SV40 Large T Antigen Targets Multiple Cellular Pathways to Elicit Cellular Transformation

Total Page:16

File Type:pdf, Size:1020Kb

SV40 Large T Antigen Targets Multiple Cellular Pathways to Elicit Cellular Transformation Oncogene (2005) 24, 7729–7745 & 2005 Nature Publishing Group All rights reserved 0950-9232/05 $30.00 www.nature.com/onc SV40 large T antigen targets multiple cellular pathways to elicit cellular transformation Deepika Ahuja1,2, M Teresa Sa´ enz-Robles1,2 and James M Pipas*,1 1Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA DNA tumor viruses such as simian virus 40 (SV40) three proteins that are structural components of the express dominant acting oncoproteins that exert their virion (VP1, VP2, VP3) and two nonstructural proteins effects by associating with key cellular targets and termed large T antigen (T antigen) and small T antigen altering the signaling pathways they govern. Thus, tumor (t antigen). In addition, some members of the Polyoma- viruses have proved to be invaluable aids in identifying viridae encode additional proteins that are virus specific proteins that participate in tumorigenesis, and in under- or are encoded by a subset of viruses in the family. For standing the molecular basis for the transformed pheno- example, SV40 encodes three such proteins: agnopro- type. The roles played by the SV40-encoded 708 amino- tein, 17K T, and small leader protein. The genomes of acid large T antigen (T antigen), and 174 amino acid small all polyomaviruses can be divided into three elements: T antigen (t antigen), in transformation have been an early coding unit, a late coding unit, and a regulatory examined extensively. These studies have firmly estab- region (Figure 1). In a productive infection, expression lished that large T antigen’s inhibition of the p53 and Rb- of the early coding unit is effected by the cellular family of tumor suppressors and small T antigen’s action transcription apparatus and results in expression of the on the pp2A phosphatase, are important for SV40-induced large, small and 17K T antigens. Expression of the late transformation. It is not yet clear if the Rb, p53 and pp2A coding unit, which encodes VP1, VP2, VP3, and the proteins are the only targets through which SV40 trans- agnoprotein requires an active T antigen in conjunction forms cells, or whether additional targets await discovery. with the cellular transcriptional apparatus. In addition Finally, expression of SV40 oncoproteins in transgenic to activating transcription from the viral late promoter, mice results in effects ranging from hyperplasia to invasive T antigen also functions in viral DNA replication and carcinoma accompanied by metastasis, depending on the virion assembly. tissue in which they are expressed. Thus, the consequences Little is known about the natural history of SV40 of SV40 action on these targets depend on the cell type infection in the wild. In its natural host, the Rhesus being studied. The identification of additional cellular macaque, SV40 is thought to infect the terminally targets important for transformation, and understanding differentiated, growth-arrested epithelial cells of the the molecular basis for the cell type-specific action of the kidney. Since these cells are quiescent they do not viral T antigens are two important areas through which express proteins involved in DNA replication, nucleo- SV40 will continue to contribute to our understanding of tide metabolism, or chromatin assembly, proteins that cancer. are used by SV40 to replicate viral DNA and assemble Oncogene (2005) 24, 7729–7745. doi:10.1038/sj.onc.1209046 new virions. However, the large and small T antigens cooperate to drive infected cells into S-phase thus Keywords: SV40; polyomavirus; transformation; cell- providing the raw materials needed for progeny virus type specificity production. Cells often respond by activating multiple defense systems that guard against abnormal cell proliferation and/or virus infection. The T antigen proteins and virus-encoded micro-RNAs act to neutra- lize or ameliorate these defenses allowing productive SV40 infection to proceed. Shortly after its discovery SV40 was shown to induce Simian virus 40 (SV40) is a member of the Polyoma- tumors when injected into newborn hamsters or viridae, a family of viruses characterized by small immunocompromised mice (Eddy et al., 1962; Girardi icosahedral virions and a circular double-stranded et al., 1962). The ability to induce tumors and the types DNA genome of about 5 kb. The SV40 genome consists of tumors observed depended on the route of infection, of 5243 bp and like other members of the family encodes amount of virus, and immune status of the test animals. SV40 was shown to induce an array of different tumor types including osteosarcoma, mesothelioma, lymphoma, *Correspondence: JM Pipas, Department of Biological Sciences, University of Pittsburgh, 559 Crawford Hall, Pittsburgh, PA 15260, and choroid plexus neoplasia (reviewed by Arrington USA; E-mail: [email protected] and Butel, 2001). SV40 also induces neoplastic trans- 2These two authors contributed equally to this work formation in cell culture as assessed by a number of SV40 large T