Comparative Analyses of Tumorigenic Mechanisms of Merkel Cell Polyomavirus T Antigens

Total Page:16

File Type:pdf, Size:1020Kb

Comparative Analyses of Tumorigenic Mechanisms of Merkel Cell Polyomavirus T Antigens Title Page Comparative analyses of tumorigenic mechanisms of Merkel cell polyomavirus T antigens by Justin A. Wendzicki Bachelors of Science, Duquesne University, 2013 Submitted to the Graduate Faculty of the School of Medicine in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Pittsburgh 2019 Committee Pa ge UNIVERSITY OF PITTSBURGH SCHOOL OF MEDICINE This dissertation was presented by Justin A. Wendzicki It was defended on December 6, 2019 and approved by Neal A. DeLuca, Professor, Department of Microbiology and Molecular Genetics Saleem A. Khan, Professor, Department of Microbiology and Molecular Genetics Paul R. Kinchington, Professor, Department of Microbiology and Molecular Genetics Roderick J. O’Sullivan, Assistant Professor, Department of Pharmacology and Chemical Biology Dissertation Director: Yuan Chang, Professor, Department of Pathology ii Copyright © by Justin A. Wendzicki 2019 iii Abstract Comparative analyses of tumorigenic mechanisms of Merkel cell polyomavirus T antigens Justin A. Wendzicki, PhD University of Pittsburgh, 2019 The work described in this dissertation began in 2013 and is focused on characterizing the mechanisms by which Merkel cell polyomavirus (MCV) Large T (LT) and small T (sT) antigens induce tumorigenesis through comparative analyses with oncoproteins from other tumor viruses. A peptide motif in the C-terminal region of MCV LT that bears little sequence homology with other human polyomavirus LT proteins is shown to be critical for maintaining stability of the full-length LT protein (Chapter 3). Comparison between LT antigens of MCV and SV40 demonstrate that MCV LT in direct contrast to SV40 LT is incapable of avidly binding tumor suppressor p53 and inhibiting its transactivation capabilities (Chapter 4). Lastly, promiscuous E3 ligase targeting by MCV sT through its LT-stabilization domain (LSD) results in the formation of a genomically unstable phenotype, a known hallmark of cancer (Chapter 5). Many of the features of genomic instability induced by MCV sT such as centrosome overduplication parallel what has been observed previously for human papillomavirus 16 E7 oncoprotein. Overall, these comparative analyses have not only provided greater insight into MCV biology and how its T antigens function in causing an aggressive cancer like Merkel cell carcinoma (MCC), but they have also revealed new avenues for continued study involving MCV T antigens that will continue to move the field of tumor virology forward. iv Table of Contents Acknowledgments ......................................................................................................... xiv 1.0 Introduction ................................................................................................................. 1 1.1 Viruses and cancer ............................................................................................. 1 1.1.1 Origins of tumor virology ....................................................................... 1 1.1.2 Human tumor viruses .............................................................................. 2 1.2 Polyomavirus biology ........................................................................................ 7 1.2.1 History and discovery ............................................................................. 7 1.2.2 Phylogeny ................................................................................................. 9 1.2.3 Genome organization ............................................................................ 12 1.2.4 Life cycle ................................................................................................. 14 1.2.5 Association with disease in humans .................................................. 16 1.3 Mechanistic insights from SV40 T antigens ................................................. 19 1.3.1 Targeting of retinoblastoma family proteins ..................................... 19 1.3.2 Targeting of p53 ..................................................................................... 22 1.3.3 Targeting of p300 and CBP .................................................................. 23 1.3.4 Additional cellular targets of SV40 LT ................................................ 24 1.3.4.1 Heat shock cognate protein 70 (Hsc70) ................................ 24 1.3.4.2 Bub1 mitotic checkpoint serine/threonine kinase ............... 25 1.3.4.3 Cullin 7 ....................................................................................... 25 1.3.4.4 Insulin receptor substrate 1 (IRS1) ........................................ 26 1.3.4.5 F-box/WD repeat-containing protein 7 (Fbw7) ..................... 26 v 1.3.5 PP2A targeting by SV40 sT .................................................................. 26 1.3.6 Permissive vs. non-permissive infections ......................................... 27 1.4 Merkel cell polyomavirus................................................................................. 29 1.4.1 Discovery of MCV .................................................................................. 29 1.4.2 Genome structure .................................................................................. 31 1.4.3 Virus life cycle ........................................................................................ 31 1.4.4 Involvement in Merkel cell carcinoma ................................................ 33 1.4.5 Mutations in Merkel cell carcinoma .................................................... 35 2.0 Large T and small T antigens of Merkel cell polyomavirus ................................ 