Extremophiles Copy

Extremophiles Copy

Extremophiles-&- Green House Effect: Life-in-Extreme- 2 Key Points Environments-- ! Energy has to get in Karen-Meech- ! It does not matter what wavelength ! Short wavelengths are most effective (most energy) With-input-from:--Bob-Bowers,-Doug-LaRowe-- ! The energy heats the surface of the planet (how much depends on albedo) - ! Infrared radiation (heat) has to be trapped ! Much or all of IR region of atmosphere has to be blocking light Review-of-Essentials-from- Early-Earth-&-Solar-System-Lectures- Life-Requirements-&-Origins- • UnDerstanDing-how-to-builD-a-habitable-worlD-&-how-it- evolveD- • We-Don’t-have-a-consensus-on-the-Definition-of-life- – Life-requires-water,-energy,-proDuces-waste,-replicates-anD-evolves- – When-DiD-Earth-form?--When-DiD-atmosphere-anD-oceans-form?- – Life-is-Carbon-baseD-(carbon-has-the-ability-to-make-complex-molecules)- – When-DiD-life-originate-on-Earth-(what-eviDence)?- – Life-occurs-in-a-microQenvironment-(cell)- – What-were-the-4-major-epochs-in-Earth-history-anD-how-are-they- • Steps-requireD-in-origin-of-life:--- characterizeD?- – creating-monomers-(organic-builDing-blocks),-creating-compartments,- creating-long-complex-molecules-(polymers),-creating-metabolic-networks-(E- • The$chemistry$of$the$atmosphere$can$regulate$planetary$temperature,$ proDuction)- and$environmental$conditions$on$the$surface$that$may$make$it$more$ • Quest-for-the-origin-of-life- or$less$habitable$to$life.$$There$is$a$lot$of$interaction$between$life,$ – Most-of-life-on-earth-through-time-has-been-microbial-"----------------------------------Does- atmosphere$and$geology,$and$we$don’t$fully$understand$all$the$ not-leave-many-fossils-(biomarkers)- feedback.$$Human$affects$cannot$be$fully$predicted.$ – Phylogenetic-trees-"-expressing-relateDness-of-life- • We$need$to$understand$what$life$requires$and$how$this$relates$to$a$ – 3-major-groupings-of-life:--Eukarya-(nucleateD-cells),--------------------------------------- habitable$environment$@$$and$what$are$considered$extremes.$ Archaea-(no-nucleus),-bacteria- Life-at-the-Extremes- Extreme-Habitats-&-Organisms- What-environmental-factors-are-important- for-classification-of-the-bounDaries-of-life?- • Life-has-occupieD-every-possible-niche-on-Earth- • Water-availability- – Two-key-habitability-markers:--water-anD-energy- • Temperature- – Explore-the-environments-anD-how-organisms-take-aDvantage-of-habitability- • Pressure- – This-gives-clues-to-other-habitable-solar-system-environments- • Salinity- • pH- • Extremophile- • Availability-of-energy- – Life-living-in-an-“extreme”-environment-(to-us)- • RaDiation-environment- - - • Classification-of-Microorganisms-relateD-to-habitats- Microbe(class( T(tolerences( • The-Energy-of-life- Psychrophiles- Q10-to-Q20oC- • Extreme-Environments-anD-their-resiDents-on-Earth- Mesophiles- 10-to-50oC- • Where-might-we-look-for-life-on-other-planets?