antigen targets multiple cellular pathways D Ahuja et al 7730 death and the production of about 300 infectious progeny virions per infected cell (Figure 2a). As with all viruses, many factors determine whether or not the outcome of infection is successful. First, exposure of the cell to virus particles must result in the attachment of virions to the cell surface. For this to occur the cell must express the appropriate receptors for the virus. Thus, cell types lacking a functional receptor cannot be infected or transformed by SV40 virus particles. Following attachment, virions must penetrate the plasma membrane and be transported to the nucleus. Upon arrival in the nucleus SV40 chromatin is released and transcription from the early promoter is initiated. This results in expression of the large and small T antigen proteins, which act to drive the cells into S-phase. Large T antigen also functions to initiate and maintain viral DNA replication and to activate tran- scription from the late promoter. As the level of the structural proteins rises, progeny virions are assembled. In culture, cell death occurs about 96 h postinfection. SV40 infection of rodent cells does not result in cell death and no progeny virions are produced (Figure 2b). The basis for this restriction is poorly understood but the consequences are a failure to initiate viral DNA replication and to activate transcription from the late promoter. On the other hand the early events of virus infection appear to occur normally in these cells. Virus particles attach to the cell surface, are transported to the nucleus and uncoated, and the T antigens are produced. Furthermore, T antigen synthesis results in the infected cells entering S-phase. For example, when quiescent mouse embryo fibroblasts (MEFs) are infected with a high multiplicity of infection of SV40 they are driven into S-phase and the entire cell population appears to become transformed. However, since viral DNA cannot replicate in these cells T antigen expression is eventually Figure 1 Structure of SV40. (a) SV40 genomic DNA is composed lost due to dilution as the cells divide or due to of three elements: the early and late coding units and the regulatory region. The early unit encodes large T antigen (LT), small t antigen degradation of viral DNA. Thus, descendents of these (sT), 17K T antigen (17KT). The late unit encodes the three infected cells have a nontransformed phenotype and do structural proteins (VP1, VP2, and VP3) and the agnoprotein not contain viral DNA. (agno) and a pre-microRNA (miRNA). The regulatory region (ori) Sublines of stably transformed cells do arise from contains sequences for the early and late promoter and the origin of replication. (b) Several domains and motifs make up the SV40 T infections of nonpermissive cells, but with a low antigens: J domain (J), Rb-protein-binding motif (LXCXE), frequency (Figure 2c). The rate-limiting step to stable nuclear localization signal (NLS), phophatase pp2A-binding transformation is thought to be the integration of viral domain (pp2A binding), origin-binding domain (OBD), Zn domain DNA into the cellular genome by nonhomologous (Zn), ATPase domain (AAA þ ), variable region (VR), and host- recombination. Integration occurs at random sites with range domain (HR). Residue numbers are indicated below the domain structure respect to both the cellular chromosome and the viral DNA. If this integration occurs such that the early coding sequences are intact and expressed, the cell and different assays. Genetic analysis has shown that its subsequent descendants are transformed. expression of the large T antigen protein is necessary and often sufficient for transformation by SV40. Under many circumstances both large and small T antigen What is transformation? expression is required for transformation. Neoplastic transformation refers to the acquisition of expanded proliferation and/or survival potential by a SV40 transforms cells that are nonpermissive for viral cell. Several different assays are used to distinguish a productive infection ‘normal’ cell from transformed cells. In each of these assays cells are placed in an environment that is growth Infection of permissive cells, such as the CV1 or BSC40 restrictive for normal cells whereas transformed cells lines of African green monkey kidney cells, results in cell proliferate and survive. In these assays, to score as Oncogene SV40 large T antigen targets multiple cellular pathways D Ahuja et al 7731 Figure 2 SV40 effects in different cellular environments. (a) Infection of permissive cells results in cell death and virion production. (b) SV40 infection of rodent cells induces S-phase but does not result in cell death or virus production. (c) Integration of viral DNA occurs in a very low percentage of nonpermissive cells, which then become stably transformed transformed requires that the rate of cell proliferation be covered with a monolayer of cells. Growth arrest is greater than the rate of cell loss. Thus, each assay thought to be initiated by contact with adjacent cells so measures the ability of cells to escape specific growth that when a monolayer is obtained most cells exit the and/or survival restrictions.