37 2.1 Introduction ....................................................................................................... 37 2.2 Large T antigen ................................................................................................. 39 2.3 Small T antigen ................................................................................................. 43 2.4 Conclusions ...................................................................................................... 46 3.0 The C-terminal domain of MCV Large T antigen is critical for its stability ....... 47 3.1 Introduction ....................................................................................................... 48 3.2 Materials and methods .................................................................................... 50 3.2.1 Generation of LT truncation mutants .................................................. 50 3.2.2 Alanine mutagenesis ............................................................................. 50 3.2.3 Cell culture and transfection ................................................................ 51 3.2.4 Immunoblotting ...................................................................................... 51 3.2.5 Immunofluorescence ............................................................................ 52 3.2.6 Ubiquitination assays ........................................................................... 52 3.2.7 Structural modeling ............................................................................... 53 vi 3.3 Results ............................................................................................................... 53 3.3.1 C-terminal truncations to MCV LT impact its stability ...................... 53 3.3.2 Alanine mutagenesis reveals hotspots important for LT stability .. 57 3.3.3 Unstable LT mutants possess higher levels of ubiquitination ........ 59 3.3.4 Attempts to stabilize LT mutants were unsuccessful ...................... 60 3.4 Discussion ......................................................................................................... 62 4.0 Differential targeting of p53 by polyomavirus Large T antigens ....................... 67 4.1 Introduction ....................................................................................................... 68 4.2 Materials and methods .................................................................................... 70 4.2.1 Cell culture and transfection ................................................................ 70 4.2.2 Plasmids ................................................................................................. 70 4.2.3 Immunoblotting and antibodies ........................................................... 71 4.2.4 Immunoprecipitation ............................................................................. 72 4.2.5 Proximity ligation assay ....................................................................... 72 4.2.6 RNA extraction and quantitative real-time PCR ................................ 73 4.2.7 Chromatin immunoprecipitation .......................................................... 73 4.2.8 Replication assays ................................................................................ 74 4.2.9 Luciferase assays .................................................................................. 75 4.2.10 Cycloheximide chase half-life studies .............................................. 75 4.3 Results ............................................................................................................... 76 4.3.1 MCV LT does not strongly interact with p53 or p300........................ 76 4.3.2 SV40 LT inhibits p53 DNA binding and transactivation ................... 78 4.3.3 Characterization of a p53 binding mutant SV40 LT .......................... 82 vii 4.3.4 SV40 LT mutation reverses p53 stabilization and inhibition
Recommended publications
  • Thesis Template
    Functional and Structural Characterization Reveals Novel FBXW7 Biology by Tonny Chao Huang A thesis submitted in conformity with the requirements for the degree of Master of Science Department of Medical Biophysics University of Toronto © Copyright by Tonny Chao Huang 2018 Functional and Structural Characterization Reveals Novel FBXW7 Biology Tonny Chao Huang Master of Science Department of Medical Biophysics University of Toronto 2018 Abstract This thesis aims to examine aspects of FBXW7 biology, a protein that is frequently mutated in a variety of cancers. The first part of this thesis describes the characterization of FBXW7 isoform and mutant substrate profiles using a proximity-dependent biotinylation assay. Isoform-specific substrates were validated, revealing the involvement of FBXW7 in the regulation of several protein complexes. Characterization of FBXW7 mutants also revealed site- and residue-specific consequences on the binding of substrates and, surprisingly, possible neo-substrates. In the second part of this thesis, we utilize high-throughput peptide binding assays and statistical modelling to discover novel features of the FBXW7-binding phosphodegron. In contrast to the canonical motif, a possible preference of FBXW7 for arginine residues at the +4 position was discovered. I then attempted to validate this feature in vivo and in vitro on a novel substrate discovered through BioID. ii Acknowledgments The past three years in the Department of Medical Biophysics have defied expectations. I not only had the opportunity to conduct my own independent research, but also to work with distinguished collaborators and to explore exciting complementary fields. I experienced the freedom to guide my own academic development, as well as to pursue my extracurricular interests.