- Thermophiles- 40-to-70oC- - Hyperthermophiles- >-80oC- - Arrows show T limits for plant and animal life Making a Living in the Microbial World • Metabolism-Definition- – The-chemical-processes-that-occur-within-a-living- organism-in-order-to-maintain-life- – Metabolism-makes-the-molecules-life-uses- • ReDox-Reactions- – Chemical-energy-is-storeD-in-highQenergy-electrons-that- are-transferreD-from-one-atom-to-another- – OxiDation-–-loss-of-electrons- – ReDuction-–-gain-of-electrons- ATP – molecule that life uses Shock&&&Holland&(2007)& for energy storage Making a Living in the Microbial World Metabolic Sources: • Autotrophs- Energy for Life – ProDuce-fooD- • What-Do-microbes-Do?--Catalyze-reactions- – – Anabolism-–-constructs-molecules-from-smaller-units-"-requires-E- Photoautotrophs:--photosynthesis-–-plants-convert-CO2,- • Synthesize-biomolecules,-polymerization,-maintain-membranes- H2O-anD-sunlight-to-sugar-(glucose)-anD-O2- – Catabolism-–-breaking-Down-molecules-to-release-energy- – Chemoautotrophs-–-make-energy-from-chemicals- – Metabolism-=-Catabolism-+-Anabolism- • Heterotrophs--- – FeeDers- Figure from D. LaRowe, UHNAI Winter school 2014 Microbial-metabolic-Diversity- Quantifying-the-Metabolic-process- • Constraints-on-Metabolism- – Nutrients- – Trace-metals- – Energy-available- – Environment:-T,-Pressure,-salinity- • Gibbs-Energy- – Amount-of-chemical-energy-available- e/(Donors( e/(Acceptors( Organics-- O2- H2- SO42Q- NH4Q- NO3Q- H2S- Fe(III)- Fe2+- CO2- CH4- Mn(IV)- Ogunseitan – Microbial Diversity Potential-Microbial-Metabolic-Processes- Conditions Electron Electron C source Metabolic process ThermoDynamics-–-Energy-limitations- (energy) donor acceptor Aerobic H2 O2 CO2 H2 oxidation - o 2- HS , S , S2O3 , O2 CO2 S oxidation 2- S4O6 + Fe2 O2 CO2 Fe oxidation + Mn2 O2 CO2 Mn oxidation + - NH4 , NO2 O2 CO2 Nitrification CH4 (& other C-1 O2 CH4, CO2, CO Methane (C-1) oxidation compounds Organics O2 Organics Heterotrophic metabolism Figures from D. LaRowe, UHNAI Winter school 2014 - Anaerobic H2 NO3 CO2 H2 oxidation o 2- H2 S , SO4 CO2 S & sulfate reduction • Amount-of-Energy-available-in-chemical-reactions- H2 CO2 CO2 Methanogenesis – DepenDs-on-temperature-anD-pressure- 2- CH4 SO4 ? Methane oxidation – How-this-changes-with-T-anD-P-is-Different-for-every-compounD- - Organics NO3 Organics Denitrification – A-negative-value-of-Gibbs-energy-inDicates-there-is-a-thermoDynamic- o 2- Organics S , SO4 Organics S & sulfate reduction Drive-for-the-reaction-to-proceeD-(useful-for-the-organism-to-get-energy)- Organics Organics Organics Fermentation Courtesy J. Cowen; NAI WS 2005 presentation Energetics-Examples- Microbial-life-exploits-energy- graDients-with-reDox-transitions- • From-Yellowstone-Hot-springs- – Each-line-is-a-possible-catabolic-reaction- – Each-depends-on-T-and-composition-of-hot- spring- • Example-ReDox-reactions- Methanogenesis CO2 + 4H2 " CH4 + 2H2O CH4 + 2O2 " CO2 + H2O Sulfur oxidation or reduction The-reDoxQcouples-are-shown-on-each-stairQstep,- S + 1.5O + H O " SO 2- + 2H+ 2 2 4 where-the-most-energy-is-gaineD-at-the-top-step-anD- S + H " H S 2 2 the-least-at-the-bottom-step.--- Figures from D. LaRowe, UHNAI Winter school 2014 Extremophiles-&-Limits- How-much-E-is-neeDeD?- • What-do-we-mean-by-limit?- – Does-it-move-or-grow-or-Do-anything?-- -Activity- • Energetics-of-Growth- – Maintains-a-constant-population?- -Steady-state- – E-to-capture-biomolecules-(DepenDs-on-environ)- – Dying-slowly-enough-to-be-observeD?