Recommended publications
  • Identification of an Overprinting Gene in Merkel Cell Polyomavirus Provides Evolutionary Insight Into the Birth of Viral Genes
    Identification of an overprinting gene in Merkel cell polyomavirus provides evolutionary insight into the birth of viral genes Joseph J. Cartera,b,1,2, Matthew D. Daughertyc,1, Xiaojie Qia, Anjali Bheda-Malgea,3, Gregory C. Wipfa, Kristin Robinsona, Ann Romana, Harmit S. Malikc,d, and Denise A. Gallowaya,b,2 Divisions of aHuman Biology, bPublic Health Sciences, and cBasic Sciences and dHoward Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, WA 98109 Edited by Peter M. Howley, Harvard Medical School, Boston, MA, and approved June 17, 2013 (received for review February 24, 2013) Many viruses use overprinting (alternate reading frame utiliza- mammals and birds (7, 8). Polyomaviruses leverage alternative tion) as a means to increase protein diversity in genomes severely splicing of the early region (ER) of the genome to generate pro- constrained by size. However, the evolutionary steps that facili- tein diversity, including the large and small T antigens (LT and ST, tate the de novo generation of a novel protein within an ancestral respectively) and the middle T antigen (MT) of murine poly- ORF have remained poorly characterized. Here, we describe the omavirus (MPyV), which is generated by a novel splicing event and identification of an overprinting gene, expressed from an Alter- overprinting of the second exon of LT. Some polyomaviruses can nate frame of the Large T Open reading frame (ALTO) in the early drive tumorigenicity, and gene products from the ER, especially region of Merkel cell polyomavirus (MCPyV), the causative agent SV40 LT and MPyV MT, have been extraordinarily useful models of most Merkel cell carcinomas.
    [Show full text]
  • P53 and the Viral Connection: Back Into the Future ‡
    cancers Review p53 and the Viral Connection: Back into the Future ‡ Ronit Aloni-Grinstein 1,2,†, Meital Charni-Natan 1,†, Hilla Solomon 1 and Varda Rotter 1,* 1 Department of Molecular Cell Biology, Weizmann Institute of Science, 76100 Rehovot, Israel; [email protected] (R.A.-G.); [email protected] (M.C.-N.); [email protected] (H.S.) 2 Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Box 19, 74100 Ness-Ziona, Israel * Correspondence: [email protected]; Tel.: +972-8-9344501; Fax: +972-8-9342398 † These authors contributed equally to this work. ‡ This review is dedicated to the 25th memorial year of Prof. Yosef Aloni of the Weizmann Institute of Science, for his seminal and important pioneering research in the field of molecular biology of the SV40 virus. Received: 15 May 2018; Accepted: 1 June 2018; Published: 4 June 2018 Abstract: The discovery of the tumor suppressor p53, through its interactions with proteins of tumor-promoting viruses, paved the way to the understanding of p53 roles in tumor virology. Over the years, accumulating data suggest that WTp53 is involved in the viral life cycle of non-tumor-promoting viruses as well. These include the influenza virus, smallpox and vaccinia viruses, the Zika virus, West Nile virus, Japanese encephalitis virus, Human Immunodeficiency Virus Type 1, Human herpes simplex virus-1, and more. Viruses have learned to manipulate WTp53 through different strategies to improve their replication and spreading in a stage-specific, bidirectional way. While some viruses require active WTp53 for efficient viral replication, others require reduction/inhibition of WTp53 activity.