    [Show full text]
  • Calcium and Covid-19 1 Conflicts Over Calcium and the Treatment of Covid
    Calcium and Covid-19 1 Conflicts over calcium and the treatment of Covid-19 Bernard Crespi 1 and Joe Alcock 2 1 Department of Biological Sciences, 8888 University Drive, Simon Fraser University, Burnaby V5A1S6, British Columbia, Canada 2 Department of Emergency Medicine, University of New Mexico, Albuquerque, New Mexico 87131, USA Word counts: Abstract 147, Main Text 2966 © The Author(s) 2020. Published by Oxford University Press on behalf of the Foundation for Evolution, Medicine, and Public Health. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. Calcium and Covid-19 2 Abstract Several recent studies have provided evidence that use of calcium channel blockers, especially amlodipine and nifedipine, can reduce mortality from Covid-19. Moreover, hypocalcemia (a reduced level of serum ionized calcium) has been shown to be strongly positively associated with Covid-19 severity. Both effectiveness of CCBs as antiviral therapy, and positive associations of hypocalcemia with mortality, have been demonstrated for many other viruses as well. We evaluate these findings in the contexts of virus-host evolutionary conflicts over calcium metabolism, and hypocalcemia as either pathology, viral manipulation, or host defence against pathogens. Considerable evidence supports the hypothesis that hypocalcemia represents a host defence. Indeed, hypocalcemia may exert antiviral effects in a similar manner as do CCBs, through interference with calcium metabolism in virus-infected cells. Prospective clinical studies that address the efficacy of CCBs and hypocalcemia should provide novel insights into the pathogenicity and treatment of Covid-19 and other viruses.
    [Show full text]
  • Enhanced Expression of Vascular Endothelial Growth Factor (VEGF) Plays a Critical Role in the Tumor Progression Potential Induced by Simian Virus 40 Large T Antigen
    Oncogene (2002) 21, 2896 ± 2900 ã 2002 Nature Publishing Group All rights reserved 0950 ± 9232/02 $25.00 www.nature.com/onc Enhanced expression of vascular endothelial growth factor (VEGF) plays a critical role in the tumor progression potential induced by simian virus 40 large T antigen Alfonso Catalano1, Mario Romano*,2, Stefano Martinotti3 and Antonio Procopio*,1 1Institute of Experimental Pathology, University of Ancona, Faculty of Medicine, Via Ranieri, 60131 Ancona, Italy; 2Department of Human Pathology, University of Messina, 98125 Messina, Italy; 3Department of Oncology and Neuroscience, `G. D'Annunzio' University, Chieti, Italy Vascular endothelial growth factor (VEGF), an impor- disorders, including mesotheliomas (Kumar-Singh et tant angiogenic factor, regulates cell proliferation, al., 1999). Among these, VEGF, whose crucial role in dierentiation, and apoptosis through activation of its tumor angiogenesis is well established (Hanahan and tyrosine-kinase receptors, such as Flt-1 and Flk-1/Kdr. Folkman., 1996), acts also as a potent mitogen and Human malignant mesothelioma cells (HMC), which survival factor for human malignant mesothelioma have wild-type p53, express VEGF and exhibit cell cells (HMC). In fact, VEGF regulates HMC prolifera- growth increased by VEGF. Here, we demonstrate that tion through its tyrosine-kinase receptors activation early transforming proteins of simian virus (SV) 40, large (i.e. Flt-1 and KDR/¯k-1) (Strizzi et al., 2001). In tumor antigen (Tag) and small tumor antigen (tag), addition, VEGF is the main eector of 5-lipoxygenase which have been associated with mesotheliomas, en- action on HMC survival (Romano et al., 2001). Thus, hanced HMC proliferation by inducing VEGF expres- VEGF plays a key role by regulating multiple sion.
