem-Resistant Enterobcteriace Report
Laboratory-based surveillance for Carbapenem-resistant Enterobacterales (CRE) Center for Public Health Practice Oregon Public Health Division Published: August 2021 Figure1: CRE reported by Oregon laboratories, by year, 2010 – June 2021 180 160 140 120 100 80 60 40 20 0 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 Year 1 About carbapenem-resistant Enterobacterales (CRE): For more information about CRE The carbapenems are broad-spectrum antibiotics frequently used to surveillance in Oregon including treat severe infections caused by Gram-negative bacteria. the specifics of our definition, see Carbapenem resistance in the Enterobacterales order emerged as a http://public.health.oregon.gov/Di public health concern over the past decade, as few treatment options seasesConditions/DiseasesAZ/P remain for some severely ill patients. ages/disease.aspx?did=108 CRE Resistance. Carbapenem resistance emerges through various mechanisms, including impaired membrane permeability and the production of carbapenemases (enzymes that break down the carbapenems). Carbapenemase-producing CRE (CP-CRE) are associated with rapid spread and require the most aggressive infection control response; however, all CRE call for certain infection control measures, including contact precautions, and should be considered a public health and infection prevention priority. CRE Infection. CRE can cause pneumonia, bloodstream infections, surgical site infections, urinary tract infections, and other conditions, frequently affecting hospitalized patients and persons with compromised immune systems. Infections with CRE often require the use of very expensive antibiotics that may have toxic side effects. While CP-CRE have spread rapidly throughout the United States, they are still not endemic in Oregon. We hope we can delay or prevent their spread through surveillance and infection control. -
1. Isolation of Molds 2. Isolation of Bacteria
Professor Diane Hilker I. Exp. 3: Collection of Microbes 1. Isolation of molds 2. Isolation of bacteria Where you successful in isolating molds? Pure Culture Not a Pure Culture Where you successful in isolating individual bacterial colonies with the T-Streak method? Colony: a visible mass of microbial cells originating from one cell. Mixed Culture Broth: 3 types of microbes ◦ Med., pink-red, creamy colonies: Serratia marcescens ◦ Large, beige, dry-like colonies: Escherichia coli ◦ Small, pin-point or dot-like, white colonies: Staphylococcus epidermidis Mixed Culture Broth: 3 types of microbes Serratia marcescens Escherichia coli Staphylococcus epidermidis Professor Diane Hilker Purpose: To become familiar with several staining procedures and to compare morphological features, such as size & shape of various microbes. Today: 1. Wet Mount 2. Heat Fixation: required prior to staining 3. Simple Stain 4. Gram Stain 5. Review Stains: Endospore, Capsule & Acid-Fast Stains Wet Mount: observing living cells ◦ Motility and size of cells Place 1 drop dH2O on center of slide Using a sterile loop, remove a small amount of growth from the colony. Mix cells in the drop of H2O; spread to ½ inch Focus on edge of coverslip with scan (dim light) Move toward center of slide Observe under low & high powers Slides will dry out quickly Wet Mount ◦ Bacteria: E. coli Must observe under 400x Very small & motile Looks like specks of sand Hard to discern shape Smaller than yeast & protozoa Instructor to provide demonstration & instructions -
Pathogenic Significance of Klebsiella Oxytoca in Acute Respiratory Tract Infection
Thorax 1983;38:205-208 Thorax: first published as 10.1136/thx.38.3.205 on 1 March 1983. Downloaded from Pathogenic significance of Klebsiella oxytoca in acute respiratory tract infection JOAN T POWER, MARGARET-A CALDER From the Department ofRespiratory Medicine and the Bacteriology Laboratory, City Hospital, Edinburgh ABSTRACT A retrospective study of all Klebsiella isolations from patients admitted to hospital with acute respiratory tract infections over a 27-month period was carried out. Ten of the Klebsiella isolations from sputum and one from a blood culture were identified as Klebsiella oxytoca. The clinical and radiological features of six patients are described. Four of these patients had lobar pneumonia, one bronchopneumonia, and one acute respiratory tract infection superimposed on cryptogenic fibrosing alveolitis. One of the patients with lobar pneumonia had a small-cell carcinoma of the bronchus. We concluded that Klebsiella oxytoca was of definite pathogenic significance in these six patients and of uncertain significance in the remaining five patients. Klebsiella oxytoca has not previously been described as a specific pathogen in the respiratory tract. Close co-operation between clinicians and microbiologists in the management of patients with respiratory infections associated with the Enterobacteriaceae is desirable. Klebsiella oxytoca has not previously been described agar plate was inoculated and incubated for 18 copyright. as a specific respiratory pathogen. Bacillus oxytoca hours. The API 20E system (Analytal Product Inc) was first isolated by Flugge from a specimen of sour was used to identify the biochemical reactions. The milk in 1886.' 2 It was not until 1963 that the organ- two biochemical reactions which differentiate Kleb- ism was accepted as a member of the genus Kleb- siella oxytoca from the Klebsiella pneumoniae organ- siella and then only with reluctance on the part of ism are its ability to liquify gelatin and its indole http://thorax.bmj.com/ some authorities.3 To define more clearly the role of positivity. -
EXTREMOPHILES – Vol
EXTREMOPHILES – Vol. I - Extremophiles: Basic Concepts - Charles Gerday EXTREMOPHILES: BASIC CONCEPTS Charles Gerday Laboratory of Biochemistry, University of Liège, Belgium Keywords: extremophiles, thermophiles, halophiles, alkaliphiles, acidophiles, metallophiles, barophiles, psychrophiles, piezophiles, extreme conditions Contents 1. Introduction 2. Effects of Extreme Conditions on Cellular Components 2.1. Membrane Structure 2.2. Nucleic Acids 2.2.1. Introduction 2.2.2. Desoxyribonucleic Acids 2.2.3. Ribonucleic Acids 2.3. Proteins 2.3.1. Introduction 2.3.2. Thermophilic Proteins 2.3.3. Psychrophilic Proteins 2.3.4. Halophilic Proteins 2.3.5. Piezophilic Proteins 2.3.6. Alkaliphilic Proteins 2.3.7. Acidophilic Proteins 3. Conclusions Acknowledgments Glossary Bibliography Biographical Sketch Summary Extremophiles are organisms which permanently experience environmental conditions which mayUNESCO be considered as extreme –in comparisonEOLSS to the physico-chemical characteristics of the normal environment of human cells: the latter belonging to the mesophile or temperate world. Some eukaryotic organisms such as fishes, invertebrates, yeasts, fungi, and plants have partially colonized extreme habitats characterized by low temperature and/orSAMPLE of elevated hydrostatic pressure. CHAPTERS In general, however, the organisms capable of thriving at the limits of temperature, pH, salt concentration and hydrostatic pressure, are prokaryotic. In fact, some organisms depend on these extreme conditions for survival and have therefore developed unique adaptations, especially at the level of their membranes and macromolecules, and affecting proteins and nucleic acids in particular. The molecular bases of the various adaptations are beginning to be understood and are briefly described. The study of the extremophile world has contributed greatly to defining, in more precise terms, fundamental concepts such as macromolecule stability and protein folding.