    [Show full text]
  • Opportunistic Intruders: How Viruses Orchestrate ER Functions to Infect Cells
    REVIEWS Opportunistic intruders: how viruses orchestrate ER functions to infect cells Madhu Sudhan Ravindran*, Parikshit Bagchi*, Corey Nathaniel Cunningham and Billy Tsai Abstract | Viruses subvert the functions of their host cells to replicate and form new viral progeny. The endoplasmic reticulum (ER) has been identified as a central organelle that governs the intracellular interplay between viruses and hosts. In this Review, we analyse how viruses from vastly different families converge on this unique intracellular organelle during infection, co‑opting some of the endogenous functions of the ER to promote distinct steps of the viral life cycle from entry and replication to assembly and egress. The ER can act as the common denominator during infection for diverse virus families, thereby providing a shared principle that underlies the apparent complexity of relationships between viruses and host cells. As a plethora of information illuminating the molecular and cellular basis of virus–ER interactions has become available, these insights may lead to the development of crucial therapeutic agents. Morphogenesis Viruses have evolved sophisticated strategies to establish The ER is a membranous system consisting of the The process by which a virus infection. Some viruses bind to cellular receptors and outer nuclear envelope that is contiguous with an intri‑ particle changes its shape and initiate entry, whereas others hijack cellular factors that cate network of tubules and sheets1, which are shaped by structure. disassemble the virus particle to facilitate entry. After resident factors in the ER2–4. The morphology of the ER SEC61 translocation delivering the viral genetic material into the host cell and is highly dynamic and experiences constant structural channel the translation of the viral genes, the resulting proteins rearrangements, enabling the ER to carry out a myriad An endoplasmic reticulum either become part of a new virus particle (or particles) of functions5.
    [Show full text]
  • Giorda KM, Raghava S, Hebert DN. the Simian Virus 40 Late Viral
    The Simian Virus 40 Late Viral Protein VP4 Disrupts the Nuclear Envelope for Viral Release Kristina M. Giorda, Smita Raghava and Daniel N. Hebert J. Virol. 2012, 86(6):3180. DOI: 10.1128/JVI.07047-11. Published Ahead of Print 11 January 2012. Downloaded from Updated information and services can be found at: http://jvi.asm.org/content/86/6/3180 http://jvi.asm.org/ These include: SUPPLEMENTAL MATERIAL http://jvi.asm.org/content/suppl/2012/02/14/86.6.3180.DC1.html REFERENCES This article cites 56 articles, 16 of which can be accessed free on June 8, 2012 by Univ of Massachusetts Amherst at: http://jvi.asm.org/content/86/6/3180#ref-list-1 CONTENT ALERTS Receive: RSS Feeds, eTOCs, free email alerts (when new articles cite this article), more» Information about commercial reprint orders: http://journals.asm.org/site/misc/reprints.xhtml To subscribe to to another ASM Journal go to: http://journals.asm.org/site/subscriptions/ The Simian Virus 40 Late Viral Protein VP4 Disrupts the Nuclear Envelope for Viral Release Kristina M. Giorda,a,b Smita Raghava,a and Daniel N. Heberta,b Department of Biochemistry and Molecular Biologya and Program in Molecular and Cellular Biology,b University of Massachusetts, Amherst, Massachusetts, USA Simian virus 40 (SV40) appears to initiate cell lysis by expressing the late viral protein VP4 at the end of infection to aid in virus Downloaded from dissemination. To investigate the contribution of VP4 to cell lysis, VP4 was expressed in mammalian cells where it was predomi- nantly observed along the nuclear periphery.
    [Show full text]
  • Nuclear Targeting of SV40 and Adenovirus
    Nuclear targeting of SV40 and adenovirus Urs F. Greber and Harumi Kasamatsu Urs Greber is at the Department of Zoology, Cell Biology Section, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland. Harumi Kasamatsu is at the Department of Molecular, Cell and Developmental Biology and Molecular Biology Institute, University of California, Los Angeles, 405 Hilgard Ave, Los Angeles, CA 90024-1570, USA. Summary Import of viral DNA into the nucleus is essential for the successful replication of DNA tumor viruses. To achieve this goal viruses have adapted strategies to efficiently traverse the barriers between the plasma membrane and the nucleus of a host cell. Recent work on simian virus 40 (SV40) and adenovirus type 2 or 5 shows that SV40 DNA enters the nucleus through nuclear pore complexes (NPCs) in association with structural proteins, and that dissociation of adenovirus particles near the NPC is essential for nuclear import of the viral DNA. Karyophilic protein components of these viruses appear to mediate the nuclear entry of the viral genomes. 1 Viruses utilize unique subcellular sites for their multiplication. The information necessary for targeting infectious virions to their reproductive sites in the cell is contained within the virion structural proteins. For animal DNA viruses (except for poxviruses and iridoviruses), the nucleus is the site of all viral multiplication processes -genome replication, nucleocapsid formation, and progeny virion maturation 1. Targeting the viral DNA to the nucleus of a host cell is therefore a key event in the virion life cycle. Transport of nucleic acids across biological membranes is a process basic to all living organisms.