    [Show full text]
  • Oncogenes of DNA Tumor Viruses1
    [CANCER RESEARCH 48. 493-496. February I. 1988] Perspectives in Cancer Research Oncogenes of DNA Tumor Viruses1 Arnold J. Levine Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544 Experiments carried out over the past 10-12 years have the cellular oncogenes. It will attempt to identify where more created a field or approach which may properly be termed the information is required or contradictions appear in the devel molecular basis of cancer. One of its major accomplishments oping concepts. Finally, this communication will examine ex has been the identification and understanding of some of the amples of cooperation between oncogenes and other gene prod functions of a group of cancer-causing genes, the oncogenes. ucts which modify the mode of action of the former. If we are The major path to the oncogenes came from the study of cancer- on the right track, then general principles may well emerge. causing viruses. The oncogenes have been recognized and stud Tumor formation in animals or transformation in cell culture ied by two separate but related groups of virologists focusing has been demonstrated with many different DNA-containing upon either the DNA (1) or RNA (2) tumor viruses (they even viruses (1). In most cases it has been possible to identify one or have separate meetings now that these fields have grown so a few viral genes and their products that are responsible for large). From their studies it has become clear that the oncogenes transformation or, in some cases, tumorigenesis. A list of these of each virus type have very different origins.
    [Show full text]
  • Identification of an Overprinting Gene in Merkel Cell Polyomavirus Provides Evolutionary Insight Into the Birth of Viral Genes
    Identification of an overprinting gene in Merkel cell polyomavirus provides evolutionary insight into the birth of viral genes Joseph J. Cartera,b,1,2, Matthew D. Daughertyc,1, Xiaojie Qia, Anjali Bheda-Malgea,3, Gregory C. Wipfa, Kristin Robinsona, Ann Romana, Harmit S. Malikc,d, and Denise A. Gallowaya,b,2 Divisions of aHuman Biology, bPublic Health Sciences, and cBasic Sciences and dHoward Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, WA 98109 Edited by Peter M. Howley, Harvard Medical School, Boston, MA, and approved June 17, 2013 (received for review February 24, 2013) Many viruses use overprinting (alternate reading frame utiliza- mammals and birds (7, 8). Polyomaviruses leverage alternative tion) as a means to increase protein diversity in genomes severely splicing of the early region (ER) of the genome to generate pro- constrained by size. However, the evolutionary steps that facili- tein diversity, including the large and small T antigens (LT and ST, tate the de novo generation of a novel protein within an ancestral respectively) and the middle T antigen (MT) of murine poly- ORF have remained poorly characterized. Here, we describe the omavirus (MPyV), which is generated by a novel splicing event and identification of an overprinting gene, expressed from an Alter- overprinting of the second exon of LT. Some polyomaviruses can nate frame of the Large T Open reading frame (ALTO) in the early drive tumorigenicity, and gene products from the ER, especially region of Merkel cell polyomavirus (MCPyV), the causative agent SV40 LT and MPyV MT, have been extraordinarily useful models of most Merkel cell carcinomas.