- -Persistence- – Polymerization-into-bigger-molecules- • BounDaries-between-these-states-are-not-well-known- – Aerobic-conDitions:-18.4-kJ-(g-cells)Q1- – Anaerobic-conDitions:-1.4-kJ-(g-cells)Q1- (LaRowe and Amend, 2014) • Energetics-of-SteaDy-State- – Defense-against-chemical-stress- – Maintaining-cell-- – In-some-environments,-this-is-a-very-small-number!-(1.6-J-/-yr-/-cmQ3)- • Energetics-of-Persistence- – Not-well-unDerstooD-–-but-very-low- Power supply Power supply Power supply (energy per < demand = demand unit time) > demand Summary-of-Important-Points- Parting- Thoughts- • Classification-of-Microorganisms-relateD-to-habitats- • Temperature:--psychrophiles,-mesophiles,-thermophiles,-hyperthermophiles- • Environment:--barophiles,-xerophiles,-halophiles,-acidophiles,-alkalaiphiles- • The-Energy-of-life-–--ReDox- • Chemical-energy-is-storeD-in-highQenergy-electrons-that-are-transferreD-from-one-atom-to-another- • Organisims-get-energy-from-light-or-chemicals-anD-the-carbon-from-inorganic-(CO2)-or-organic- • How-much-energy-is-avail-(Gibbs-energy)-DepenDs-on-environment-(T,-P,-chemistry)- • The-mantra-for-searching-for-life- • Classification-of-organisms-by-sources-of-Energy-anD-carbon-(phototroph,-chemotroph…..)- – Follow-the-water-has-been-NASA’s-goal-–-is-the-the-right-mantra?- • Classification-of-organism-by-whether-it-makes-fooD-or-eats-fooD-proDuceD- – Follow-the-energy-(reDox)?- • Extreme-Environments-anD-their-resiDents-on-Earth-- • Examples:-hyDrothermal-vents,-Deep-earth,-polluteD-areas,-Deserts,-antarctic….- • What-does-it-mean-to-be-a-mesophile?- • Where-might-we-look-for-life-on-other-planets?- – Are-we-the-extreme-organisms?- • Habitability-markers:--water-anD-reDox-potential- A-Preview-of-Future- Psychrophiles- • ColD-lovers- Lectures- – Temps-0Q20oC- – Survive-freeze/thaw- • Ancient-Crater-lakes-on-Mars- – ReproDuce-2oC- – There-was-clearly-a-perioD-in-Mars-history-where- – Often-tolerant-of-salty-conDitions- substantial-water-was-present-on-surface- • Habitats- – How-long?--How-much?- – Soils- – How-long-is-neeDeD-for-life-Development?- – Deep-ocean-water- – Where-to-look-for-fossils-of-that-early-life?- – Sea-ice- • Many-icy-satellites-have-oceans- • Least-stuDieD-of--extremophiles- – Europa,-Callisto,-EncelaDus- CH4 worms, Sea of Cortez Ice Psychrobacter, Antarctic Mesophiles- Eukaryotic-Thermophiles- • Salmonella Habitats- E-Coli – MoDerate-Temperatures- • 30Q60oC- – AciDic-environments-- • pH-1Q4- Sofolubus acidocauldarius (Italy) • All-are-anaerobes- • MoDerate-temperatures-–-most-common- – Solubility-of-O2-in-water- – Soil-bacteria- above-85oC-is-very-low- – Pathogens- • Most-pathogens-grow-best-at-37oC- Pyrodictium occultum – grows 105-115oC at – Most-food-spoilage-due-to-mesophiles- hydrothermal vents. Most primitive Thermus aquaticus Hyperthermophiles- Barophiles-–-Deep-Dwellers- • Prokaryotes- – Temperatures- • The-Geothermal-graDient- • o o Synechococcus Low:-45Q90 C- – T-increases-with-Depth-(~-1o C-per-km-below- • o (Yellowstone) Optimal-45Q80 C- 100-km)- • High-extreme-125oC- – pH:-1Q7.5- • Deep,-Dark-Dwelling-bacteria- – Can-survive-high-pressure- – Tolerate-high-T,-P-(>-100-atm)- • DiscovereD-within-last-30-yr- – Are-usually-thermophilic-

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    10 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us