    [Show full text]
  • Chimeric Murine Polyomavirus Virus-Like Particles Induce Plasmodium Antigen-Specific CD8+ T Cell and Antibody Responses
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by ResearchOnline at James Cook University ORIGINAL RESEARCH published: 19 June 2019 doi: 10.3389/fcimb.2019.00215 Chimeric Murine Polyomavirus Virus-Like Particles Induce Plasmodium Antigen-Specific CD8+ T Cell and Antibody Responses David J. Pattinson 1,2*, Simon H. Apte 1, Nani Wibowo 3, Yap P. Chuan 3, Tania Rivera-Hernandez 3, Penny L. Groves 1, Linda H. Lua 4, Anton P. J. Middelberg 3 and Denise L. Doolan 1,2* 1 Infectious Diseases Programme, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia, 2 Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia, 3 Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD, Australia, 4 Protein Expression Facility, University of Queensland, Brisbane, QLD, Australia Edited by: An effective vaccine against the Plasmodium parasite is likely to require the induction Alberto Moreno, Emory University School of Medicine, of robust antibody and T cell responses. Chimeric virus-like particles are an effective United States vaccine platform for induction of antibody responses, but their capacity to induce Reviewed by: robust cellular responses and cell-mediated protection against pathogen challenge has Giampietro Corradin, Université de Lausanne, Switzerland not been established. To evaluate this, we produced chimeric constructs using the + + Kai Huang, murine polyomavirus structural protein with surface-exposed CD8 or CD4 T cell or University of Texas Medical Branch at B cell repeat epitopes derived from the Plasmodium yoelii circumsporozoite protein, and Galveston, United States + Sean C.
    [Show full text]
  • Interactions Between Polyomavirus Large T Antigen and the Viral Replication Origin Dna: How and Why
    INTERACTIONS BETWEEN POLYOMAVIRUS LARGE T ANTIGEN AND THE VIRAL REPLICATION ORIGIN DNA: HOW AND WHY by Yu-Cai Peng Department of Microbiology and Immunology McGill University, Montreal April, 1999 A thesis submitted to the Faculty of Craduate Studies and Re3earch in partial fulfullmeat of the requirements of the degree of doctor of philosophy @Yu-Cai Peng, 1999 National Library Biblioth ue nationale 1+1 of Canada du Cana7 a Acquisitions and Acquisitions et Bibliographie Srvices services bibliographiques 395 Wellmgton Street 395, nie Weliingîm Ottawa ON KIA ON4 OrtawaON K1AON4 Canada Canada The author has granted a non- L'auteur a accordé une licence non exclusive Licence ailowing the exclusive permettant à la National Library of Canada to Bibliothèque nationale du Canada de reproduce, loan, distribute or sell reproduire, prêter, distribuer ou copies of this thesis in microform, vendre des copies de cette thèse sous paper or electronic formats. la forme de microfichelfilm, de reproduction sur papier ou sur format électronique. The author retains ownership of the L'auteur conserve la propriété du copyright in this thesis. Neither the droit d'auteur qui protège cette thèse. thesis nor substantial extracts fkom it Ni la thèse ni des extraits substantiels may be printed or othenvise de celle-ci ne doivent être imprimés reproduced without the author's ou autrement reproduits sans son permission. autorisation. TABLE OF CONTENTS Page Tableofcontents................................................... I Abstract .......................................................... VI Resumé........................................................... VI11 Acknowledgements ................................................. X Claim of contribution to kaowledge ................................... XI Listoffigures ...................................................... XllI Guidelines regarding doctoral thesis ................................... XV CHAPTER 1. INTRODUCTION .................................... 1 1. Overview: Life cycle of polyomavirus and simian virus 40 ..........