    [Show full text]
  • Tätigkeitsbericht 2007/2008
    Tätigkeitsbericht 2007/2008 8 200 / 7 0 20 Tätigkeitsbericht Stiftung bürgerlichen Rechts Martinistraße 52 · 20251 Hamburg Tel.: +49 (0) 40 480 51-0 · Fax: +49 (0) 40 480 51-103 [email protected] · www.hpi-hamburg.de Impressum Verantwortlich Prof. Dr. Thomas Dobner für den Inhalt Dr. Heinrich Hohenberg Redaktion Dr. Angela Homfeld Dr. Nicole Nolting Grafik & Layout AlsterWerk MedienService GmbH Hamburg Druck Hartung Druck + Medien GmbH Hamburg Titelbild Neu gestaltete Fassade des Seuchenlaborgebäudes Tätigkeitsbericht 2007/2008 Heinrich-Pette-Institut für Experimentelle Virologie und Immunologie an der Universität Hamburg Martinistraße 52 · 20251 Hamburg Postfach 201652 · 20206 Hamburg Telefon: +49-40/4 80 51-0 Telefax: +49-40/4 80 51-103 E-Mail: [email protected] Internet: www.hpi-hamburg.de Das Heinrich-Pette-Institut ist Mitglied der Leibniz-Gemeinschaft (WGL) Internet: www.wgl.de Inhaltsverzeichnis Allgemeiner Überblick Vorwort ................................................................................................... 1 Die Struktur des Heinrich-Pette-Instituts .............................................. 2 Modernisierung des HPI erfolgreich abgeschlossen ............................ 4 60 Jahre HPI .............................................................................................. 5 Offen für den Dialog .............................................................................. 6 Preisverleihungen und Ehrungen .......................................................... 8 Personelle Veränderungen in
    [Show full text]
  • Hemagglutinin Stalk- and Neuraminidase-Specific
    crossmark Hemagglutinin Stalk- and Neuraminidase-Specific Monoclonal Antibodies Protect against Lethal H10N8 Influenza Virus Infection in Mice Teddy John Wohlbold,a,b Veronika Chromikova,a Gene S. Tan,a Philip Meade,a,b Fatima Amanat,a Phillip Comella,a,b Ariana Hirsh,a Florian Krammera Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USAa; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USAb ABSTRACT Downloaded from Between November 2013 and February 2014, China reported three human cases of H10N8 influenza virus infection in the Jiangxi province, two of which were fatal. Using hybridoma technology, we isolated a panel of H10- and N8-directed monoclonal anti- bodies (MAbs) and further characterized the binding reactivity of these antibodies (via enzyme-linked immunosorbent assay) to a range of purified virus and recombinant protein substrates. The H10-directed MAbs displayed functional hemagglutination inhibition (HI) and neutralization activity, and the N8-directed antibodies displayed functional neuraminidase inhibition (NI) activity against H10N8. Surprisingly, the HI-reactive H10 antibodies, as well as a previously generated, group 2 hemagglutinin (HA) stalk-reactive antibody, demonstrated NI activity against H10N8 and an H10N7 strain; this phenomenon was absent when virus was treated with detergent, suggesting the anti-HA antibodies inhibited neuraminidase enzymatic activity through steric hindrance. We tested the prophylactic efficacy of one representative H10-reactive, N8-reactive, and group 2 HA stalk-reactive http://jvi.asm.org/ antibody in vivo using a BALB/c challenge model. All three antibodies were protective at a high dose (5 mg/kg).
    [Show full text]
  • The Polyomavirus Major Capsid Protein VP1 Interacts with the Nuclear Matrix Regulatory Protein
    FEBS 23316 FEBS Letters 467 (2000) 359^364 View metadata, citation and similar papers at core.ac.uk brought to you by CORE The polyomavirus major capsid protein VP1 interacts with theprovided nuclearby Elsevier - Publisher Connector matrix regulatory protein YY1 Zdena Palkova¨a;b, Hana Sípanielova¨b, Vanesa Gottifredia;1, Dana Hollanderova¨b, Jitka Forstova¨b, Paolo Amatia;* aInstituto Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Biotecnologie Cellulari ed Ematologia, Sezione di Genetica Molecolare, Universita© di Roma La Sapienza, Viale Regina Elena 324, 00161 Rome, Italy bDepartment of Genetics and Microbiology, Faculty of Natural Sciences, Charles University, Vinie©na¨ 5, 12844 Prague 2, Czech Republic Received 17 December 1999 Edited by Hans-Dieter Klenk The external loops are likely to be the structures involved in Abstract Polyomavirus reaches the nucleus in a still encapsi- dated form, and the viral genome is readily found in association cell receptor recognition by virions [4] and, therefore, to be with the nuclear matrix. This association is thought to be the main antigenic determinants. The £exible C-terminal arms essential for viral replication. In order to identify the protein(s) form interpentameric contacts and the basic amino acids of involved in the virus-nuclear matrix interaction, we focused on the N terminal arm are responsible for the non-speci¢c DNA- the possible roles exerted by the multifunctional cellular nuclear binding activity of VP1 [6,7]. matrix protein Yin Yang 1 (YY1) and by the viral major capsid The necessity for viral genomes to associate to the nuclear protein VP1. In the present work we report on the in vivo matrix (NM) in order to be expressed, has been demonstrated association between YY1 and VP1.