    [Show full text]
  • Gene Regulation and Quality Control in Murine Polyomavirus Infection
    viruses Review Gene Regulation and Quality Control in Murine Polyomavirus Infection Gordon G. Carmichael Department of Genetics and Genome Sciences, UCONN Health, Farmington, CT 06030, USA; [email protected]; Tel.: +1-860-679-2259 Academic Editors: J. Robert Hogg and Karen L. Beemon Received: 19 September 2016; Accepted: 11 October 2016; Published: 17 October 2016 Abstract: Murine polyomavirus (MPyV) infects mouse cells and is highly oncogenic in immunocompromised hosts and in other rodents. Its genome is a small, circular DNA molecule of just over 5000 base pairs and it encodes only seven polypeptides. While seemingly simply organized, this virus has adopted an unusual genome structure and some unusual uses of cellular quality control pathways that, together, allow an amazingly complex and varied pattern of gene regulation. In this review we discuss how MPyV leverages these various pathways to control its life cycle. Keywords: quality control; transcription; RNA decay; RNA editing; nuclear retention 1. The Virus Murine polyomavirus (MPyV) is highly oncogenic in rodents and has a small circular double-stranded DNA (dsDNA) genome of about 5300 base pairs. The genome is divided into “early” and “late” regions, which are expressed and regulated differently as infection proceeds (Figure1)[ 1–4]. The early and late transcription units extend in opposite directions around the circular genome from start sites near the bidirectional origin of DNA replication [2,5]. Primary RNA products from the early transcription unit are alternatively spliced to yield four early mRNAs which encode the large T antigen (100 kDa), the middle T antigen (56 kDa), the small T antigen (22 kDa) and the tiny T antigen (10 kDa) [6].
    [Show full text]
  • The Mirna World of Polyomaviruses Ole Lagatie1*, Luc Tritsmans2 and Lieven J Stuyver1
    Lagatie et al. Virology Journal 2013, 10:268 http://www.virologyj.com/content/10/1/268 REVIEW Open Access The miRNA world of polyomaviruses Ole Lagatie1*, Luc Tritsmans2 and Lieven J Stuyver1 Abstract Polyomaviruses are a family of non-enveloped DNA viruses infecting several species, including humans, primates, birds, rodents, bats, horse, cattle, raccoon and sea lion. They typically cause asymptomatic infection and establish latency but can be reactivated under certain conditions causing severe diseases. MicroRNAs (miRNAs) are small non-coding RNAs that play important roles in several cellular processes by binding to and inhibiting the translation of specific mRNA transcripts. In this review, we summarize the current knowledge of microRNAs involved in polyomavirus infection. We review in detail the different viral miRNAs that have been discovered and the role they play in controlling both host and viral protein expression. We also give an overview of the current understanding on how host miRNAs may function in controlling polyomavirus replication, immune evasion and pathogenesis. Keywords: Polyomaviruses, microRNAs, Virus-host interaction, Immune evasion Review for BKPyV, Merkel cell carcinoma (MCC) for Merkel General overview of polyomaviruses Cell Virus (MCPyV) and trichodysplasia spinulosa for Polyomaviruses comprise a family of DNA tumor vi- Trichodysplasia spinulosa-associated Polyomavirus (TSPyV) ruses. They are non-enveloped and have a circular, [4,10,11,14-20]. One of the most striking observations is the double stranded DNA genome of around 5,100 bp [1]. fact that asymptomatic infection occurs during childhood The virion consists of 72 pentamers of the capsid pro- which is followed ordinarily by life-long asymptomatic tein VP1 with a single copy of VP2 and VP3 associated persistence [21].