    [Show full text]
  • Inhibition of HIV-1 by an Anti-Integrase Single-Chain Variable
    Gene Therapy (1999) 6, 660–666 1999 Stockton Press All rights reserved 0969-7128/99 $12.00 http://www.stockton-press.co.uk/gt Inhibition of HIV-1 by an anti-integrase single-chain variable fragment (SFv): delivery by SV40 provides durable protection against HIV-1 and does not require selection M BouHamdan1, L-X Duan1, RJ Pomerantz1 and DS Strayer1,2 1The Dorrance H Hamilton Laboratories, Center for Human Virology, Division of Infectious Diseases, Department of Medicine; and 2Department of Pathology, Anatomy and Cell Biology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA, USA Human immunodeficiency virus type I (HIV-1) encodes the SFv-IN was confirmed by Western blotting and several proteins that are packaged into virus particles. Inte- immunofluorescence staining, which showed that Ͼ90% of grase (IN) is an essential retroviral enzyme, which has SupT1 T-lymphocytic cells treated with SV(Aw) expressed been a target for developing agents to inhibit virus repli- the SFv-IN protein without selection. When challenged, cation. In previous studies, we showed that intracellular HIV-1 replication, as measured by HIV-1 p24 antigen expression of single-chain variable antibody fragments expression and syncytium formation, was potently inhibited (SFvs) that bind IN, delivered via retroviral expression vec- in cells expressing SV40-delivered SFv-IN. Levels of inhi- tors, provided resistance to productive HIV-1 infection in bition of HIV-1 infection achieved using this approach were T-lymphocytic cells. In the current studies, we evaluated comparable to those achieved using murine leukemia virus simian-virus 40 (SV40) as a delivery vehicle for anti-IN (MLV) as a transduction vector, the major difference being therapy of HIV-1 infection.
    [Show full text]
  • Cryptic Inoviruses Revealed As Pervasive in Bacteria and Archaea Across Earth’S Biomes
    ARTICLES https://doi.org/10.1038/s41564-019-0510-x Corrected: Author Correction Cryptic inoviruses revealed as pervasive in bacteria and archaea across Earth’s biomes Simon Roux 1*, Mart Krupovic 2, Rebecca A. Daly3, Adair L. Borges4, Stephen Nayfach1, Frederik Schulz 1, Allison Sharrar5, Paula B. Matheus Carnevali 5, Jan-Fang Cheng1, Natalia N. Ivanova 1, Joseph Bondy-Denomy4,6, Kelly C. Wrighton3, Tanja Woyke 1, Axel Visel 1, Nikos C. Kyrpides1 and Emiley A. Eloe-Fadrosh 1* Bacteriophages from the Inoviridae family (inoviruses) are characterized by their unique morphology, genome content and infection cycle. One of the most striking features of inoviruses is their ability to establish a chronic infection whereby the viral genome resides within the cell in either an exclusively episomal state or integrated into the host chromosome and virions are continuously released without killing the host. To date, a relatively small number of inovirus isolates have been extensively studied, either for biotechnological applications, such as phage display, or because of their effect on the toxicity of known bacterial pathogens including Vibrio cholerae and Neisseria meningitidis. Here, we show that the current 56 members of the Inoviridae family represent a minute fraction of a highly diverse group of inoviruses. Using a machine learning approach lever- aging a combination of marker gene and genome features, we identified 10,295 inovirus-like sequences from microbial genomes and metagenomes. Collectively, our results call for reclassification of the current Inoviridae family into a viral order including six distinct proposed families associated with nearly all bacterial phyla across virtually every ecosystem.