    [Show full text]
  • Human Merkel Cell Polyomavirus Small T Antigen Is an Oncoprotein
    Research article Human Merkel cell polyomavirus small T antigen is an oncoprotein targeting the 4E-BP1 translation regulator Masahiro Shuda, Hyun Jin Kwun, Huichen Feng, Yuan Chang, and Patrick S. Moore Cancer Virology Program, University of Pittsburgh, Pittsburgh, Pennsylvania, USA. Merkel cell polyomavirus (MCV) is the recently discovered cause of most Merkel cell carcinomas (MCCs), an aggressive form of nonmelanoma skin cancer. Although MCV is known to integrate into the tumor cell genome and to undergo mutation, the molecular mechanisms used by this virus to cause cancer are unknown. Here, we show that MCV small T (sT) antigen is expressed in most MCC tumors, where it is required for tumor cell growth. Unlike the closely related SV40 sT, MCV sT transformed rodent fibroblasts to anchorage- and contact-independent growth and promoted serum-free proliferation of human cells. These effects did not involve protein phosphatase 2A (PP2A) inhibition. MCV sT was found to act downstream in the mam- malian target of rapamycin (mTOR) signaling pathway to preserve eukaryotic translation initiation factor 4E–binding protein 1 (4E-BP1) hyperphosphorylation, resulting in dysregulated cap-dependent translation. MCV sT–associated 4E-BP1 serine 65 hyperphosphorylation was resistant to mTOR complex (mTORC1) and mTORC2 inhibitors. Steady-state phosphorylation of other downstream Akt-mTOR targets, including S6K and 4E-BP2, was also increased by MCV sT. Expression of a constitutively active 4E-BP1 that could not be phosphorylated antagonized the cell transformation activity of MCV sT. Taken together, these experiments showed that 4E-BP1 inhibition is required for MCV transformation. Thus, MCV sT is an oncoprotein, and its effects on dysregulated cap-dependent translation have clinical implications for the prevention, diagnosis, and treatment of MCV-related cancers.
    [Show full text]
  • TAF-Like Function of SV40 Large T Antigen
    Downloaded from genesdev.cshlp.org on September 24, 2021 - Published by Cold Spring Harbor Laboratory Press TAF-like function of SV40 large T antigen Blossom Damania and James C. Alwine^ Department of Microbiology, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6142 USA The simian virus 40 (SV40) early gene product large T antigen promiscuously activates simple promoters containing a TATA box or initiator element and at least one upstream transcription factor-binding site. Previous studies have suggested that promoter activation requires that large T antigen interacts with both the basal transcription complex and the upstream-bound factor. This mechanism of activation is similar to that proposed for TBP-associated factors (TAFs). We report genetic and biochemical evidence suggesting that large T antigen performs a TAF-like function. In the tsl3 cell line, large T antigen can rescue the temperature-sensitive (ts) defect in TAFi,250. In contrast, neither El a, small t antigen, nor mutants of large T antigen defective in transcriptional activation were able to rescue the ts defect. These data suggest that transcriptional activation by large T antigen is attributable, at least in part, to an ability to augment or replace a function of TAFn250. In addition, we show that large T antigen interacts in vitro with the Drosophila TAFs (dTAFs) dTAFiilSO, dTAFnllO, and dTAF,i40, as well as TBP. The relevance of these in vitro results was established in coimmunoprecipitation experiments using extracts of SV40-infected a3 cells that express an epitope-tagged TBP. Large T antigen was coimmunoprecipitated by antibodies to epitope-tagged TBP, endogenous TBP, hTAFiilOO, hTAFnl30, and hTAFnISO, under conditions where holo-TFIID would be precipitated.
    [Show full text]
  • IFN-Stimulated Genes Through ATR Kinase Simian Virus 40 Large T Antigen Induces
    Simian Virus 40 Large T Antigen Induces IFN-Stimulated Genes through ATR Kinase Adriana Forero, Nicholas S. Giacobbi, Kevin D. McCormick, Ole V. Gjoerup, Christopher J. Bakkenist, This information is current as James M. Pipas and Saumendra N. Sarkar of September 29, 2021. J Immunol 2014; 192:5933-5942; Prepublished online 5 May 2014; doi: 10.4049/jimmunol.1303470 http://www.jimmunol.org/content/192/12/5933 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2014/05/03/jimmunol.130347 Material 0.DCSupplemental http://www.jimmunol.org/ References This article cites 60 articles, 22 of which you can access for free at: http://www.jimmunol.org/content/192/12/5933.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision by guest on September 29, 2021 • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2014 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Simian Virus 40 Large T Antigen Induces IFN-Stimulated Genes through ATR Kinase Adriana Forero,*,† Nicholas S.
    [Show full text]