    [Show full text]
  • A Polyoma Mutant That Encodessmall T Antigen but Not Middle T Antigen
    MOLECULAR AND CELLULAR BIOLOGY, Dec. 1984, p. 2774-2783 Vol. 4, No. 12 0270-7306/84/122774-10$02.00/0 Copyright © 1984, American Society for Microbiology A Polyoma Mutant That Encodes Small T Antigen But Not Middle T Antigen Demonstrates Uncoupling of Cell Surface and Cytoskeletal Changes Associated with Cell Transformation T. JAKE LIANG, GORDON G. CARMICHAEL,t AND THOMAS L. BENJAMIN* Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115 Received 2 July 1984/Accepted 31 August 1984 The hr-t gene of polyoma virus encodes both the small and middle T (tumor) antigens and exerts pleiotropic effects on cells. By mutating the 3' splice site for middle T mRNA, we have constructed a virus mutant, Py8O8A, which fails to express middle T but encodes normal small and large T proteins. The mutant failed to induce morphological transformation or growth in soft agar, but did stimulate postconfluent growth of normal cells. Cells infected by Py8O8A became fully agglutinable by lectins while retaining normal actin cable architecture and normal levels of extracellular fibronectin. These properties of Py8O8A demonstrated the separability of structural changes at the cell surface from those in the cytoskeleton and extracellular matrix, parameters which have heretofore been linked in the action of the hr-t and other viral oncogenes. The early region of polyoma encodes three proteins de- substitution of phenylalanine for tyrosine at position 315 in tected as tumor (T) antigens. These polypeptides of 100,000 middle T has been made and studied in two laboratories, daltons (100K; large T), 56K (middle T), and 22K (small T) with different results.
    [Show full text]
  • Inactivation of Fbxw7 Impairs Dsrna Sensing and Confers Resistance to PD-1 Blockade
    Published OnlineFirst May 5, 2020; DOI: 10.1158/2159-8290.CD-19-1416 RESEARCH ARTICLE Inactivation of Fbxw7 Impairs dsRNA Sensing and Confers Resistance to PD-1 Blockade Cécile Gstalder1,2, David Liu1,3, Diana Miao1, Bart Lutterbach1,2, Alexander L. DeVine1,2, Chenyu Lin4, Megha Shettigar1,2, Priya Pancholi1,2, Elizabeth I. Buchbinder1, Scott L. Carter5,6, Michael P. Manos1, Vanesa Rojas-Rudilla7, Ryan Brennick1, Evisa Gjini8, Pei-Hsuan Chen8, Ana Lako8, Scott Rodig8,9, Charles H. Yoon10, Gordon J. Freeman1, David A. Barbie1, F. Stephen Hodi1, Wayne Miles4, Eliezer M. Van Allen1, and Rizwan Haq1,2 Downloaded from cancerdiscovery.aacrjournals.org on September 26, 2021. © 2020 American Association for Cancer Research. Published OnlineFirst May 5, 2020; DOI: 10.1158/2159-8290.CD-19-1416 ABSTRACT The molecular mechanisms leading to resistance to PD-1 blockade are largely unknown. Here, we characterize tumor biopsies from a patient with melanoma who displayed heterogeneous responses to anti–PD-1 therapy. We observe that a resistant tumor exhibited a loss-of-function mutation in the tumor suppressor gene FBXW7, whereas a sensitive tumor from the same patient did not. Consistent with a functional role in immunotherapy response, inactivation of Fbxw7 in murine tumor cell lines caused resistance to anti–PD-1 in immunocompetent animals. Loss of Fbxw7 was associated with altered immune microenvironment, decreased tumor-intrinsic expression of the double-stranded RNA (dsRNA) sensors MDA5 and RIG1, and diminished induction of type I IFN and MHC-I expression. In contrast, restoration of dsRNA sensing in Fbxw7-deficient cells was suffi- cient to sensitize them to anti–PD-1.
    [Show full text]